搜档网
当前位置:搜档网 › DSP2812控制异步电机

DSP2812控制异步电机

DSP2812控制异步电机
DSP2812控制异步电机

使用TMS320C2812控制异步电机的程序,采用SVPWM空间矢量控制算法,运行正常,加减速,正反转等.

首先,初始化设备,

/*初始化系统*/

InitSysCtrl();

/*关中断*/

DINT;

IER = 0x0000;

IFR = 0x0000;

/*初始化PIE控制寄存器*/

InitPieCtrl();

/*初始化PIE矢量表*/

InitPieVectTable();

/*初始化SCIb寄存器*/

InitSci();

/*设置CPU定时器*/

InitCpuTimers();

ConfigCpuTimer(&CpuTimer2, 150, 20000);

StartCpuTimer2();

/*初始化IO口*/

InitGpio();

/*初始化EV*/

eva.Init(&eva);

evb.Init(&evb);

下步,(个人习惯写个显示程序)

void ShowDisp(void) //显示

{

staticunsignedint i=0;

switch(i)

{

case 0:

i++;

ScibRegs.SCITXBUF=(ku&0xf)+(3<<5);

break;

case 1:

if(RunFlag) ScibRegs.SCITXBUF =23+(2<<5);

else ScibRegs.SCITXBUF =24+(2<<5);

i++;

break;

case 2:

if(RunFlag) ScibRegs.SCITXBUF =f_now/10+(1<<5);

else ScibRegs.SCITXBUF =f_given_disp/10+(1<<5);

i++;

break;

case 3:

if(RunFlag) ScibRegs.SCITXBUF =f_now%10;

else ScibRegs.SCITXBUF =f_given_disp%10;

i=0;

break;

default:

i=0;

break;

}

下面再写,各功能模块:

1、矢量计算和PWM生成

以下给出步骤1中的控制参数及其调节范围

EnableFlag:0、1;启停控制位

SpeedRef:(0~0.99);速度给定值

VdTesting:(0~0.9);D轴电流给定

VqTesting:(0~0.9);Q轴电流给定

void rampgen_calc(RAMPGEN *v)

{

// Compute the angle rate

v->Angle += _IQmpy(v->StepAngleMax,v->Freq); // Saturate the angle rate within (-1,1)

if (v->Angle>_IQ(1.0))

v->Angle -= _IQ(1.0);

elseif (v->Angle<_IQ(-1.0))

v->Angle += _IQ(1.0);

// Compute the ramp output

v->Out = _IQmpy(v->Angle,v->Gain) + v->Offset;

// Saturate the ramp output within (-1,1)

if (v->Out>_IQ(1.0))

v->Out -= _IQ(1.0);

elseif (v->Out<_IQ(-1.0))

v->Out += _IQ(1.0);

}

void RotateVecotr_calc(RotateVecotr_Handle v)

{

_iqUa,Ub;

// Using look-up IQ sine table

Ub = _IQsinPU(v->Angle);

Ua = _IQcosPU(v->Angle);

v->Ualpha = _IQmpy(v->k,Ua);

v->Ubeta = _IQmpy(v->k,Ub);

}

void scope(void)

{

long tl,tm,t0;

tl = svpwm.tl;

tm = svpwm.tm;

t0 = ((long)1<<19) - tl - tm;

switch(svpwm.vect)

{

case 2:ua = t0+tm; ub = t0; break;

case 3:ua = 0; ub = tl; break;

case 1:ua = t0; ub = ((long)1<<19); break;

case 5:ua = tl; ub = tl+tm; break;

case 4:ua = ((long)1<<19); ub = tm+t0; break;

case 6:ua = tl+tm; ub = 0; break;

default: break;

}

uab=ua-ub;

}

2、这就是传说中的精华所在:电流、直流母线电压、速度测试

void svgendq_calc(SVGENDQ *v)

{

_iq Va,Vb,Vc,t1,t2;

unsignedlong Sector = 0; // Sector is treated as Q0 - independently with global Q

// Inverse clarke transformation

Va = v->Ubeta;

Vb = _IQmpy(_IQ(-0.5),v->Ubeta) + _IQmpy(_IQ(0.8660254),v->Ualpha); // 0.8660254 = sqrt(3)/2

Vc = _IQmpy(_IQ(-0.5),v->Ubeta) - _IQmpy(_IQ(0.8660254),v->Ualpha); // 0.8660254 = sqrt(3)/2

// 60 degree Sector determination

if (Va>_IQ(0))

Sector = 1;

if (Vb>_IQ(0))

Sector = Sector + 2;

if (Vc>_IQ(0))

Sector = Sector + 4;

// X,Y,Z (Va,Vb,Vc) calculations

Va = v->Ubeta; // X = Va

Vb = _IQmpy(_IQ(0.5),v->Ubeta) + _IQmpy(_IQ(0.8660254),v->Ualpha); // Y = Vb Vc = _IQmpy(_IQ(0.5),v->Ubeta) - _IQmpy(_IQ(0.8660254),v->Ualpha); // Z = Vc if (Sector==0) // Sector 0: this is special case for (Ualpha,Ubeta) = (0,0)

{

v->Ta = _IQ(0.5);

v->Tb = _IQ(0.5);

v->Tc = _IQ(0.5);

}

if (Sector==1) // Sector 1: t1=Z and t2=Y (abc --->Tb,Ta,Tc)

{

t1 = Vc;

t2 = Vb;

v->Tb = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // tbon = (1-t1-t2)/2 v->Ta = v->Tb+t1; // taon = tbon+t1

v->Tc = v->Ta+t2; // tcon = taon+t2

}

elseif (Sector==2) // Sector 2: t1=Y and t2=-X (abc --->Ta,Tc,Tb) {

t1 = Vb;

t2 = -Va;

v->Ta = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // taon = (1-t1-t2)/2 v->Tc = v->Ta+t1; // tcon = taon+t1

v->Tb = v->Tc+t2; // tbon = tcon+t2

}

elseif (Sector==3) // Sector 3: t1=-Z and t2=X (abc --->Ta,Tb,Tc) {

t1 = -Vc;

t2 = Va;

v->Ta = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // taon = (1-t1-t2)/2 v->Tb = v->Ta+t1; // tbon = taon+t1

v->Tc = v->Tb+t2; // tcon = tbon+t2

}

elseif (Sector==4) // Sector 4: t1=-X and t2=Z (abc --->Tc,Tb,Ta) {

t1 = -Va;

t2 = Vc;

v->Tc = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // tcon = (1-t1-t2)/2 v->Tb = v->Tc+t1; // tbon = tcon+t1

v->Ta = v->Tb+t2; // taon = tbon+t2

}

elseif (Sector==5) // Sector 5: t1=X and t2=-Y (abc --->Tb,Tc,Ta) {

t1 = Va;

t2 = -Vb;

v->Tb = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // tbon = (1-t1-t2)/2 v->Tc = v->Tb+t1; // tcon = tbon+t1

v->Ta = v->Tc+t2; // taon = tcon+t2

}

elseif (Sector==6) // Sector 6: t1=-Y and t2=-Z (abc --->Tc,Ta,Tb) {

t1 = -Vb;

t2 = -Vc;

v->Tc = _IQmpy(_IQ(0.5),(_IQ(1)-t1-t2)); // tcon = (1-t1-t2)/2 v->Ta = v->Tc+t1; // taon = tcon+t1

v->Tb = v->Ta+t2; // tbon = taon+t2

}

3、这个工程还没做完,先上这么多。

4、这块是上面初始化部分的,模块化程序,凑个字数,嘻嘻!!

void InitXintf(void)

{

#if F2812

// Example of chaning the timing of XINTF Zones.

// Note acutal values should be based on the hardware

// attached to the zone - timings presented here are

// for example purposes.

// All Zones:

// Timing for all zones based on XTIMCLK = SYSCLKOUT

XintfRegs.XINTCNF2.bit.XTIMCLK = 0x0000;

// Zone 0:

// Change write access lead active trail timing

// When using ready, ACTIVE must be 1 or greater

// Lead must always be 1 or greater

// Use timings based on SYSCLKOUT = XTIMCLK

XintfRegs.XTIMING0.bit.XWRTRAIL = 3;

XintfRegs.XTIMING0.bit.XWRACTIVE = 7;

XintfRegs.XTIMING0.bit.XWRLEAD = 3;

// Do not double lead/active/trail for Zone 0

XintfRegs.XTIMING0.bit.X2TIMING = 0;

// Zone 2

// Ignore XREADY for Zone 2 accesses

// Change read access lead/active/trail timing

https://www.sodocs.net/doc/ea13327862.html,EREADY = 0;

XintfRegs.XTIMING2.bit.XRDLEAD = 3;

XintfRegs.XTIMING2.bit.XWRACTIVE = 7;

XintfRegs.XTIMING2.bit.XRDTRAIL = 3;

// Double lead/active/trial timing for Zone 2

XintfRegs.XTIMING2.bit.X2TIMING = 1;

// Zone 2 is slow, so add additional BCYC cycles when ever switching // from Zone 2 to another Zone. This will help avoid

// bus contention.

XintfRegs.XBANK.bit.BANK = 2;

XintfRegs.XBANK.bit.BCYC = 3;

#endif

}

异步电机矢量控制仿真

2.5异步电机基于磁场定向的矢量控制系统仿真 学号:S16085207020 姓名:李端凯 图1 矢量控制仿真模型整体结构图 图2 id*求解模块 图3 iq*求解模块

图4 DQ到ABC坐标转换模块 图5 求解转子磁链角模块 图6-1 ABC到DQ坐标转换模块 在这一部分转换中包含两种变换——3/2变换和旋转变换。在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:

()233332333cos60cos6011 ()22 sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+ 写成矩阵形式: 图6-2 ABC 和αβ两个坐标系中的磁动势矢量 111220a b c i i i i i αβ???-- ?????=??????????? 再就是旋转变换,两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。其变换关系为: cos sin sin cos d q i i i i αβφφφφ-??????=???????????? 由此整理得到: 111cos sin 22sin cos 0a d b q c i i i i i φφφφ????-- ????????=?????-?????????? 同理可得:DQ 到ABC 坐标转换则是其逆变换。 图7 求解磁链模块

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

三相异步电动机调速系统仿真剖析

实验报告 课程名称:数字调速 实验项目:三相异步电机恒压频比调速系统仿真专业班级:自动化1303班 姓名:任永健学号:130302307 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

沈阳工业大学实验报告 (适用计算机程序设计类) 专业班级:自动化1303班学号:130302307 姓名:任永健 实验名称:三相异步电机恒压频比调速系统仿真 1.实验目的: 熟悉SIMULINK环境。 建立三相异步电机恒压频比调速系统模型并仿真分析。 2.实验内容: 设计并在simulinnk下搭建三相异步电机恒压频比环调速系统 3. 实验方案(程序设计说明) 异步电机的调速有多种方法,转速开环恒压频比控制是交流电动机变频调速最基本的一种控制转速方式,在一般的变频调速装置里面都嵌入有这项功能,工作方式为恒压频比的调速方式能满足大多数场合交流电动机调速控制的要求,使用起来也相对方便,是通用变频器的基本模式。但在低压时候需要一定的补偿电压,采用恒压频比控制,在基频以下的调速过程中的转差率会保持不变,电动机的所以会机械特性会相对较硬,电动机有较好的调速性能。 正选脉冲宽度调制三相逆变电路,是一种以三角波做载波的应用冲量等效原理而获得理想交流电源的电路装置,在调制比与载波比一定的条件下,通过调节外加直流电源的大小就可以获得在额定频率下产生额定电压的正选电压波,通过调节正弦波的频率就可以得到理想的电压频率波,而且调节输入正弦波的频率能得到线性的输出电压幅值。MATLAB在电气领域中的运用随处可见,在这里可以运用MATLAB里的Simulink仿真出具体的模型,通过示波器来观察具体的波形,从而进行进一步的分析。 4. 实验原理(系统的实现方案分析) 首先采用三相双极性SPWM逆变电路产生三相交流电源,全控型器件可以选用IGBT,这样通过调节外加直流电源的大小便可获的理想的输出交流电压源幅值,然后通过改变给定的频率信号来改变异步电机的转速,基本模型如下图所示

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

交流异步电动机调速系统控制策略

交流异步电动机调速系统控制策略 发表时间:2018-10-01T12:18:49.203Z 来源:《基层建设》2018年第27期作者:刘英敏 [导读] 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 齐鲁石化运维中心炼油电气山东淄博 255434 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 关键词:交流异步电动机;调速系统;策略;方向 交流异步电动机是一种将电能转化为机械能的电力拖动装置,其主要成分包括定子、转子和气隙。定子绕阻在接通三相交流电之后能够产生磁场,而且还切割了转子,进而获得转矩。交流异步电动机具有结构简单、运行稳定、价格实惠、安装和维护方便等优点,使其得到了广泛的应用。 交流异步电动机常见的调速方法有降压调速、转子串电阻调速和变极对数调速等,其中的变压变频调速的调速范围宽、灵活性较强,应用较为广泛。变压变频调速时的转差功率能够保持稳定,在配以一定的技术后能够保持高性能,能够与直流调速系统想媲美。本文以现代控制理论为基础分析了对异步电动机的变压变频调控策略的分析。 一、基于静态模型的控制策略 对异步电动机的调速的本质在于对电磁转矩的控制。传统的异步电动机交流调速系统以T型稳态等电路建立了数学模型,但对电磁转矩的控制率低。但其也有结构简单、工作场合要求低等特点,在风机和水泵中得到了广泛的应用。 1.对转速开环、恒压频比的控制 对转速开环和恒压频比控制的核心在于对电压和频率的控制,确保电压频率比保持稳定不变的情况下,以改变异步电动机的同步转速进行调速。在这一过程中,当电磁转矩不变时,转差频率不变,负载时的转速不变,通过改变电子电压频率来稳步改变转速。由于转速开环、恒压频比不能控制电磁转矩,其动态性能较差,调速范围也十分有限。 2.转速闭环、转差频率控制 能够控制电磁转矩就能够提高系统的动态性能。在转速开环、恒压频比上进行转速闭环控制,当电压频率陡然增加时,电机转速较为迟疑,造成转差额较大,电机转速提高,进而实现了对转速的控制。 二、基于动态模型的传统控制策略 上述的一种控制策略从稳态的电路出发,在稳态的情况下气隙恒定,动态性较差。要向实现动态性的调速,就要控制异步电动机的磁通和电磁转矩,常见的控制策略是矢量控制、直接转矩控制等。 1.矢量控制 矢量控制起源于感应电机磁场定向控制,并在感应电机定子电压上逐渐形成了矢量控制理论。矢量控制能够将定子电流分解成励磁分量和转矩分量,并在各自控制器的独立控制下实现了控制。矢量控制的关键在于保持转子磁链的恒定,因此就需要随时掌握转子磁链的信号。在初始阶段,人们尝试使用磁链传感器检测转子磁链,但其工艺和技术不太理想,而且转速低时的脉动分量大大超出了平常。当前的矢量控制系统多使用软测量的方法,例如电压、电流信号等。 2.直接转矩控制 矢量控制在理论上实现了磁链和转矩的解耦控制,但其坐标变换和转子磁链的准确性限制了矢量控制范围的准确性。而直接转矩控制系统通过双位控制器控制电磁转矩,选择合适的电压矢量控制电机,转矩响应速度快,稳定性也更高。 三、现代控制策略 传统控制策略会收到电机参数和扰动的影响,因此,现代控制理论与矢量控制、直接控制理论相结合,并且通过设计参数辨识器、观测器等修正模型,提高系统的鲁棒性。 1.滑模变结构控制 滑模变结构控制是通过变革结构控制实现控制,其实质是通过不连续的控制率使其按照要求的轨迹运动,常与矢量控制和直接转矩控制相结合使用。传统的滑模控制器只有滑动到面上时才具备不确定的干扰抑制力,常见的简单的办法是提高增益性使系统能够快速收敛到滑动面,但随之抖动也家具,使系统变得不稳定。全滑模控制具有全程性,在通过滑动模块控制的基础上,需要设计一个非线性的动态滑模来消除滑模控制,使系统具备全过程的鲁棒性,克服了原有的缺点。滑模变结构控制还有另外一个缺点,即当达到滑动后,滑动面向平衡点运动的轨迹难以得到控制,容易产生抖动。 2.自适应控制 由于异步电动机的参数与电机工作状态联系紧密,而矢量控制和直接转矩控制的动态性能也容易受到参数的变化,其自适应控制受到了广泛关注。自适应控制系统中常见的调速系统包括自适应控制和自适应观测器。模型自适应控制器以参考模型的输出为理想输出,以控制被控制对象的动态性和参考模型的动态性一致,其中涉及到的问题有负载转矩的矫正、速度控制器等。为了解决这些问题,需要掌握状态变量,如定子电流、转速等,但还需要定转子磁链自适应观测器,其以磁链为工具,以实际输出量和预估输出量为基准进行矫正,能够实现对转子电阻和转速的有效辨识。另外,还有一种自适应观测器——卡尔曼滤波器,它具有观测和滤波功能,能够消除系统噪音,提高了观测器的精度,使其鲁棒性更强。但交流调速系统以非现行系统为主,人们多以交流调速系统方程建立卡尔曼滤波方程,并加入了参数辨识、转速观测等,使观测器更加简化。 3.模糊控制 在矢量控制系统中,以转速和电流控制器为设计对象均能够将其设计成模糊控制器,进而掌握电极参数的变化和负载扰动的抑制能力。模糊控制常用在直接转矩控制中,更好地实现了定子电阻的控制,有效地实现了对异步电动机定子电阻的检测。 4.神经网络控制 神经网络控制的非线性模型包括神经网络辨识器和神经网络控制器的设计。神经网络能够矫正定、转子电阻,能够有效消除其对转子

三相BLDC电机控制和驱动系统的策略

简化三相BLDC电机控制和驱动系统的策略 _________________________________________________________________ Microchip Technology Inc. 模拟和接口产品部 产品线营销经理 Brian Chu 高度集成的半导体产品不仅是消费类产品的潮流,同时也逐步渗透至电机控制应用。与此同时,无刷直流(BLDC)电机在汽车和医疗应用等众多市场中也呈现出相同 态势,其所占市场份额正逐渐超过其他各类电机。随着对BLDC电机需求的不断增 长以及相关电机技术的日渐成熟,BLDC电机控制系统的开发策略已逐渐从分立式 电路发展成三个不同的类别。这三类主要方案划分为片上系统(SoC)、应用特定 的标准产品(ASSP)和双芯片解决方案。 这三类主要方案均能减少应用所需的元件数并降低设计复杂度,因此正逐渐受到电机系统设计工程师的青睐。不过,每种策略都有其各自的优缺点。本文将论述这三种方案及其如何在设计的集成度和灵活性之间做出权衡。 图1:典型的分立式BLDC电机系统框图

基本电机系统包含三个主要模块:电源、电机驱动器和控制单元。图1给出了传统 的分立式电机系统设计。电机系统通常包含一个简单的带集成闪存的RISC处理器,此处理器通过控制栅极驱动器来驱动外部MOSFET。该处理器也可以通过集成的MOSFET和稳压器(为处理器和驱动器供电)来直接驱动电机。 SoC电机驱动器集成了上述所有模块,并且具有可编程性,能够适用于各类应用。 此外,它还是因空间受限而需要优化的应用的理想选择。但是,其处理性能较低且内部存储空间有限,因此无法应用于需要高级控制的电机系统。SoC电机驱动器IC 的另一个缺点是开发工具有限,例如缺乏固件开发环境。大多数业界领先的单片机供应商均提供种类繁多的易用工具,这一点与之形成鲜明对比。 ASSP电机驱动器面向某一特定领域设计,一切都针对某个狭义应用而优化。其占 用空间极小且无需软件调节。此外,它还是空间受限应用的理想选择。图2给出了 10引脚DFN风扇电机驱动器的框图。由于ASSP电机驱动器通常专注于大批量生产 应用,因此往往拥有出色的性价比。不过,这并不意味着依靠ASSP驱动器运行的 电机需要牺牲性能。例如,大多数现代ASSP电机驱动器能够驱动采用无传感器和 正弦算法的BLDC电机,而过去则需要使用高性能单片机才能实现这一点。但是,ASSP产品缺乏可编程性且不能调节驱动强度,这会限制其适应日益变化的市场需 求的能力。 图2:独立式风扇电机驱动器框图

同步电机与异步电机的概念、区别及应用前景

异步电机与同步电机的控制原理,应用领域 和研究热点 班级: 学号: 姓名:

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场 运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。 1.转速闭环恒压频比控制 转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。 2.转差频率控制 转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩 3.矢量控制 矢量控制框图如图2 所示。 1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

异步电机控制系统PI参数计算

异步电机控制系统PI 参数计算 对于一个控制系统,在设计PI 调节器的参数时,应该先根据系统的传递函数计算出PI 参数的数量级,然后根据系统的响应性能进一步优化PI 参数值。 下面以异步电机控制系统电流环PI 参数推导为例,讲解异步电机控制器PI 参数的设计方法。 1. 异步电机的矢量控制电流环和转速环 异步电机的矢量控制电流环和转速环如上图所示。 上述控制量的传递过程是:给定转速与反馈转速进行转速PI 调节输出sq *i ,给定电流与反馈电流经过电流控制器的PI 调节后生成给定电压信号sq *U ,此电压信号用于产生转子磁链,要计算控制器的PI 参数值,首先要计算出相关的传递函数,再利用PI 调节器对系统进行校正,根据给定的ξ和n ω计算出K P 和K i 值。 下面推导电流环sq *U 与rd ?的传递函数。 矢量控制系统已有几种方案获得成功应用,包括转子磁场定向矢量控制、气隙磁场矢量控制、定子磁场矢量控制,所谓磁场定向就是规定d 轴与磁场方向的关系,当取d 轴与转子磁场方向重合时,就是转子磁场定向当取dq 坐标系的旋转速度与定子磁场同步旋转速度相同时,此时转子磁通在q 轴的分量为零,目前应用最广泛的就是按转子磁场定向的矢量控制。 此时: r rm rd ???== 2.38 0rt rq ==?? 2.39

ωωω-=1s 2.40 磁链方程:rd m sd s i L i L +=sd ? rq m sq s i L i L +=sq ? 2.41 rd r sd m i L i L +=rd ? 0sq =+=rq r sq m i L i L ? 由以上四式解出rd i 、rq i 与sd i 、sq i 的关系: r sq m rq L i L i - = 2.42 )(1 sd m rd r rd i L L i -=? 2.43 根据文件上《异步电机dq 坐标系上的数学模型推导》得出: sq dqs sd sd s sd P i R u ?ω?-+= sd dqs sq sq s sq P i R u ?ω?-+= 0=+=rd rd r rd P i R u ? 2.44 0=+=rd dqr rq r rq i R u ?ω 在鼠笼式异步电机中rd u 、rq u 为0。 下面把转子磁链用sd i 表示。 sd r m rd i P T L 1 +=? 2.46 转差频率为: rd r sq m dqr dqs s T i L ?ωωωωω= -=-=1 2.45 式中r T 为转子时间常数,r r r R L T = 将(2.38)、(2.39)、(2.41)代入(2.44)化简后可得:

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

三相异步电动机调速系统设计(精)

Anhui Vocactional & Technical College of Industry & Trade 毕业论文 三相异步电动机调速系统设计 Three-phase asynchronous motor drive system design 所在系院:电气与信息工程系 专业班级:、 机电一体技术 学生学号:43 学生姓名:叶海英 指导教师:王琳 ; 2013年3月23日 安徽工贸职业技术学院

毕业设计(论文)任务书系(院)专业班级 学生姓名学号 一、题目: 二、内容与要求: 》 三、设计(论文)起止日期: 任务下达日期:年月日 完成日期:年月日 指导教师签名: 年月日 四、教研室审查意见: 教研室负责人签名: 年月日 ~ 摘要

本文所讨论的是三相异步电动机的串级调速的基本原理与实现方法。对于一般交流电动机的调速,我们都是从电动机的定子侧引入控制变量(改变定子供电电压、频率)来实现的,这对于转子处于短路状态的三相笼型异步电动机是唯一的途径。但是,对于绕线式异步电动机来说,其转子绕组能够通过变量以实现调速。绕线式异步电动机转子侧的控制变量有电流、电动势、电阻等。通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势。在发挥绕线式异步电动机转子的可控性优势的基础上,提高调速性能需要从两方面着手: 1从节能角度考虑,应将损耗在转子附加电阻上的能量吸收,转化成别的有用的能量或反馈到电网,以提高传动系统的效率 2从高性能调速要求考虑,应用控制理论,将其组成闭环调速控制系统,满足调速精度、动态响应等指标的要求。 综合所述,利用串级调速系统,是使绕线式异步电动机实现高性能调速的有效办法。用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

(技术文档2)异步电机目前几种主要控制方法的对比分析

异步电机几种主要控制方法的对比分析 近些年来,随着电力电子、计算机控制以及矢量控制等技术的不断发展,交流调速获得了巨大的技术支持,交流调速系统已经取代了直流调速系统。交流异步电机调速控制系统大致可分为两大类,一类是标量控制系统,主要是变频调速系统,包括恒压频比控制(V/F 控制)和转差频率控制。另一类是矢量控制系统,包括转子磁场定向矢量控制(VC )、转差频率矢量控制、直接转矩控制(DTC )和无速度传感器矢量控制。 1 标量控制 1.1 恒压频比控制( V/F) 交流异步电机调速时,总是希望保持每极磁通量m Φ为额定值不变,这样铁芯才能工作在最经济状态。电源频率和电机极对数决定异步电动机的同步转速,即在改变电源频率时,可以改变电机的同步转速,这时只有控制电源电压与变化的频率的比值为恒定( V/F 恒定) ,才能确保电动机的磁通m Φ基本恒定。电动机定子的感应电动势: m N 111K 44.4Φ=N f E g (1) 式中Eg —气隙磁通在定子每相绕组中感应电动势有效值; 1f —电源频率; 1N —定子每相绕组串联匝数; 1N K —基波绕组系数; m Φ—每极气隙磁通量。 由式(1)可知,在控制电动机频率时,保持1/f E g 1恒定,就可以维持磁通恒定。有三种不同方式的电压—频率协调控制。 (1) 恒压频比=11/f U 控制,1U 为定子端电压,这种方式最容易实现,能够满足一般调速要求,其缺点是低速带载能力差,需要对定子压降进行补偿。 (2) 恒1/f E g 控制,g E 是气隙磁通在定子每相绕组中感应电动势,它以对恒压频比实行电压补偿为目标,稳态调速性能优于恒压频比11/f U 控制。这种控制方式的缺点是机械特性非线性,产生转矩的能力不强。 (3) 恒1/f E r 控制,r E 是气隙磁通在转子每相绕组中感应电动势,这种控制方式可以得到和直流励电动机一样的机械特性,从而使高性能调速得以实现。但是它的控制系统比较复杂。

《驱动电机及控制技术》课程标准

江苏安全技术职业学院汽车运用安全管理专业 《驱动电机及控制技术》课程标准 一、课程性质 本课程是三年制高等职业学校新能源汽车运用与维修专业必修的一门专业 核心课程。是在汽车电工电子、汽车机械基础等课程基础上,开设的一门综合性 较强的核心课程,其任务是使学生掌握常用电动机的结构及其控制方法,培养学 生对新能源汽车常用电动机的结构原理分析及控制策略的设计能力;对学生进行 职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应 职业变化的能力,为学生职业生涯的发展奠定基础。 二、学时与学分 本课程建议课时为80课时,本课程的总学分为5学分。 三、课程设计思路 本课程学习方式的多样化。推行项目教学、案例教学、工作过程导向教学等 教学模式,分知识模块来实施。 1、课程定位 本课程的开设是通过深入企业调研,与专业指导委员会专家共同论证,根据工作任务与职业能力分析,以必须、够用为度,以掌握知识、强化应用、培养技 能为重点,以新能源汽车相关工作任务为依据设置本课程。 2、目标确立 依据新能源汽车运用与维修专业人才培养方案中确定的培养目标、综合素 质、职业能力,按照知识与技能、过程与方法、情感态度与价值观三个维度,突 出核心素养和关键能力,结合本课程的性质和职业教育课程教学的最新理念,确定课程目标。 3、教学内容确定 依据《驱动电机及控制技术》课程所对应工作的基本内容,将本课程划分为 驱动电机基础知识、常用驱动电机、功率变换器、功率变换器应用技术、驱动电 机控制技术和新型驱动电机等几大部分,在设计上强调学生学习自主性。内容上以任务为导向,强化知识与信息的应用,弱化知识的了解与背诵;教学指导上合乎以学生为中心,重视学习成果的展示分享,让学习者在享受成就感的前提下, 兴趣盎然地完成学习任务,达到单元学习目标。 四、课程目标 学生通过学习本课程,使学生能掌握新能源汽车中主要使用的几种电动机--直流电动机、交流感应电动机、交流永磁电动机和开关磁阻电动机的结构、原理及应用,以及新能源汽车驱动电动机的结构及其控制方法。熟悉对上述调速、分析及控制。结合生产生活实际,培养学生对所学专业知识的兴趣和爱好,养成自主学习与探究学习的良好习惯,从而能够解决专业技术实际问题,养成良好的工作方法、工作作风和职业道德。 核心素养和关键能力目标:

相关主题