搜档网
当前位置:搜档网 › A320系列飞机襟翼深度调节方法的探讨

A320系列飞机襟翼深度调节方法的探讨

A320系列飞机襟翼深度调节方法的探讨
A320系列飞机襟翼深度调节方法的探讨

空客A320 飞行手册教程

AIRBUS A320 飞行手册教程IFR 视野面板介绍 (1)主要飞行显示幕Primary Flight Display (PFD) (2)导航显示萤幕Navigation Display (ND) (3)计时器按钮Chronometer button (4)高度表拨定值Altimeter (5)电子飞行仪器系统Electronic Flight Instrument System( EFIS) (6)发动机指示及警告显示Engine/Warning Display (7)飞行控制装置Flight Control Unit(FCU) (8)起落架显示萤幕/自动煞车选择纽Gear/Auto Brakes

(9)地面接近警报系统Ground Proximity Warning System(GPWS) (10)备用飞行仪表Backup Instruments (11)系统显示萤幕System Display(SD) (12)电子中央飞机监视系统Electronic Central Aircraft Monitoring (ECAM) (13)起落架控制杆L anding Gear (14)飞行时钟Clock 头顶面板介绍 (1)发动机灭火开关Engine Fire (2)液压控制面板Hydraulics (3)燃油系统面板Fuel (4)电力控制面板Electrical

(5)空调设定面板AIR COND (6)雨刷开关W IPER (7)防结冰开关A nti-Ice (8)灯光控制开关EXT LT (9)辅助动力装置开关APU (10)安全带警示及禁止吸烟警示SEAT BELT & NO SMOKING (11)警急状况路线导引灯INT LT (12)舱压控制开关CABIN PRESS (13)发动机手动开启开关Manual Engine Start Panel (14)大气资讯及惯性导航系统Air Data Inertial Reference System(ADIRS) (15)紧急逃生Evacuation EVAC (16)紧急电力发动装置E MER ELEC PWR (17)地面接近警报系统选择开关G PWS (18)座舱通话纪录器及飞行纪录器开关R COR (19)氧气供应系统O XYGEN (20)与后舱组员及机务人员通讯按钮C ALLS (21)货舱烟雾警告CARGO SMOKE (22)空气循环系统VENTILATION

《襟翼、副翼和缝翼》

《缝翼、襟翼和副翼》 襟翼(Flap) 襟翼是安装在机翼后缘附近的翼面,是后缘的一部分。襟翼可以绕轴向后下方偏转,从而增大机翼的弯度,提高机翼的升力。襟翼的类型有很多,如简单襟翼、开缝襟翼、多缝襟翼、吹气襟翼等等。 副翼(Aileron) 是指安装在机翼翼梢后缘的一小块可动的翼面。飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。 缝翼(Slat) 缝翼又称“前缘缝翼”英文名称:leading edge slat。 定义:装在机翼前缘,闭合时与机翼外形为一整体,可以前伸与机翼间形成缝隙的翼面形增升装置。 飞机的增升装置 飞机的增升装置有后缘襟翼、前缘缝翼、前缘襟翼和吹气襟翼。 吹气襟翼又有3种类型: (1)流向吹气边界层控制 (2)展向吹气襟翼 (3)喷气襟翼。 襟翼的另外定义方式: 襟翼分为后缘襟翼/前缘襟翼,原理不同,不同类型的后缘襟翼原理也有所不同。

一.后缘襟翼 襟翼位于机翼后缘,叫后缘襟翼。它的种类很多,较常用的有:分裂襟翼,简单襟翼、开缝襟翼、后退襟翼、后退开缝襟翼等。 放下襟翼既可提高升力,同时也增大阻力。所以多用于着陆。有的飞机为了缩短起飞滑跑距离,起飞也放襟翼,但放下角度很小。 (一)分裂襟翼 这种襟翼本身象一块薄板,紧贴于机翼后缘。放下襟翼,在后缘和机翼之间,形成涡流区,压力降低,对机翼上表面的气流有吸引作用,使其流速增大,上下压差增大,既增大了升力,同时又延缓了气流分离。另一方面,放下襟翼,机翼翼剖面变得更弯曲,使上、下表面压力差增大,升力增大。由于以上两方面的原因,放下分裂襟翼的增升效果相当好,一般最大升力系数可增大75-85%。但因大迎角放下襟翼,上表面的最低压力点的压力更小了,使气流更易提前分离,故临界迎角有所减小。 (二)简单襟翼 简单襟翼与副翼形状相似,放下简单襟翼,相当于改变了机切面形状,使机翼更加弯曲。这样,空气流过机翼上表面,流速加快,压力降低;而流过机翼下表面,流速减慢,压力提高。因而机翼上、下压力差增大,升力增大。可是,襟翼放下之后,机翼后缘涡流区扩大,机翼前后压力差增大,故阻力同时增大。襟翼放下角度越大,升力和阻力也增大得越多。 放下襟翼,升力和阻力虽然同时增大,但在一般情况下阻力增大的百分比要比升力增大的百分比要大些,所以升阻比是降低的。在大迎角下放襟翼,机翼上表面最低压力点的压力,比后缘部分的压力小得更多。这更促机翼后部附面层中的空气

a320的基本技术参数

a320的基本技术参数:翼展: 34.09米 机长: 37.57米 高度: 11.76米 最大起飞总重:73500千克 最大载油量:23860升 动力装置: 两台CFM56-5型涡扇发动机 巡航速度: 0.82马赫 货舱容积: 37.41立方米 载客量:186 客舱布局:3-3 最大航程:5000公里 简介:

空中客车320系列是欧洲空中客车工业公司研制生产的双发中短程150座级运输机。空中客车公司在其研制的A300/310宽体客机获得市场肯定,打破美国垄断客机市场的局面后,决定研制与波音737系列和麦道MD80系列进行竞争的机型,在 1982年3月正式启动A320项目, 1987年2月22日首飞, 1988年3月开始投入商业运营。 详细介绍: 截至目前,共有150多家运营商运营着2400多架包括 A318、A 319、A320和A321在内的A320系列飞机,累计飞行时间达3000万小时。这些飞机组成了世界上最具盈利能力的单通道飞机系列。A320系列飞机在设计上通过提高客舱适应性和舒适性,以及采用目前单通道飞机可用的最现代化的完善电传操纵技术,力求达到最优的盈利能力,确保了在各个方面节省直接运营成本,并为运营商提供了100至220座级飞机中最大的共通性和经济性。 A320系列拥有单通道飞机市场中最宽敞的机身,这一优化的机身截面为客舱灵活性设定了新的标准。通过加宽座椅,提供了最大程度的舒适性;而超宽的通道对于需要快速周转的低成本市场是很重要的。此外,优越的客舱尺寸和形状可以安装较大的行李架,一方面更加方便,同时也可以加快上下乘客的速度。 较宽的机身还提供了无与伦比的货运能力。 A319、A320和A321是该级别飞机中惟一能够提供集装箱货运装载系统的飞机。该系统与全球标准宽体飞机装载系统兼容,从而减少了地服设备,降低了装卸成本。该系列飞机具有的高可靠性进一步增强了盈利性和为乘客提供服务的能力。此外,A320系列还是一个对环境负责任的邻居,其油耗、排放和噪音都是同级别中最低的。

襟翼

飞机襟翼运动分析 1 图1-1机翼组成(上表面)

图1-2机翼组成(下表面) 2襟翼(Flap)功能 襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠增大机翼的弯度来获得升力增加的一种增升装置。 当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低着陆速度,缩短滑跑距离。 在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。 前缘襟翼与后缘襟翼配合使用可进一步提高增升效果。一般的后缘襟翼有一个缺点,就是当它向下偏转时,虽然能够增大上翼面气流的流速,从而增大升力系数,但同时也使得机翼前缘处气流的局部迎角增大,当飞机以大迎角飞行时,容易导致机翼前缘上部发生局部的气流分离,使飞机的性能变坏。如果此时采用前缘襟翼,不但可以消除机翼前缘上部的局部

气流分离,改善后缘襟翼的增升效果,而且其本身也具有增升作用。 图2-1 B737-600的双开缝后缘襟翼 克鲁格襟翼(Krueger Flap):与前缘襟翼作用相同的还有一种克鲁格襟翼。它一般位于机翼前缘根部,靠作动筒收放。打开时,伸向机翼下前方,既增大机翼面积,又增大翼型弯度,具有较好的增升效果,同时构造也比较简单。 图2-2为波音777的驾驶舱中央操纵台部分,民航飞机的机翼各翼面的操作一般类似。 如本文前述,前缘缝翼没有专门的操纵装置,副翼的作动是依靠驾驶盘的左右转动。而襟翼、扰流板的操纵就在驾驶舱中央操纵台的油门杆两侧。 襟翼,用于飞行控制 襟翼是几乎所有飞机都使用的最常见高升力装置。对任何设定的迎角,这些安装在机翼后缘的控制面既增加了升力又增加了诱导阻力。襟翼容许在高巡航速度和低着陆速度之间折衷,因为它可以在需要的时候伸出,不需要的时候收起到机翼结构里。有四种常见类型的襟翼:简单襟翼,分裂襟翼,开缝襟翼和福勒(Fowler)襟翼。

A320性能简介

空客A320性能简介 一、机型简介 A320系列是欧洲空中客车工业公司研制的亚音速、双发、中程最大180座客机。包括A318、A319、A320及A321四种客机,这四种客机拥有相同的基本座舱配置,飞行员只要接受相同的飞行训练,就可驾驶以上四种不同的客机。A320为单通道飞机建立了一个新的标准,A320由于较宽的客舱给乘客提供了更大的舒适性,因而可采用更宽的座椅和更宽敞的客舱空间,它比其竞争者飞得更远、更快,因而具有更好的使用经济性。接着在此基础上又发展了较大型和较小型,即186座的A321和124座的A319、107座的A318。 目前我司机型有A320-232,座舱布局为174Y;A320-214,座舱布局为8F+144Y。详情请参考“运行网/重量数据”栏目。 二、几何数据 飞机长(至垂直尾尖)...........123 ft 3 in (37.573 M) 翼展................................ 112 ft (34.1 M) 机尾高..........................38 ft 7 in (11.755 M) 平尾翼展.......................40 ft 10 in (12.45 M) 主轮间距........................24 ft 11 in ( 7.59 M) 起落架纵向间距.................. 41 ft 6in (12.64 M) 三、使用限制

该机可完成目视飞行,仪表飞行,结冰条件和延伸跨水飞行。 1、最小机组:两人,机长和副驾驶 2、基本重量数据: 最大滑行重量................167329磅(75900公斤)最大起飞重量................166447磅(75500公斤)最大着陆重量................145503磅(66000公斤)最大无油重量.................137787磅(62500公斤) 3、最大起飞/着陆机场标高.......9200英尺(约2804米) 4、起飞/着陆风速限制 备注: **采用刹车效应差的道面限制数据。5、最大起飞/着陆跑道积水、雪量 ......................积水或雪浆0.5英寸(12.7毫米) ........................... 松雪 2.0英寸(50.8毫米)

空客A320系列

A320系列空中客车A320 是欧洲空中客车工业公司研制一种创新的飞机,为单过道中短程飞机建立了新的标准。A320系列飞机双发150座级客机,是第一款应用全数字电传操纵(fly-by-wire)飞行控制系统的民航客机,第一款放宽静稳定度设计的民航客机。A320系列飞机在设计上提高客舱适应性和舒适性。A320系列飞机包括A318、A319、A320和A321在内组成了单通道飞机系列。旨在满足航空公司低成本运营中短程航线的需求,为运营商提供了100至220座级飞机中最大的共通性和经济性。A320飞机自1988年4月投入运营以来,迅速在中短程航线上设立了舒适性和经济性的行业标准。A320系列的成功也奠定了空中客车公司在民航客机市场中的地位。 A320项目自1982年3月正式启动,第一个型号是A320 ——1001987年2月22日首飞,1988年2月获适航证并交付使用。1994年A321投入服务,1996年A319投入服务,2003年A318投入服务。 最初的法国航空公司的A320在航空展上飞行表演时坠毁,3名机组成员死亡,事故是由于飞行员对新型电传操纵系统操作不当引起的,调查显示还有大量未解决的问题,但是随着飞机技术的成熟完善,那次事故的影响慢慢消退,不再会影响到其优良的声誉了。随着法国航空公司的机队中增加了首架A318飞机,法航成为第一个运营全部空中客车A320系列飞机机型的航空公司。 截至2008年,空中客车A320系列包括A320、A321、A319和A318在内共生产了3000多架,产量仅次于波音737,是历史上销量第二的喷气式客机。 运载能力 A320系列拥有单通道飞机市场中最宽敞的机身,这一优化的机身截面为客舱灵活性设定了新的标准。通过加宽座椅,提供了最大程度的舒适性;而较宽的通道对于需要快速周转的低成本市场是很重要的。此外,优越的客舱尺寸和形状可以安装宽大的头顶行李舱,一方面更加方便,同时也可以加快上下乘客的速度。客舱舒适而宽敞是当前最受欢迎的150座级的中短程客机。较宽的机身还提供了无与伦比的货运能力。“双水泡形”机身截面大大提高了货舱中装运行李和集装箱的能力。 9、A320和A321是该级别飞机中惟一能够提供集装箱货运装载系统的飞机。该系统与全球标准宽体飞机装载系统兼容,从而减少了地服设备,降低了装卸成本。该系列飞机具有的高可靠性进一步增强了盈利性和为乘客提供服务的能力。此外,A320系列油耗、排放和噪音都是同级别中比较低的。 空中客车320系列包括150座的A320、186座的A321、124座的A319和107座的A318四种基本型号,这四种型号的飞机拥有相同的基本座舱配

空客A320飞行手册---飞行的主要组成部分及功用

飞行的主要组成部分及功用 **到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 *飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 **飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 **连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。 **飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼

A320系列飞机襟翼锁定和卡阻故障的分析与预防

A320系列飞机襟翼锁定和卡阻故障的分析与预防 摘要:本文针对空客A320系列飞机襟翼锁定和卡阻故障的现象,结合襟翼系统的结构组成和工作原理,以及飞机实际运营中出现的情况,详细分析了故障产生的原因,并提出故障预防的有效措施,对该机型的维护有一定的参考意义。 关键词:襟翼锁定襟翼卡阻原因分析预防措施 Abstract:Regarding the phenomenon of AIRBUS A320 family flaps locked and flaps jam,combined with the system composition and operating principle,as well as the actual operating situation of the aircraft,the paper analysis the frequent causes of the failure and proposes measures for prevention and trouble shooting. It has certain reference value for the maintenance of such type of aircraft. Key words:flap locked;flap jam;cause analysis;prevention measures 空客A320系列飞机是空客家族的主力机型,在日益繁荣的中国航空市场上,该型飞机已经逐步成为主流机型。2013年4月25日,中国航空器材集团公司和空中客车公司签署意向协议,订购60架空客飞机,其中包括42架单通道的A320系列飞机和18架双通道的A330系列飞机。截至2013年3月底,在中国,共有14家航空公司运营着750多架空客A320系列飞机,作为拥有国内最大机队的南方航空公司运行着超过200架空客A320系列飞机。 A320系列飞机安装了左右、内外共4块襟翼,用于在起飞下降过程中增加或者减少飞机升力。整个襟翼系统包括襟翼安装、襟翼驱动、襟翼控制、襟翼指示等子系统。内襟翼通过两个小车固定在1、2号滑轨上,外襟翼通过小车固定在3、4号滑轨上。每个滑轨处分别有一个臂与襟翼的驱动系统相连,使襟翼受驱动系统作用在滑轨上运动。另外,襟翼和小车之间通过偏心螺栓连接,襟翼驱动臂上也有一个偏心螺栓,通过螺栓偏心的位置就可以调节襟翼翼型的位置。如图所示,襟翼驱动系统包括一个动力控制组件(PCU),滑轨由一个旋转作动器与多段扭力管等部件组成。首先由PCU输出旋转力矩,然后通过扭力管将旋转力矩传递给各个滑轨上的旋转作动器,旋转作动器利用旋转力矩驱动作动器臂,在作动器臂的驱动下,襟翼可以在滑轨上自由运动。 襟翼控制系统使襟翼在襟翼手柄和缝翼/襟翼计算机(SFCC)的指令下正常工作,并在襟翼出现不正常情况时锁死襟翼。所以,在襟翼运动过程中,通过PCU上的反馈位置探测组件(FPPU)、仪表设备位置探测组件(IPPU)和扭力管末端的不对称位置探测组件(APPU)来保证PCU输出指令与襟翼实际位置一致,再通过内外襟翼之间的互联支柱来保证内外襟翼不错位。另外,扭力管上的扭矩限制器在襟翼超载时也会通过SFCC锁死襟翼。襟翼的指示主要显示在ECAM显示器上,由IPPU提供数据。 在A320 的运行过程中,作为飞机制造厂家的空客经常会收到关于襟翼锁定

空中客车320系列简介

空中客车320系列简介: 空中客车320系列是欧洲空中客车工业公司研制生产的双发中短程150座级运输机。空中客车公司在其研制的A300/310宽体客机获得市场肯定,打破美国垄断客机市场的局面后,决定研制与波音737系列和麦道MD80系列进行竞争的机型,在1982年3月正式启动A320项目,1987年2月22日首飞,19 88年3月开始投入商业运营。 空中客车320系列在设计中采用“以新制胜”的方针,大胆采用先进的设计和生产技术以及新的结构材料和先进的数字式机载电子设备。是世界上第一种采用电传操纵系统的亚音速民航运输机,代替了过去主要靠机械装置传输飞行员指令来控制飞机的姿态和动作。同时采用侧置的操纵杆代替传统驾驶盘。机翼在A3 10机翼的基础上又进行了改进.双水泡形机身截面大大提高了货舱中装运行李和集装箱的能力。其客舱舒适而宽敞是当前最受欢迎的150座级的中短程客机。A320系列是一种真正的创新的飞机,为单过道飞机建立了一个新的标准。 空中客车320系列包括150座的A320、186座的A321、124座的A319和107座的A318四种基本型号,这四种型号的飞机拥有相同的基本座舱配置,飞行员只要接受相同的飞行训练,就可驾驶以上四

种不同的客机。同时这种共通性设计也降低了维修的成本及备用航材的库存,大大增强航空公司的灵活性,深受用户的欢迎。 A320系列的成功也奠定了空中客车公司在民机市场中的地位,1994年5月,波音公司购买一架二手A320飞机陈列在西雅图以此来激发波音员工,这可能也是空客公司的最大荣幸。 空中客车320系列主要型号: A320:空中客车320系列的基本型号,1982年3月正式启动研制计划,可选装CFM56-5或V2500两种发动机,1987年2月22日首飞,1988年3月开始交付首位用户法国航空公司。具体型号有: A320-100:只生产21架,只有机翼油箱,航 程短,有效载重量较少。 A320-200:远程型,为生产线上第22架之后 的产品,与100型的区别是采用中央翼油箱, 配备翼尖小翼,增加了有效载重和航程。第 一架于1988年7月交付安塞特航空公司使 用。空中客车320的驾驶舱 A321:A320的加长型,与A320相比,机身加长6.93米,增加24%的座位和40%的空间,在机翼前后各增加两个应急出口,对机翼进行局部加长和改进,于1989年5月启动该项目,1993年3月11日首航,同年12月17日获欧洲适航证,1994年1月交付使用。A321是空中客车公司第一个完全通过商业筹资完成的项目,也是第一种在德国汉堡空客客车工厂进行最后组装的空客飞机。具体型号有:

飞机机翼各部分图解及专业术语

机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 2 前缘:翼型最前面的一点。 3 后缘:翼型最后面的一点。 4 翼弦:前缘与后缘的连线。 5 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 7 翼展:飞机机翼左右翼尖间的直线距离。 8 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。 中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。

浅析737NG型飞机后缘襟翼倾斜系统——机务经验交流

浅析737NG型飞机后缘襟翼倾斜系统 浅析737NG型飞机后缘襟翼倾斜系统 南航广西维修厂邵帅 737NG系列飞机在后缘襟翼系统共安装了8个倾斜传感器,同后缘襟翼位置传感器一起向FSEU提供后缘襟翼位置信号,每边机翼分布4个倾斜传感器,每边的激励电源是各自独立的,通过倾斜传感器和后缘襟翼位置传感器的共同配合,FSEU就可以自动的调整后缘襟翼的位置,并时时监控后缘襟翼的不同步和倾斜状况。 襟翼倾斜的定义是任何一边的襟翼内侧末端和外侧末端不一致的时候就发生了襟翼倾斜,在后缘襟翼倾斜情况发生时,襟翼位置指示器会发生15度的分离,接着FSEU就会自动做出判断是发生在哪边的机翼上,是在收回的过程还是放出的过程。原理是FSEU先比较左边的倾斜传感器和左边的襟翼位置传感器,如果它们不同步,FSEU就会认为左边机翼发生了倾斜,如果左边同步,就认为是右边机翼发生了倾斜,同时襟翼倾斜系统通过FSEU发出数据信息给失速管理偏航阻尼器(SMYDS)用于失速警告,发出数据信息给临近店门电子组件(PSEU)用于起飞警告。 判断好了这些情况,然后FSEU对发生倾斜那边的机翼,作倾斜传感器和襟翼位置传感器的襟翼位置度数比较,如果倾斜传感器的位置大于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼伸出方向移动15个单位,,如果倾斜传感器的位置小于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼收回方向移动15个单位。 1

下图是后缘襟翼倾斜时的原理示意图: FSEU比较互相对应的两个倾斜传感器,倾斜传感器分别为1-8号,如果对应的传感器角度差超出它默认的范围,就会发生倾斜现象,导致后缘襟翼旁通活门旁通,阻止了液压操作后缘襟翼,也就是发生了卡阻现象。 互相比较的两个传感器差值超出的范围 1号和8号相比较差值大于28度就会发生襟翼卡阻 2号和7号相比较差值大于28度就会发生襟翼卡阻 3号和6号相比较差值大于26度就会发生襟翼卡阻 4号和5号相比较差值大于34度就会发生襟翼卡阻 如果互相比较的两个传感器角度差值小于13度,就会自动复位 倾斜传感器就是一种旋转变压器,随着输入驱动杆的变化,由内部的解相器将变化的电压信号解算出来,所以传输到FSEU内的信号值就发生了变化,当FSEU将接收到的两个互相比 2

【精品】空中客车A320顶板各项介绍

1。大气数据惯性基准系统 ①IR1(2)(3)方式旋钮 OFF:ADIRU未通电,ADR及IR数据不可用。 NAV:正常工作方式给飞机各系统提供全部惯性数据 ATT:在失去导航能力时,IR方式只提供姿态及航向信息。 必须通过CDU控制组件输入航向并需不断地更新。(大约每10分钟一次) ②IR1(2)(3)灯 故障灯(FAULT):当失效影响了相应的IR时琥珀色灯亮并伴有ECAM注意信息常亮:相应的IR失去 闪亮:在ATT姿态方式里姿态及航向信息可能恢复 校准灯(ALIGN):

常亮:相应的IR校准方式正常工作 闪亮:IR校准失效或10分钟后没有输入现在位置,或关车时的位置和输入的经度或纬度差超过1度时 熄灭:校准已完毕 ③电瓶供电指示灯 仅当1个或多个IR由飞行电瓶供电时,琥珀色灯亮.在校准的开始阶段。但不在快速校准的情况下它也会亮几秒钟。 注:当在地面时,至少有一个ADIRU由电瓶供电的情况下: ·一个外部喇叭响 ·一个在外部电源板上的ADIRU和AVNCS蓝色灯亮 ④数据选择钮 该选择钮用来选择将显示在ADIRS显示窗里的信息 测试:输入(ENT)和消除(CLR)灯亮且全部8字出现 TK/GS:显示真航迹及地速 PPOS:显示现在的经纬度

WIND:显示真风向及风速 HDG:显示真航向和完成校准需要的时间(以分为单位) STS:显示措施代码 ⑤系统选择钮 OFF:控制及显示组件(CDU)没有通电。只要相关的IR方式选择器没有在OFF(关)位ADIRS仍在通电状态。 1.2.3:显示选择系统的数据 ⑥显示 显示由数据选择器选择的数据

键盘输入将超控选择的显示 ⑦键盘 允许现在位置或在姿态(ATT)方式里的航向输入到选择的系统里 字母键:N(北)/S(南)/E(东)/W(西)作为位置输入. H(*)作为航向输入(ATT方式) 数字键:允许人工输入现在位置(或姿态方式里的磁航向) CLR(消除)键:如果数据是一个不合理的值,输入后综合提示灯亮. 当按键时键入的数据(但还未输入)被清除 ENT(输入)键:当N(北)/S(南)/E(东)/W(西)或H(航向)*数据被键入时,综合提示灯亮。 当按键时,键入的数据被输入ADIRS。 ⑧ADR1(2)(3)按键开关瞬间动作 OFF位:大气数据输出断开 故障灯(FAULT):如果大气数据基准部分探测到故障,琥珀色故障灯亮并伴随有ECAM信息2。飞行控制计算机

襟翼和副翼的概念及作用

襟翼和副翼的概念及作用 襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠增大机翼的弯度来获得升力增加的一种增升装置。当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低 着陆速度,缩短滑跑距离。 在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。 前缘襟翼与后缘襟翼配合使用可进一步提高增升效果。一般的后缘襟翼有一个缺点,就是当它向下偏转时,虽然能够增大上翼面气流的流速,从而增大升力系数,但同时也使得机翼前缘处气流的局部迎角增大,当飞机以大迎角飞行时,容易导致机翼前缘上部发生局部的气流分离,使飞机的性能变坏。如果此时采用前缘襟翼,不但可以消除机翼前缘上部的局部气流分离,改善后缘襟翼的增升效果,而且其 本身也具有增升作用。 克鲁格襟翼(Krueger Flap):与前缘襟翼作用相同的还有一种克鲁格襟翼。它一般位于机翼前缘根部,靠作动筒收放。打开时,伸向机翼下前方,既增大机翼面积,又增大翼型弯度,具有较好的增升效 果,同时构造也比较简单。

副翼(Aileron): 副翼是指安装在机翼翼梢后缘外侧的一小块可动的翼面。为飞机的主操作舵面,飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。翼展长而翼弦短。副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。 飞行员向左压驾驶盘,左边副翼上偏,右边副翼下偏,飞机向左滚转;反之,向右压驾驶盘右副翼上偏,左副翼下偏,飞机向右滚转。 作动筒是控制飞机上各类型控制面或者其他部件运动的驱动装置,它就是液压活塞,通过它的作用控制气动面或者是其他机构的动作,操作飞机的飞行动作。襟翼作动筒就是襟翼动作的驱动执行机构,通过它的实现襟翼的收放。副翼作动筒就是操作副翼上下动作。

1 空客A320液压系统

空客A320-液压系统 李桃山 南昌航空大学飞行器工程学院 100631班10号 摘要:A320系列飞机成功的设计理念及架构奠定了空中客车公司在民机市场中的地位。从系统构成、工作性能、可靠性及维修性等方面对A320液压系统进行了详细介绍和分析。该机型液压系统架构简洁,具有一定的先进性,对相近民用机型设计而言,具有重要的参考意义。 关键字:A320液压系统;主液压系统;辅助液压系统 1、引言:装有两台喷气式发动机、可供大约150个座位的空中客车A320,是首次安装了数字式电子飞行操纵系统的民用客机。由于飞机操纵、增升装置和起落架操纵需要较大功率,所以其液压系统是个复杂、多余度、大功率的液压系统。该液压系统最鲜明的特点是突出了它的可靠性。 2、A320系列飞机介绍 空中客车A320系列飞机是欧洲空中客车工业公司研制生产的双发中短程150座级飞机。A300/310宽体客机在获得市场肯定并打破美国垄断客机市场的局面后。空中客车公司决定研制与波音737系列和麦道MD80系列进行竞争的机型,在1982年3月正式启动A320项目。1987年2月22日首飞。截至目前世界上共有200多家运营商运营着3700多架A320系列飞机,其中包括A318、A319、A320 和A321在内。订购的飞机总量突 破6300架。A320飞机具有更宽大 的座椅、更宽敞的客舱空间、更 好的使用经济性和更高的可靠性 等优点,是一种真正经过创新的 飞机。A320系列客机在设计中 “以新制胜”,采用了先进的设 计和生产技术以及新型的结构材 料和先进的数字式机载电子设备, 是第一款使用电传操纵飞行控制系统的大型客机。 此外空中客车公司还在该系列飞机中使用了动态运力管理系统。飞行员只需参加一种机型的培训课程就可驾驶该系列所有的飞机。在经过极短时间的额外培训后,飞行员就可迅速从单通道飞机换飞较大型的远程飞机。同样,一个

737飞机后缘襟翼无法放出的排故总结

737-300飞机后缘襟翼无法放出的排故总结 故障现象: 液压B系统正常,但放襟翼时,后缘襟翼在1个单位时就发生无法放出的情况,前缘襟翼可正常放出。检查旁通活门在旁通位,使用电动方式可放出襟翼。 工作原理: 图一 如图一所示,后缘襟翼的收放共有正常液动和备用电动两种方式。 正常液动方式:操作者通过在驾驶舱操纵襟翼手柄,带动襟翼手柄下部的钢索来打开FCU内的控制活门,此时液压B系统顺序通过优先活门、流量限制器、后缘襟翼控制活门、旁通活门,到达后缘襟翼驱动组件内的液压马达,由液压马达带动后缘襟翼驱动机构来收放后缘襟翼。 备用电动方式:操作者将驾驶舱P5板上的备用襟翼预位电门置于ARM位,此时旁通活门转换到旁通位,直接将液压B系统旁通。而备用襟翼继电器吸合,接通后缘襟翼驱动组件内的电动马达,由电动马达来驱动后缘襟翼收放。 排故过程: 此故障排故过程较长,从故障初次出现到最终排除,先后更换过液压马达、旁通活门、控制活门、流量限制器、P5面板、襟翼位置指示器,并进行过后缘驱动机构和钢索张力电门的检查,最终在再次更换了襟翼位置指示器后才得以排除。 故障分析: 在此次排故过程中,其实有一个故障现象非常值得我们去注意,那就是旁通活门的位置。 每次故障出现时,首先要观察的就是旁通活门的位置,如果旁通活门在旁通位,那显然使用液动方式是无法收放襟翼的。那什么条件下,旁通活门会被旁通呢?如图二所示 图二 1、P5板备用襟翼预位电门在ARM位; 2、襟翼控制钢索断裂或张力不够导致钢索张力电门接通,如图三; 图三

3、襟翼位置指示器有剪刀差(左右襟翼不对称); 4、线路故障或R123继电器故障。 造成此次故障的原因就是襟翼位置指示器故障,如图四: 在一次故障再现时,排故人员不仅检查发现旁通活门在旁通位,还发现电子舱内襟翼不对称测试灯被点亮,但驾驶舱指示却没有偏差,且运动速度一致,于是便脱开襟翼位置指示器,发现旁通活门回到了正常位,不对称灯也灭了。对比测量左右襟翼位置传感器内位置输出同步电机电阻(1-2=4.7欧姆2-3=4.7欧姆 1-3=4.6欧姆3-11=15.6欧姆)一致。再在襟翼指示器后部插头D686上测量襟翼位置1、2、5单位时位置输出电压分别为(3-4=7.92VAC 7-9=7.76VAC)、 (3-4=12.2VAC 7-9=12.19VAC)、(3-4=11.64VAC 7-9=11.78VAC),由此判断为指示器内部的比较电机出现故障,输出虚假的不对称信息,因此接通指示器内部的不对称电门,使R123通电吸合,旁通活门旁通。在检查了第一次更换的襟翼位置指示器的翻修记录后,发现该指示器此前就是因为多次发生襟翼卡阻现象而返厂修理的。于是排故人员在再次更换了一个新的襟翼位置指示器后将故障故障,后续未再反映该故障。 图四 经验总结: 在今后碰到类似故障时,首先要明确以下几点 1、前缘襟翼能不能放出?如果能放出,可排除掉优先活门及流量限制器的可能。 2、电动方式能不能放出?如果能放出,可排除掉后缘襟翼驱动机构损坏的可能。 3、旁通活门在什么位置?如果在正常位,那应该就是控制活门或液压马达的故障。如果在旁通位,就按以上所分析的四个条件来逐一排除。如果检查电子舱内襟翼不对称灯亮了,那最大的可能就是襟翼位置指示器故障。

空客320系列飞机TCAS面板使用

您了解你的ATC/TCAS面板吗? 1.TCAS失效导致空中危险接近 一架A340-600飞机从伦敦希斯罗机场起飞后不久,ECAM出现TCAS失效的警告信息。ECAM的程序是把TCAS模式设置在standby位。不幸的是,执行动作的结果并不是所期望的那样:机组无意中把TCAS和应答机都关了,而不是想ECAM所说的只关TCAS。这时ATC的二次雷达信息短暂丢失而且没有了飞行数据的自动更新。另一方面,飞机从空管的雷达屏幕上消失且不能对其它飞机的TCAS询问作出回应。 在这期间,空中管制员试图去联系进近指挥中心。但尝试了几次都没有成功。由于进近管制员不知道此事,这架飞机跟其它的离港飞机发生了冲突。由于这架飞机的应答机并没有工作,导致既没有TCAS警告也没有短时冲突警告(空管方面的)的触发,两机最小间隔是3.7nm 和0ft。 2.TCAS操作 让我们在看一下ECAM程序和TCAS操作,来理解刚才所发生的场景。 当TCAS失效,ECAM程序显示(对于A330/340):TCAS MODE…….STBY(见图1)。机组把失效的系统设置为standby。

而上面的事例,航空公司为他的机队所选定的TCAS 面板如图2所示。 在这个面板上,一个单一的旋钮使机组可以在几个ATC应答机和/或TCAS不同的模式之间进行选择.当选择TA/RA或TA ONL Y时,TCAS和A TC应答机都工作。但如果选择其它三个方式(XPNDR,ALT RPTG OFF,STBY),TCAS就会在standby方式,不工作。所以,按照ECAM的要求,前面的机组只是想关掉TCAS的话,而他们选择了STBY位。他们没有马上意识到这个方式使TCAS和ATC应答机都设在standby模式。 总结: STBY——TCAS+ATC standby ALT RPTG OFF/XPNDR—TCAS standby/ATC ON TA ONL Y/TA/RA—TCAS + ATC ON 3.其它的TCAS控制面板 空客提供了几种型号的面板给顾客使用,由于它们之间存在差异,飞行员在具体操作时一定要注意电门的布局。 对于空客基本型的TCAS面板,它的操作电门被分成两部分:一边用于ATC应答机控制,另一边用于TCAS控制。 只需把相应的电门设置在STBY位,TCAS模式就变成standby。因为电门跟其它TCAS控制电门放在一起,所以很容易识别,与ATC的控制电门很容易区分开。(见图3) 当TCAS电门放在STBY位时,TCAS不工作而ATC应答机仍然正常工作。结果是飞机不会有TCAS TA或TA/RA,而A TC则对潜在的入侵询问作出回应,在入侵飞机上持续会有

(完整版)B737-800飞机极限数据.doc

737-800 长39.5M 翼展34.4M/ 35.79M 高12.5M 主轮距 5.7M 前后轮距15.6M 转弯半径24.1M 机头转弯半径20.1 M 机尾转弯半径21.7 M 翼尖转弯半径22.0 M/ 22.9 M 最大滑行重量70760/ 76203 / 79242 最大起飞重量70533/ 75976 / 79015 最大着陆重量65317/ 65317,66360/ 65317,66360 最大无油重量61688/ 61688,62731/ 61688,62731 跑道坡度正负 2% 颠簸速度280 节 /0.76M 最大飞行高度41000FT 最大起降高度8400FT 最大飞行维度N82 度 ;S82 度 .W80 度 -W130 度之间为 N70 度,E120-E160 度之间为 S60 度 . 最大压差9.1PSI 正常升限座舱高度8000FT(41000FT) 座舱高度警告喇叭响10000FT 氧气面罩自动放下高度14000FT 自动失效的条件 1.DC 电源失效 2. 控制器故障 3. 排气活门控制故障 4. 压差 >8.75PSI * 5. *压差变化 >2000FT/MIN 6. 座舱高度 >15800FT ( *如控制器未有恰当回复 ) 人工方式排气活门全开时间20 秒(DC) 巡航时的压差7.45PSI(28000F 以下 ) 7.8PSI (28000-37000) 8.35PSI(37000-41000) AC电压表正常范围115+/-5 伏 频率表的正常范围400+/-10 赫兹 电瓶电压范围22-30 伏 电瓶的供电能力60 分钟 ( 双电瓶 ) EGT最大起飞950(5 分钟 ) EGT最大连续925 EGT最大启动 ( 地面 ) 725 EGT最大启动 ( 空中 ) 950(双发) 725( 单发 )

课程设计报告飞机襟翼设计

课程设计(论文) 院(系)名称航空科学与工程学院专业名称飞行器设计与工程题目名称襟翼结构初步设计学生姓名 班级/学号 指导教师王立峰 成绩 2012年9 月

北京航空航天大学 本科生课程设计(论文)任务书 Ⅰ、课程设计(论文)题目:襟翼结构初步设计 Ⅱ、课程设计(论文)使用的原始资料(数据)及设计技术要求: 图1 1 机翼翼型参数(翼型,根弦长度br ,尖弦长度bt ,展长l ,后掠角A ) 2 襟翼基本参数(相对弦长b 襟翼/b 机翼,相对展长 l 襟翼/l 机翼,偏角 As) 襟翼离翼根均为30cm ; 3 襟翼设计载荷(前缘气动载荷P ,载荷分布直线,最大载荷点距襟翼前缘5cm ) Ⅲ、课程设计(论文)工作内容: 2、分析和确定襟翼的运动方式,画出运动图 3、根据给定的设计载荷设计襟翼结构。 4 、选择 3个以上关键部件进行强度分析。重量估算。 5、根据设计结果,绘制襟翼的装配图。选择3个以上的零件画出零件图。 图纸必须 6、符合规范。 7、完成课程设计报告。

一、襟翼的常见结构和载荷情况: 1.1 襟翼的常见结构: 简单襟翼:简单襟翼与副翼形状相似,放下简单襟翼,相当于改变了机切面形状,使机翼更加弯曲。这样,空气流过机翼上表面,流速加快,压力降低;而流过机翼下表面,流速减慢,压力提高。因而机翼上、下压力差增大,升力增大。可是,襟翼放下之后,机翼后缘涡流区扩大,机翼前后压力差增大,故阻力同时增大。襟翼放下角度越大,升力和阻力也增大得越多。 分裂襟翼 这种襟翼本身象一块薄板,紧贴于机翼后缘。放下襟翼,在后缘和机翼之间,形成涡流区,压力降低,对机翼上表面的气流有吸引作用,使其流速增大,上下压差增大,既增大了升力,同时又延缓了气流分离。另一方面,放下襟翼,机翼翼剖面变得更弯曲,使上、下表面压力差增大,升力增大。由于以上两方面的原因,放下分裂襟翼的增升效果相当好,一般最大升力系数可增大75-85%。但因大迎角放下襟翼,上表面的最低压力点的压力更小了,使气流更易提前分离,故临界迎角有所减小。

相关主题