搜档网
当前位置:搜档网 › 三菱FX2N系列PLC的TO指令、FROM指令及实例FX2N-4AD 应用程序

三菱FX2N系列PLC的TO指令、FROM指令及实例FX2N-4AD 应用程序

三菱FX2N系列PLC的TO指令、FROM指令及实例FX2N-4AD 应用程序
三菱FX2N系列PLC的TO指令、FROM指令及实例FX2N-4AD 应用程序

TO指令是从PLC对增设的特殊单元(如FX2N-4DA)缓冲存储器(BFM)写入数据的指令

TO,TOP:十六位连续执行和脉冲执行型指令

DTO,DTOP:三十二位连续执行和脉冲执行型指令

TO指令的编程格式:TO K1 K12 D0 K2

*K1:特殊模块的地址编号,只能用数值,范围:0---7

*K12:特殊模块的缓冲存储器起始地址编号,只能用数值,范围:0---32767

*D0:源寄存器起始地址编号,可以用T,C,D数值和位元件组合如K4X0

*K2:传送的点数,只能用数值。范围:1---32767

TO K1 K12 D0 K2指令的作用是:将PLC的16位寄存器D0,D1的数值分别写入特殊单元(或模块)N0.1的缓冲寄存器(BFM)#12,#13中。

1、在特殊辅助继电器M8164闭合时,D8164内的数据做为传送点数。

2、特殊辅助继电器M8028断开状态,在TO指令执行时,自动进入中断禁止状态,输入中断和定时器中断不能执行。在这期间发生的中断只能等FROM指令执行完后开始执行。TO指令可以在中断程序中使用

3、特殊辅助继电器M8028闭合状态,在TO指令执行时,如发生中断则执行中断程序,TO指令不能在中断程序中使用。

FROM指令是将PLC增设的特殊单元(如FX2N-4AD)缓冲存储器(BFM)的内容读到可编程控制器的指令

FROM、FROMP:十六位连续执行和脉冲执行型指令

DFROM、DFROMP:三十二位连续执行和脉冲执行型指令

读出指令FROM的编程格式:FROM K1 K29 D0 K2

*K1:特殊模块的地址编号,只能用数值,范围:0---7

*K29:特殊模块的缓冲存储器起始地址编号,只能用数值,范围:0---32767

*D0:目标寄存器起始地址编号,可以用T,C,D和除X外的位元件组合如K4Y0

*K2:传送的点数,只能用数值。范围:1---32767

FROM K1 K29 D0 K2指令的作用是:从特殊单元(或模块)N0.1的缓冲寄存器(BFM)#29,#30中读出16位数据传送至PLC 的D0,D1寄存器里。

1、在特殊辅助继电器M8164闭合时,D8164内的数据做为传送点数。

2、特殊辅助继电器M8028断开状态,在FROM指令执行时,自动进入中断禁止状态,输入中断和定时器中断不能执行。在这期间发生的中断只能等FROM指令执行完后开始执行。FROM指令可以在中断程序中使用。

3、特殊辅助继电器M8028闭合状态,在FROM指令执行时,如发生中断则执行中断程序,FROM指令不能在中断程序中使用。

FX2N-4AD是将输入通道接收到的模拟信号转换成数字量,此模块有四个输入通道,最大分辨率是12位。

FX2N-4AD:

1、可选用的模拟值范围是-10V到10VDC(分辨率:5mV),或者是4到20mA,-20mA到20mA(分辨率20μA)。

2、FX2N-4AD和FX2N主单元之间通过缓冲存储器交换数据,FX2N-4AD共有32个缓冲存储器(每个是16位数据)。

3、FX2N-4AD占用FX2N扩展总线的8个点。这8个点可以分配成输入或输出。FX2N-4AD消耗FX2N主单元或有源扩展单元5V电源槽30mA的电流。

缓冲存储器(BFM)的分配如下:

*#0:通道初始化,缺省值H0000 。

*#1---#4:通道1---通道4的平均采样数(1---4096),用于得到平均结果。缺省值高设为8(正常速度),高速操作可选择1 。

#5---#8:通道1---通道4采样数的平均输入值,即根据#1---#4规定的平均采样次数,得出所有采样的平均值。

#9---#12:通道1---通道4读入的当前值。

#13,#14:保留,用户不可以更改。

*#15:选择A/D转换速度,设为0(缺省值)则选择正常速度(15ms/通道);设为1则选择高速(15ms/通道)。

#16---#19:保留,用户不可以更改。

*#20:复位到缺省值和预设。缺省值为0 。

*#21:禁止调整偏移、增益值。缺省值为(0,1)允许状态。

*#22:偏移,增益调整G4 O4 G3 O3 G2 O2 G1 O1 。

*#23:偏移值缺省值为0 。

*#24:增益值缺省值为5000 。

#25---#28:保留,用户不可以更改。

#29:错误状态。

#30:识别码K2010 。

#31:禁用。

带*标志的缓冲区(如#0)可以用BFM写入指令TO从PLC写入。不带*标志的缓冲区(如#5)可以用BFM读出指令FROM读入到PLC 。偏移的定义:当数字输出为0时的模拟量输入值。增益的定义:当数字量输出为+1000时的模拟量输入值。

实例如图:通道1与通道2用作电压输入,FX2N-4AD模块连接在特殊功能模块的0号位置,平均数设为4,PLC的D0,D1接收平均数字值。

1、读出识别码与K2010比较,如果识别码是K2010则表示PLC所连模块是FX2N-4AD,CMP指令将M1闭合(K2010等于D4)。

2、建立模拟输入通道#1,#2 。#0缓冲区的作用是通道初始化,从低位到高位分别指定通道1、通道4,位的定义为:0--预设范围(-10V 到10V)。1--预设范围(4mA到20mA)2--预设范围(-20mA到20mA);3---通道关闭。本例的H3300是关闭3,4通道,1,2通道设为模拟值范围是-10V到10VDC 。

3、将4写入缓冲区#1,#2,即将通道1和通道2的平均采样数设为4,含义大概意思就是每读取4次将这4次的平均值写入#5,#6。

4、读取FX2N-4AD当前的状态,判断是否有错误。如果有错误M10---M22相应的位闭合

5、如果没有错误,则读取#5,#6缓冲区(采样数的平均值)的值并保存到PLC寄存器D0,D1中。

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

PLC教程理论篇之PLC-的位移与步进指令及其应用一

PLC教程理论篇之PLC 的位移与步进指令及 其应用一 一、移位指令简介 移位指令用于字或多个位(BIT)字中二进制位依次顺序左移或右移。有多种多样的移位指令: 简单左移:执行一次本指令移一次位。移位时用0移入最低位。原最低位的内容,移入次低位……依次类推,最高位的内容移出,或移入进位位(而原进位位的内容丢失)。有的PLC可设为,每次可移多个位。 简单右移:与左移不同的只是它为右移,先把进位位的内容移入字的最高位,原最高位的内容移入次高位……依次类推,原最低位的内容丢失,或移入进位位(而原进位位的内容丢失)。有的PLC可设为,每次可移多个位。 循环左移:它与简单左移不同的只是它的进位位的内容不丢失,要传给00位,以实现 循环。循环右移:与循环左移不同的是00的内容不丢失,传给进位位,原进位的值传给第15 位,以实现循环右移。还有可设定输入值的移位,如左移,不是都用0输入给最低位,而是可设定这个输入的值。还有可逆移位指令,由用控制字,控制左还是右移,并可实现多字移位。除了二进制的位(bit)移位,还有数位(digit)移位,可左移,也可右移SRD。移位的对象可以多个字。 还有字移位,以字为单位的移,执行一次本指令移一个字。移时0000移入起始地址(最小地址),起始地址的原内容移入相邻的较高地址,……最高地址(结束地址)的内容丢失。多次执行本指令,可对从起始到结束地址的内容清零。 等等。 图8-1示的为三家PLC左移指令梯形图符号。 图a中St是移位开始通道,Ed是移位终了通道,P是移位脉冲输入,R是复位输入,S 是移位信号输入。当P从OFF到ON时,而R又为OFF,则从St到Ed间的各个位(BIT),依次左移一位,并把S的值(OFF或ON)赋值给St的最低(00)位,Ed的最高(15)位溢出;但如R复位输入ON,移位禁止,并St到Ed各通道清零。 图b中SHL之后加DW为双字,即4个字节移位,EN为此指令执行条件。其输入为ON,才能执行本指令,否则,不执行。IN是进行移位的双字,OUT是移位结果输出的双字,N是每执行一次本指令将移位的位(BIT)数。每次移位时,除了移位双字各位值相应左移,并用0填入移入的位。

PLC步进指令使用

第4章步进指令 各大公司生产的PLC都开发有步进指令,主要是用来完成顺序控制,三菱FX系列的PLC有两条步进指令,STL(步进开始)和RET(步进结束)。 4.1 状态转移(SFC)图 在顺序控制中,我们把每一个工序叫做一个状态,当一道工序完成做下一道工序,可以表达成从一个状态转移到另一个状态。如有四个广告灯,每个灯亮1秒,循环进行。则状态转移图如图4-1所示。每个灯亮表示一个状态,用一个状态器S,相应的负载和 定时器连在状态器上,相邻两个状态器之间有 一条短线,表示转移条件。当转移条件满足时, 则会从上一个状态转移到下一个状态,而上一 个状态自动复位,如要使输出负载能保持,则 应用SET来驱动负载。每一个状态转移图应有 一个初始状态器(S0~S9)在最前面。初始状 态器要通过外部条件或其他状态器来驱动,如 图中是通过M8002驱动。而对于一般的状态器 一定要通过来自其他状态的STL指令驱动,不 能从状态以外驱动。 下面通过一个具体例子来说明状态转移图的画 法。 例4-1有一送料小车,初始位置在A点,按下启动按钮,在A点装料,装料时间5s,装完料后驶向B点卸 料,卸料时间是7s,卸 完后又返回A点装料, 装完后驶向C点卸料, 按如此规律分别给B、C 两点送料,循环进行。 当按下停止按钮时,一 定要送完一个周期后停 在A点。写出状态转移 初始状态器

图。 分析:从状态转移图中可以看出以下几点: (1) 同一个负载可以在不同的状态器中多次输出。 (2) 按下起动按钮X4,M0接通,状态可以向下转移,按下停止按钮,M0断开,当状态转移到S0时,由于M0是断开的,不能往下转移,所以小车停在原点位置。 (3) 要在步进控制程序前添加一段梯形图(见图4-3b ) (b ) 梯形图 (a ) 状态转移图 图4-3 控制送料小车状态转移图 M0 启动辅助继电器X1 原点条件M8002T3 X1 S23 S22 X3 S23 T2 S21 S24 X1 X2 T1 S22 S21 T0 S20 S0 打开卸料阀小车左行Y4A点 Y2T3C点 K70小车左行Y4小车右行 打开装料阀 原点指示Y1 Y3T2K50Y0A点 打开卸料阀小车右行B点 Y2T1K70Y3打开装料阀 Y1 T0 K50

PLC步进指令

用步进指令编程 步进顺序控制:状态寄存器、步进顺控指令。 一、状态寄存器 FX2N共有1000个状态寄存器,其编号及用途见下表。 类 别 元件编号 个 数 用 途 及 特 点 初始状态 S0 ~S9 10 用作SFC的初始状态 返回状态 S10 ~S19 10 多运行模式控制当中,用作返回原点的状态 一般状态 S20~S499 480 用作SFC的中间状态 掉电保持状态 S50~S899 400 具有停电保持功能,用于停电恢复后需继续执行的场合 信号报警状态 S900~S999 100 用作报警元件使用 说明:1)状态的编号必须在规定的范围内选用。 2)各状态元件的触点,在PLC内部可以无数次使用。 3)不使用步进指令时,状态元件可以作为辅助继电器使用。 4)通过参数设置,可改变一般状态元件和掉电保持状态元件的地址分配。 二、步进顺控指令 FX2N系列PLC的步进指令:步进接点指令STL 步进返回指令RET。 1、步进接点指令STL 说明: 1)梯形图符号: 。 2)功能:激活某个状态或称某一步,在梯形图上表现为从主母线上引出的状态接点。 STL指令具有建立子母线的功能,以使该状态的所有操作均在子母线上进行。3)STL指令在梯形图中的表示:

2、步进返回指令RET 说明: 1)梯形图符号: 2)功能:返回主母线。 步进顺序控制程序的结尾必须使用RET指令。 三、状态转移图的梯形图和写指令表 1、状态的三要素 状态转移图中的状态有驱动负载、指定转移目标和指定转移条件三个要素。 图中Y5:驱动的负载 S21:转移目标 X3:转移条件。

3、注意事项 1)程序执行完某一步要进入到下一步时,要用SET指令进行状态转移,激活下一步,并把前一步复位。 2)状态不连续转移时,用OUT指令,如图为非连续状态流程图: 非连续状态流程图 例:液压工作台的步进指令编程,状态转移图、梯形图、指令表如图所示。

PLC步进指令使用

第4章 步进指令 各大公司生产的PLC 都开发有步进指令,主要是用来完成顺序控制,三菱FX 系列的PLC 有两条步进指令,STL (步进开始)和RET (步进结束)。 4.1 状态转移(SFC )图 在顺序控制中,我们把每一个工序叫做一个状态,当一道工序完成做下一道工序,可以表达成从一个状态转移到另一个状态。如有四个广告灯,每个灯亮1秒,循环进行。则状态转移图如图4-1所示。每个灯亮表示一个状态,用一个状态器S ,相应的负载和 定时器连在状态器上,相邻两个状态器之间有 一条短线, 表示转移条件。 当转移条件满足时,则会从上一个状态转移到下一个状态,而上一个状态自动复位,如要使输出负载能保持,则应用SET 来驱动负载。每一个状态转移图应有一个初始状态器(S0~S9)在最前面。初始状态器要通过外部条件或其他状态器来驱动,如图中是通过M8002驱动。而对于一般的状态器一定要通过来自其他状态的STL 指令驱动,不能从状态以外驱动。 下面通过一个具体例子来说明状态转移图的画 法。 例4-1 有一送料小车,初始位置在A 点,按下启动按钮,在A 点装料,装料时间5s,装完料后驶向B 点卸料,卸料时间是7s ,卸完后又返回A 点装料,装完后驶向C 点卸料,按如此规律分别给B 、C 两点送料,循环进行。当按下停止按钮时,一定要送完一个周期后停在A 点。写出状态转移

图。 分析:从状态转移图中可以看出以下几点: (1) 同一个负载可以在不同的状态器中多次输出。 (2) 按下起动按钮X4,M0接通,状态可以向下转移,按下停止按钮,M0断开,当状态转移到S0时,由于M0是断开的,不能往下转移,所以小车停在原点位置。 (3) 要在步进控制程序前添加一段梯形图(见图4-3b ) (b ) 梯形图 (a ) 状态转移图 图4-3 控制送料小车状态转移图 M0 启动辅助继电器X1 原点条件M8002T3 X1 S23 S22 X3 S23 T2 S21 S24 X1 X2 T1 S22 S21 T0 S20 S0 打开卸料阀小车左行Y4A点 Y2T3C点 K70小车左行Y4小车右行 打开装料阀 原点指示Y1 Y3T2K50Y0A点 打开卸料阀小车右行B点 Y2T1K70Y3打开装料阀 Y1 T0 K50

PLC控制步进电机的实例图与程序

P L C控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

PLC控制步进电机的应用案例

P L C控制步进电机的应 用案例 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

P L C控制步进电机的应用案例1(利用P L S Y指令)任务: 利用PLC作为上位机,控制步进电动机按一定的角度旋转。控制要求:利用PLC控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。 1、系统接线 PLC控制旋转步进驱动器,系统选择内部连接方式。 2、I/O分配 X26——启动按钮,X27——停止按钮;Y1——脉冲输出,Y3——控制方向。 3、细分设置 在没有设置细分时,歩距角是,也即是200脉冲/转,设置成N细分后,则是200*N脉冲/转。假设要求设置5细分,则是1000脉冲/转。 4、编写控制程序 控制程序可以用步进指令STL编写,用PLSY指令产生脉冲,脉冲由Y1输出,Y3控制方向。 5、脉冲输出指令(PLSY)的使用 脉冲输出指令PLSYM8029置1。如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲。若X10再次变为ON则脉冲从头开始输出。 注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC。 6、控制流程图 7、梯形图程序(参考) 8、制作触摸屏画面

PLC控制步进电机的应用案例2(利用定时器T246产生脉冲) 任务: 利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态。其中:步进电机的方向控制,只需通过控制U/D-端的On和Off就能决定电机的正传或者反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE 信号就能使电机处于自由转动状态。 1、系统接线 系统选择外部连接方式。PLC控制左右、旋转、上下步进驱动器的其中一个。 CP+端、U/D+端——+24VDC;CP-——Y0;U/D-——Y2;PLC的COM1——GND; A、A-——电机A绕组; B、B-——电机B绕组 2、I/O分配 X0—正转/反转方向,X1—电机转动,X2—电机停止,X4—频率增加,X5—频率减少; Y0—脉冲输出,Y2—方向。 3、编写控制程序 4、制作触摸屏画面 PLC控制步进电机的应用案例3(利用FX2N-1PG产生脉冲) 任务: 应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制。控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms, 1、系统接线 系统选择外部连接方式。PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个。

相关主题