搜档网
当前位置:搜档网 › 乙醇和氧爆炸上限

乙醇和氧爆炸上限

乙醇和氧爆炸上限
乙醇和氧爆炸上限

问:反应比例为什么范围才在爆炸上限之上?

乙醇是和氧气反应:

在空气中氧气分压只占一个大气压的21%。纯氧则是100%。

乙醇在空气中爆炸极限:3.3%-19.0%,其蒸气与空气可形成混合物,遇明火、高热能引起燃烧爆炸。

下限3.3%氧气过量的,跟乙醇分压关系更密切,在纯氧中下限也是3.3%左右。

上限根据比例换算成纯氧中是在55%左右,乙醇在氧气中的爆炸极限范围增大,因此乙醇在氧气中比在空气中更容易爆炸。

a.温度影响:因为化学反应与温度有很大的关系,所以,爆炸极限数据必定与混合物规定的初始温度有关。初始温度越高,引起的反应越容易传播。一般规律是,混合系原始温度升高,则爆炸极限范围增大即下限降低,上限增高。

一般来说,爆炸性气体混合物的温度越高,则爆炸极限范围越大,即:爆炸下限降低,上限增高。因为系统温度升高,其分子内能增加,使更多的气体分子处于激发态,原来不燃的混合气体成为可燃、可爆系统,所以温度升高使爆炸危险性增大。

b.压力影响:系统压力增高,压力等效于增大氧气浓度,爆炸极限范围也扩大,明显体现在爆炸上限的提高。这是由于压力升高,使分子间的距离更为接近,碰撞几率增高,使燃烧反应更容易进行,爆炸极限范围扩大,特别是爆炸上限明显提高。压力减小,则爆炸极限范

围缩小,当压力降至一定值时,其上限与下限重合,此时的压力称为为混合系的临界压力,低于临界压力,系统不爆炸。

仓库火灾事故案例

仓库火灾事故案例 一、天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故 调查报告 8月18日,依据《安全生产法》《危险化学品安全管理条例》和《生产安全事故报告和调查处理条例》等有关法律法规,经国务院批准,成立国务院天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查组(以下简称事故调查组),事故调查组由杨焕宁同志(时任公安部常务副部长,现任安全监管总局局长)任组长,公安部、安全监管总局、监察部、交通运输部、环境保护部、全国总工会和天津市人民政府为成员单位,全面负责事故调查工作。同时,邀请最高人民检察院派员参加,并聘请爆炸、消防、刑侦、化工、环保等方面的专家参与事故调查工作。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生

第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2、示意图见图3)、爆炸冲击波波及区(示意图见图4)。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁,东侧的瑞海公司综合楼和南侧的中联建通公司办公楼只剩下钢筋混凝土框架;堆场内大量普通集装箱和罐式集装箱被掀翻、解体、炸飞,形成由南至北的3座巨大堆垛,一个罐式集装箱被抛进中联建通公司办公楼4层房间内,多个集装箱被抛到该建筑楼顶;参与救援的消防车、警车和位于爆炸中心南侧的吉运一道和北侧吉运三道附近的顺安仓储有限公司、安邦国际贸易有限公司储存的7641辆商品汽车和现场灭火的30辆消防车在事故中全部损毁,邻近中心区的贵龙实业、新东物流、港湾物流等公司的4787辆汽车受损。 爆炸冲击波波及区分为严重受损区、中度受损区。严重受损区是指建筑结构、外墙、吊顶受损的区域,受损建筑部分主体承重构件(柱、梁、楼板)的钢筋外露,失去承重能力,不再满足

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

爆炸极限范围

爆炸极限的意义 可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或。例如与空气混合的爆炸极限为%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响爆炸极限的因素 混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。因为系统温度升高,增加,使原来不燃的混合物成为可燃、可爆系统。系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的。压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为该混合系的临界直径。点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。 与可燃物的危害 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 表示 爆炸极限的表示方法 气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所

2018事故案例分析:某化工厂爆炸事故原因分析

2018事故案例分析:某化工厂爆炸事故原因分析 一、单项选择题(共25题,每题2分,每题的备选项中,只有1个事最符合题意) 1、物体打击、机械伤害、火灾和高出坠落类似事故的分类依据是__。 A.事故危险的严重程度 B.导致事故的直接原因 C.事故类别 D.职业健康的标准 2、[2011年考题]锅炉结渣是指渣在高温下黏结于受热面、炉墙、炉排之上并越积越多的现象。结渣会使受热面吸热能力减弱,降低锅炉的出力和效率。下列措施中能预防锅炉结渣的是。 A:控制炉膛出口温度,使之不超过灰渣变形温度 B:降低煤的灰渣熔点 C:提高炉膛温度,使煤粉燃烧后的细灰呈飞腾状态 D:加大水冷壁间距 E:立即转移账户上的资金 3、某商厦1993年10月竣工投入使用。商厦共6层,其中地下2层、地上4层,耐火等级为二级,占地面积3 500平方米,建筑面积8 200平方米,高20.4米。商厦地下2层是家具商场和货物仓库。家具商场主要经营红木家具、沙发、席梦思床垫、办公桌椅等。地下1层主要经营副食品、百货等。地上1层主要经营小五金、小家电、文体用品、服装、日用品等;2层主要经营服装;3层仅有一些货架摊位;4层东侧和南侧为办公区,北侧有一间会议室,西侧为某歌舞厅KTV 包间,中部为某歌舞厅大厅。火灾当晚歌舞厅内有400余人。2008年12月25日20时许,员工王某在地下1层中部进行焊接操作时,电焊火花顺着钢板上的孔洞掉落到地下2层中部,引起楼梯上的沙发塑料泡沫等物品起火。王某等人发现起火后,用室内消火栓通过孔洞向1层浇水扑救,但火势没有得到有效控制,反而越来越大,他就同其他职工一起逃离现场。21时35分公安消防支队接到报警后,相继调集31辆消防车、200多名消防人员赶赴火场,随后又请调公安、武警等单位协同作战。由于这次火灾起火部位在该商厦的最底层,东北和西北两个楼梯间上下贯通,着火后形成烟囱效应,在风压的作用下,大量有毒烟雾很快扩散到整个大楼。火灾发生后,该商厦有关人员盲目采取了全楼断电措施,楼内又未设置消防应急照明灯,致使全楼漆黑一片,给扑救火灾和人员营救带来了极大的困难。公安消防部队在火灾扑救中,共营救遇险人员106人。22时50分将火控制,26日0时37分将火彻底扑灭。这起火灾事故造成309人死亡、7人受伤,直接财产损失275.3万元。手提式灭火器宜设置在挂钩、托架上或灭火器箱内,其顶部离地面高度应小于m。 A:1.00 B:1.50 C:2.00 D:2.50 E:3.00

粉尘爆炸极限及燃点

屑、皮革屑、丝、虫胶等;难燃粉尘如:炭黑粉、木炭粉、石墨粉等。固体物质被粉碎成粉尘以后,其燃烧特性有很大的变化。原来是不燃的物质可能变成可燃物质,原来难燃的物质可能变成易燃物质。在一定条件下就有可能发生爆炸,前提是必须达到在空气中的爆炸极限浓度。粉尘爆炸前无任何征兆,起后果却都能使建筑物毁于一旦。而且能导致粉尘爆炸的情况也很多:从农副产品的加工、储存和运输到药物、食品、有机物、无机物的生产等很多过程中,粉尘爆炸的事故时有发生,其危害极大。 粉尘包括的范围很广,各种粉尘都有其自身的特性,粉尘并非随时随地都能爆炸,要发生粉尘爆炸必须具备以下几个条件: 首先,构成粉尘的物质必须是易燃或可燃的,其中包括有机粉尘和无机粉尘。有机粉尘受热后要发生分解,放出可燃性气体,并留下可以燃烧的炭。无机粉尘如金属粉尘,虽然没有耗能分解过程,升温只能促使其快速氧化,由表面向内部迅速延烧放出高热而使体系快速升温膨胀。有些金属颗粒本身能进行气、固两相燃烧。 其次是粉尘必须是悬浮在空气中,并与空气混合达到爆炸浓度极限。粉尘能否悬浮在空气中要害在于粉尘的粒径。粒径大的颗粒难以悬浮,即使由外力使它悬浮在空气中,也会很快沉积下来。粒径越小,其扩散作用大于重力作用,粉尘易于悬浮在空气中。再加上粒子四周有足够的助燃空气,很轻易达到爆炸极限浓度而燃烧或爆炸。若空气中粉尘的浓度太小,即低于爆炸浓度的下限,燃烧放热量太少,难于形成持续燃烧,也就不会发生爆炸。假如空气中粉尘的浓度太大,即高于爆炸浓度的上限,混合物中因氧气浓度太小,也不会发生燃烧或爆炸。 粉尘爆炸的另一个必要条件,就是要有足以引起粉尘爆炸的热能源。粉尘爆炸的最小点燃能量一般为10 mJ至数百mJ ,相当于气体点燃能量的百倍左右。 影响粉尘爆炸的主要因素: 内部因素(粉尘的理化性能): 粉尘的燃烧速度比气体的燃烧速度要小。粉尘的颗粒越小,相对表面越多,分散度越大,则爆炸极限范围扩大,其爆炸危险性便增加。因为粒子越小,粒子带电性越强,使得体积和质量极小的粉尘粒子在空气中悬浮的时间更长,燃烧速度就更接近可燃性气体混合物的燃烧速度,燃烧过程也进行的更完全。 燃烧热高的粉尘,其爆炸浓度下限低,一旦发生爆炸即呈高温高压,爆炸威力大。

石油 化工企业火灾爆炸事故案例及其引发原因

石油、化工企业火灾爆炸事故案例及其引发原因(1) ?这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 1、工程设计失误 1)、设计单位对设计任务认识不深 某沿海企业在海边建设油罐,设计单位因无经验在设计中未对罐底外壁采取防腐措施。由于地处海边,化学腐蚀现象严重,若不对罐底外壁采取防腐措施,则油罐建成后罐底将很快被腐蚀穿透,不仅油罐将报废,若油品大量漏失,还会引发严重的次生事故(如火灾、爆炸、环境污染等等)。建设单位在最后一次审查时发现了这个问题,并予以纠正。 某厂在建设一套采用了新技术的装置时,由于企业技术人员没有搞清新技术到底新在什么地方,向设计单位提供了过时的物料数据(对于老技术来说,这些数据仍然可用),设计单位也没有进行认真审查。装置建成投产后,核心设备每天都处在超温工况下工作。不到一年就将该核心设备烧坏,只好再花5000多万元进行改造。 辽阳石聚乙烯新线工艺是按老线工艺照搬过来的,而多处设计错误是导致2002年2月23日发生爆炸的直接原因。A、设计单位擅自将悬浮液接收罐的安全阀开

启压力从MPa,改为MPa。视镜是在MPa时破裂后引发爆炸事故的。如果设计不改变新线安全阀的起跳压力视镜很可能不会破碎,爆炸事故也就不会发生。B、原化学工业部《压力容器视镜》设计要求规定:视镜最大直径为150mm,最大公称压力为MPa。而设计部门违反规定擅自选择直径为200mm,公称压力为MPa 非标视镜,这种视镜目前国内尚无法生产。C、厂房是封闭的,这也不符合国家的规范要求;d、将沸腾床引风机的入口设置在聚合釜的上方,设计上也是错误的。 2)、工艺过程设计不合理 1982年、1993年,分属两个企业的两套催化裂化装置的中间罐先后于发生了爆炸,1993年1月1日的那次爆炸还引发大火。两次事故相隔近10年,且分别是两个设计单位作的设计。但这两个设计单位都没有处理好中间罐的工艺设计,都存在若阀门关不严,不同性质物料发生串通的可能性。结果,由于阀门关不严,造成不同性质物料的相互混合,致使中间罐压力急剧升高而发生爆炸。 某合成氨装置,设计时在原料天然气管线与压缩空气管线之间设计了一个连通阀,导致天然气窜入空气管线中,发生爆炸。 3)、总图布置设计不合理 有一个企业把乙烯装置的紧急放空口设在空分装置的上风位置,结果在乙烯装置紧急放空时,空分装置将从乙烯装置放出的烃分子吸入。经压缩后烃和纯氧在空分装置内相遇,发生剧烈氧化而爆炸。造成3人死亡、31人受伤,其中1人是被飞出200米外的一块钢板砸死。 2、由于操作人员的违规操作或各种原因造成的误操作 在化工生产中,由于人员的违章作业、违章指挥、违反劳动纪律而发生的各类事故所占比率很高。据有关统计,在已经发生的各类事故中,由于人员“三违”引

案例家具厂火灾爆炸事故分析完整版

案例家具厂火灾爆炸事 故分析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

案例42某家具厂火灾爆炸事故分析某家具厂厂房是一座四层楼的钢筋混凝土建筑物。第一层楼的一端是车间,另一端为原材料库房,库房内存放了木材、海绵和油漆等物品。车间与原材料库房用铁栅栏和木板隔离。搭在铁栅栏上的电线没有采用绝缘管穿管绝缘,原材料库房电闸的保险丝用两根铁丝替代。第二层楼是包装、检验车间及办公室。第三层楼为成品库。第四层楼为职工宿舍。 由于原材料库房电线短路产生火花引燃库房内的易燃物,发生了火灾爆炸事故,导致17人死亡,20人受伤,直接经济损失80多万元。 1.按照《中华人民共和国安全生产法》的要求,该厂负责人接到事故报告后,应当做什么、不得做什么? 参考答案 该厂负责人接到事故报告后应当做的是: (1)应当迅速采取有效措施组织抢救,防止事故扩大,减少人员伤亡和财产损失。 (2)立即如实报告当地负有安全生产监督管理职责的部门。 该厂负责人接到事故报告后不应当做的是: (1)不得隐瞒不报、谎报或者拖延不报。 (2)不得故意破坏现场、毁灭有关证据。 2.该事故调查组应由哪些部门组成调查组的主要职责是什么

参考答案 (1)事故调查组应包括安全生产监督管理部门、公安部门、监察部门、工会。 【《生产安全事故报告和调查处理条例》第二十二条规定,根据事故的具体情况,事故调查组由有关人民政府、安全生产监督管理部门、负有安全生产监督管理职责的有关部门、监察机关、公安机关以及工会派人组成,并应当邀请人民检察院派人参加。 事故调查组可以聘请有关专家参与调查。】 (2)该事故调查组的主要职责 ①查明事故发生的过程、人员伤亡、经济损失情况。 ②查明事故原因。 ③确定事故性质。 ④确定事故责任。 ⑤提出事故处理意见。 ⑥提出防范措施。 ⑦写出事故调查报告。 【《生产安全事故报告和调查处理条例》第二十五条事故调查组履行下列职责: (一)查明事故发生的经过、原因、人员伤亡情况及直接经济损失; (二)认定事故的性质和事故责任;

爆炸极限的影响因素

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会出现下限与上限重合,这就意味着初始压力再降低时,不会使混合气体爆炸。把爆炸极限范围缩小为零的压力称为爆炸的临界压力。甲烷在3个不同的初始温度下,爆炸极限随压力下降而缩小的

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极 限的因素 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,

大庆石化火灾事故案例分析

大庆石化火灾事故案例 分析 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、事故经过 2005年3月3日,大庆石化分公司炼油厂装运车间3名员工进行污油回收作业,操作过程是:将污油桶内的污油,回收到汽车槽车,然后倒入直径4.2米、罐体切线高度4.73米、容积60立方米的Z-4污油罐。10时05分,操作人员在四栈桥站台西侧从汽车槽车向Z-4污油罐倒装污油时,Z-4污油罐突然发生爆燃,此后,汽车槽车后部爆裂烧毁,相邻的Z-3罐也发生爆炸。污油流入装车栈桥地沟,引起地沟着火。事故发生后,我公司立即启动了事故应急预案并立即向总部汇报,在消防部门、铁路部门的配合下,及时将火场附近已装满油品的45节罐车牵引到安全地带,用泡沫对地沟进行控制封堵,防止事故扩大。10时45分火被扑灭。在这次事故中,汽车槽车司机及在Z-4罐顶作业的操作工当场死亡,另一名操作工烧伤,直接经济损失249791元。 二、事故原因 经现场勘查和目击者取证,排除了衣物静电、汽车静电和手机信号等引爆因素。现场实测,检测油孔距离罐底高度为5米,槽车至Z-4污油罐罐壁最近距离为1.5米,检测油孔距离罐顶为0.3米,距离罐壁

为0.9米,罐顶护栏高度为1.3米。根据伤者刘春江叙述,确认从泵出口到Z-4罐共接了两根软胶管,总长10米。经计算,输油管口距离罐底为2.22米,此时Z-4罐内液位低于2.22米。即,输油管口没有插入罐底,也没有插入液面以下。 (一)事故的直接原因 经过认真的调查和分析,调查组确认,这起事故发生的直接原因,是作业人员违反国家《防止静电事故通用条例》、大庆石化公司《防雷、防静电安全管理规定》和车间《汽车油罐车收/倒油工作指导卡》的要求,在用车载泵向污油罐倒污油时,倒油胶管出口未插入污油罐液面,就喷溅卸油,导致污油与空气摩擦产生静电,引燃罐内气体,发生爆炸。 (二)事故的主要原因 这起事故暴露出大庆石化分公司部分基层单位安全生产基础管理工作还存在薄弱环节,特别是辅助生产环节在安全生产操作规程执行

石油、化工企业火灾爆炸事故案例及其引发原因

编订:__________________ 审核:__________________ 单位:__________________ 石油、化工企业火灾爆炸事故案例及其引发原因 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4846-33 石油、化工企业火灾爆炸事故案例 及其引发原因 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 ·这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 1、工程设计失误 1)、设计单位对设计任务认识不深 某沿海企业在海边建设油罐,设计单位因无经验在设计中未对罐底外壁采取防腐措施。由于地处海边,化学腐蚀现象严重,若不对罐底外壁采取防腐措施,

则油罐建成后罐底将很快被腐蚀穿透,不仅油罐将报废,若油品大量漏失,还会引发严重的次生事故(如火灾、爆炸、环境污染等等)。建设单位在最后一次审查时发现了这个问题,并予以纠正。 某厂在建设一套采用了新技术的装置时,由于企业技术人员没有搞清新技术到底新在什么地方,向设计单位提供了过时的物料数据(对于老技术来说,这些数据仍然可用),设计单位也没有进行认真审查。装置建成投产后,核心设备每天都处在超温工况下工作。不到一年就将该核心设备烧坏,只好再花5000多万元进行改造。 辽阳石聚乙烯新线工艺是按老线工艺照搬过来的,而多处设计错误是导致20xx年2月23日发生爆炸的直接原因。A、设计单位擅自将悬浮液接收罐的安全阀开启压力从0.3 MPa,改为0.58 MPa。视镜是在0.5 MPa时破裂后引发爆炸事故的。如果设计不改变新线安全阀的起跳压力视镜很可能不会破碎,爆炸事故也就不会发生。B、原化学工业部《压力容器视镜》设计

爆炸极限的意义

爆炸极限的意义 可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限不会发生爆炸,但会着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 爆炸极限与可燃物的危害 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 爆炸极限的表示 爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。 可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。对于可

燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。 可燃气体或蒸气分子式爆炸极限(%) 下限上限 氢气 H2 4.0 75 氨 NH3 15.5 27 一氧化碳 CO 12.5 74.2 甲烷 CH4 5.3 14 乙烷 C2H6 3.0 12.5 乙烯 C2H4 3.1 32 乙炔 C2H2 2.2 81 苯 C6H6 1.4 7.1 甲苯 C7H8 1.4 6.70 环氧乙烷 C2H4O 3.0 80.0 乙醚 (C2H5)O 1.9 48.0 乙醛 CH3CHO 4.1 55.0 丙酮 (CH3)2CO 3.0 11.0 乙醇 C2H5OH 4.3 19.0 甲醇 CH3OH 5.5 36 醋酸乙酯 C4H8O2 2.5 9 常用可燃气体爆炸极限数据表(LEL/UEL及毒性) 物质名称分子式爆炸浓度 (V%) 毒性 下限 LEL 上限 UEL 甲烷 CH4 5 15 —— 乙烷 C2H6 3 15.5 丙烷 C3H8 2.1 9.5 丁烷 C4H10 1.9 8.5

什么是爆炸极限

什么是爆炸极限 (一)定义 可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。 可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。 可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。 可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。 可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 (二)爆炸反应当量浓度的计算 爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的反应当量浓度。当混合物中可燃物质超过化学反应当量浓度时,空气就会不足,可燃物质就不能全部燃尽,于是混合物在爆炸时所产生的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如

爆炸极限计算

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用C αHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: C αHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在 空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L ——可燃性混合物爆炸下限; 下 L ——可燃性混合物爆炸上限; 上 n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2: 表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较

爆炸极限范围

爆炸极限范围 Prepared on 22 November 2020

爆炸极限的意义 可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或。例如与空气混合的爆炸极限为%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响爆炸极限的因素 混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。因为系统温度升高,增加,使原来不燃的混合物成为可燃、可爆系统。系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的。压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为该混合系的临界直径。点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。 与可燃物的危害 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 表示 爆炸极限的表示方法

全国范围石化企业火灾爆炸事故案例汇总讲解.

全国范围石化企业火灾爆炸事故案例汇总讲解案例一:上海某石油化工公司炼油厂液化气爆炸 一、事故概况及经过 1988年10月22日凌晨,上海某石油化工公司炼油厂小凉山球罐区发生液化气爆燃事故,死亡25人,烧伤17人,直接经济损失9.8万余元。 10月21日23时40分,该厂在三区14号球罐开阀放水,违反操作规程,没切换开关,阀门全部打开,致使液化气随水外溢达9.7吨,通过污水池扩散到罐区西墙外,与工棚明火相遇,在连续沉闷的爆炸声中,南北350米、东西250米的地带燃起熊熊大火。毗邻球罐区的10多间简易工棚代为灰烬,围墙内建筑受到破坏,变压器、电缆、电讯仪表等严重损坏,变电室房顶开裂,一扇铁门飞出60多米远。 二、事故原因分析 这是一起违章操作,纪律松驰,管理混乱,领导上的官僚主义引起的重大责任事故。班长在接到门岗保安人员发现异常气味的报告后麻痹大意,保安队书记、保卫科、值班室等接到门岗电话后不及时处理,贻误了时机。当班的7个工人中,3个拨葱做饭,后又有2人关门睡觉。球罐区民工安炉灶,各级领导熟视无睹,无人制止。 案例二:某石化公司炼油厂储油罐爆炸起火 一、事故概况及经过

1993年10月21日18时15分,南京某石化公司炼油厂油品分厂罐区发生爆炸,引起310号油罐燃烧,造成2人死亡,直接经济损失约39万元。 1993年10月21日13时许,某石化公司炼油厂油品分厂半成品车间工人黄某某在当班期间,发现310号油罐油面高度已达14.21米,接近警戒高度14.30米,黄马上向该厂总调度进行了报告,并向总调度请示310号油罐汽油调合量。根据总调度的指示,黄某某进入罐区将油切换至304号油罐。13时30分许,黄在给31O号油罐作汽油调合流程准备时,本应打开310号罐D400出口阀门,却误开了311号油罐D400出口阀门。15时许,黄开启11A号泵欲对310号油罐进行自循环调合,由于错开了311号B400出口阀门,实际上此时310号油罐不是在自循环,而是将311号罐中的汽油抽入310号油罐。15时40分,仪表工陈某某从计算机显示屏上发现310号油罐油面不断上升,随后计算机开始“高位报警”,陈当即让黄到罐区去核实一下310号罐的油面高度,黄却误认为是计算机不准确,没去核实也未采取其他措施。16时,在交班时违反规定,没有在油罐现场进行交接班,也未核实油罐流程。17时50分,310号油罐的汽油开始外冒,部分汽油挥发,在空气中形成爆炸性混合气体。18时15分,江苏省洪泽县第二建筑公司工人吕某某驾驶手扶拖拉机路过罐区11号路时,排气管排出的火星遇空气中的爆炸混合气体发生起火爆炸,吕某某被当场烧死,当班工人被严重烧伤抢救无效死亡。310号油罐当即燃烧,17小时后被扑灭。

气瓶火灾爆炸事故案例汇总

【案例1】装卸工违章作业,造成氧气瓶爆炸。 事故经过:某单位用卡车运回新灌的氧气,装卸工为图方便,把氧气瓶从车上用脚蹬下,第一个气瓶刚落下,第二个气瓶跟着正好砸在上面,立刻引起两个气瓶的爆炸,造成一死一伤。 主要原因分析:两个气瓶相互碰撞,压缩气体在氧气瓶碰撞时受到猛烈振动,引起压力升高,使气瓶某处产生的压力超过了该瓶壁的强度极限,即引起气瓶爆炸。 事故责任划分:(1)搬运氧气瓶时,要避免碰撞和剧烈振动,要戴好安全帽及防震圈。(2)装卸氧气时严禁滚动。 【案例2】江苏淮安发生乙炔瓶爆炸事故。 事故经过:2005年2月16日(正月初五)20时30分,一声震天撼地的巨响,将沉浸在春节欢乐气氛中的淮安市楚州施河镇的居民惊呆了。惊魂未定的人们发现,施河镇太平中路通达市场南入口处的一间15平方米的乙炔气焊门市部,随着这声巨响被夷为平地,门市部路对面西侧一堵围墙也被爆炸形成的冲击波推出数米远,紧邻门市部的一幢二层小楼被震得摇摇欲坠,周围百米内的许多建筑物的铝合金门窗被扭曲变形,玻璃被震得粉碎,满街都是震落下来的碎玻璃片。施河镇顾王村村民、年过半百的公司主顾××、刘××夫妇和同村年仅27岁的农用三轮车主施××在爆炸中当场身亡;路过的行人高××(女)头部、背部、臀部等多处被炸伤,伤势严重。行人杨××因惊吓过度突发脑溢血,当场晕倒。 事故原因:据调查,爆炸由公司主顾某和施某在门市部门前违章焊接农用车引起,顾某在焊接作业时手持点燃的焊割工具调节气瓶减压阀,引起气瓶爆炸。 防止同类事故的措施:加强安全生产教育,进行安全技术和专业技术培训,坚决执行有关安全操作规程,杜绝易燃易爆作业和明火作业混合交叉的现象发生。 【案例3】哈尔滨某化工厂气瓶爆炸事故。 事故情况概述:1998年10月8日10时40分左右,哈尔滨某化工厂四车间成品库发生氧气瓶爆炸事故。导致现场的2名装卸工(临时工)1死1伤。事故发生前四车间充灌岗,操作压力为12MPa,操作温度为20度,成品库房有氧气瓶45只。 事故破坏情况:经现场勘察,共3只气瓶爆炸,其中1只气瓶外

加油站火灾、爆炸事故案例

火灾、爆炸事故案例: 案例一:广东梅州市某县石油公司违章动火爆炸事故。 事故经过: 1998年7月29日,广东省梅州市某县石油公司库站合一的加油站罐室油罐发生爆炸,当场炸伤1人,炸死2人,事故直接经济损失16万元。7月29日上午,该油库主任陈某兼站长带领两名社会上的修理工,对装过90#汽油的1号卧式罐扶梯进行焊接,在焊接过程中发生爆炸,陈某和雇来的焊工一人当场炸死,另一人重伤。 事故原因: 1、罐室内存在油蒸气,且达到爆炸极限; 2、在动火前没有按规定检测油蒸气浓度; 3、罐室内的扶梯松动,在进行焊接时引燃油蒸气发生爆炸。 事故教训: 1、这次事故是站领导不懂安全常识,违规在爆炸危险区域动用明火造成的,它充分说明建立健全安全管理制度,严格执行国家法律、法规、规章和操作规程的重要性。 2、在规范中罐室储油明令禁止,该站就是在违背国家规范而埋下了事故隐患,不可避免地造成爆炸事故的发生。 案例二:黄岛油库火灾爆炸事故 事故经过: 1989年8月21日,东营—黄岛输油管线某站油库一座2.3万m3的非金属油罐(5号罐)爆炸起火,2号和3号罐也随之爆炸起火,流出的油火,使整个

库区成为一片火海,过火面积达15万㎡。这场大火共燃烧了104h(5天4夜),在事故中有19人牺牲,78人受伤,共烧毁原油3.6万t,烧毁大型油罐五座及全部辅助设施,损失5000万元。 事故原因: 1、由于该地区遭受雷击,罐内产生感应火花引爆油气是造成这次事故直接原因; 2、黄岛油库在建设和管理上的不完善和油罐自身缺陷,为事故埋下了隐患,是造成这次事故的间接原因; 3、防雷设施不符合要求,长年锈蚀失去应有的防雷作用; 4、非金属油罐有容易因雷电感应产生火花的先天性缺陷; 5、黄岛油库总体规划不符合安全规范的要求,是事故扩大,损失加大的原因。 事故教训: 1、非金属容器储油,无法将静电导出,在加油过程中严禁向非金属容器中直接加油; 2、防雷、防静电设施的建议,加强防雷、防静电设施完善的检查、检测工作,保证完好; 3、加油站严格按照国家规范的要求进行设计建设,站内设施符合防火规范,是保证安全生产的前提; 4、加强安全管理、安全检查,落实制度建设是保证安全生产的重要手段。 案例三:贵州省息峰县某加油站爆燃事故 事故经过:

相关主题