搜档网
当前位置:搜档网 › 多元线性回归、Logistic回归、Poisson回归和Cox回归的比较

多元线性回归、Logistic回归、Poisson回归和Cox回归的比较

多项式回归、非线性回归模型

多项式回归、非线性回归模型 关键词:回归方程的统计检验、拟合优度检验、回归方程的显著性检验、F 检验、回归系数的显著性检验、残差分析、一元多项式回归模型、一元非线性回归模型 一、回归方程的统计检验 1. 拟合优度检验 1. 概念介绍 SST 总离差平方和total SSR 回归平方和regression SSE 剩余平方和error ∑∑∑∑====--= --- =n i i i n i i i n i i i n i i i y y y y y y y y R 1 2 1 2 12 12 2)()?()()?(1 2. 例题1 存在四点(-2,-3)、(-1,-1)、(1,2)、(4,3)求拟合直线与决定系数。 2. 回归方程的显著性检验 ) 2/()2/()?()?(1 212 -= ---= ∑∑==n SSE SSA n y y y y F n i i i n i i i 例6(F 检验) 在合金钢强度的例1中,我们已求出了回归方程,这里考虑关于回归方程的显著性检验,经计算有: 表5 X 射线照射次数与残留细菌数的方差分析表 这里值很小,因此,在显著性水平0.01下回归方程是显著的。 3. 回归系数的显著性检验 4. 残差分析 二、一元多项式回归模型

模型如以下形式的称为一元多项式回归模型: 0111a x a x a x a y n n n n ++++=-- 例1(多项式回归模型) 为了分析X 射线的杀菌作用,用200千伏的X 射线来照射细菌,每次照射6分钟,用平板计数法估计尚存活的细菌数。照射次数记为t ,照射后的细菌数为y 见表1。试求: (1)给出y 与t 的二次回归模型。 (2)在同一坐标系内作出原始数据与拟合结果的散点图。 (3)预测16=t 时残留的细菌数。 (4)根据问题的实际意义,你认为选择多项式函数是否合适? 表1 X 射线照射次数与残留细菌数 程序1 t=1:15; y=[352 211 197 160 142 106 104 60 56 38 36 32 21 19 15]; p=polyfit(t,y,2)%作二次多项式回归 y1=polyval(p,t);%模型估计与作图 plot(t,y,'-*',t,y1,'-o');%在同一坐标系中做出两个图形 legend('原始数据','二次函数') xlabel('t(照射次数)')%横坐标名 ylabel('y(残留细菌数)')%纵坐标名 t0=16; yc1=polyconf(p,t0)%预测t0=16时残留的细菌数,方法1 yc2=polyval(p,t0)%预测t0=16时残留的细菌数,方法2 即二次回归模型为: 8967.3471394.519897.121+-=t t y

Logistic回归分析简介

Logistic回归分析简介 Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。1.应用范围: ①适用于流行病学资料的危险因素分析 ②实验室中药物的剂量-反应关系 ③临床试验评价 ④疾病的预后因素分析 2.Logistic回归的分类: ①按因变量的资料类型分: 二分类 多分类 其中二分较为常用 ②按研究方法分: 条件Logistic回归 非条件Logistic回归 两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍 研究。 3.Logistic回归的应用条件是: ①独立性。各观测对象间是相互独立的; ②LogitP与自变量是线性关系; ③样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍 为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然

估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多; ④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观 察时间的影响(建议用Poisson回归)。 4.拟和logistic回归方程的步骤: ①对每一个变量进行量化,并进行单因素分析; ②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等 级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数 法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离 散变量。 ③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级 变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量 变换; ④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或 0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型 程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变 量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计 量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选 择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald 统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔 除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般

案例分析(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号:2204120202 学生姓名:陈维维 2014 年11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支

SPSS—二元Logistic回归结果分析报告

SPSS—二元Logistic回归结果分析 2011-12-02 16:48 身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果 分析结果如下: 1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个

1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为 -1.026,标准误差为:0.103 那么wald =( B/S.E)2=(-1.026/0.103)2 = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著

1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型 表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下: (公式中(Xi- Xˉ) 少了一个平方) 下面来举例说明这个计算过程:(“年龄”自变量的得分为例) 从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489 那么: yˉ = 129/489 = 0.16 xˉ = 16951 / 489 = 34.2 所以:∑(Xi-xˉ)2 = 30074.9979

多元线性回归分析范例

国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。《中国统计年鉴》把第三产业划分为12个组成部分,分别为x1农林牧渔服务业,x2地质勘查水利管理业,x3交通运输仓储和邮电通信业,x4批发零售贸易和餐饮业,x5金融保险业,x6房地产业,x7社会服务业,x8卫生体育和社会福利业,x9教育文化艺术和广播,x10科学研究和综合艺术,x11党政机关,x12其他行业。采用1998年我国31 个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民币。即样本量n=31,变量p=12。 利用SPSS软件对数据进行处理,输出: 图1 输入/移除变量 图1即输入了所有模型中的变量,分别为 x1:农林牧渔服务业 x2:地质勘查水利管理业 x3:交通运输仓储和邮电通信业 x4:批发零售贸易和餐饮业 x5:金融保险业 x6:房地产业 x7:社会服务业 x8:卫生体育和社会福利业 x9:教育文化艺术和广播 x10:科学研究和综合艺术 x11:党政机关 x12:其他行业

图2 模型概述 即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数R 2=0.935。由决定系数接近1,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。由R 2决定模型优劣时需慎重,尤其是样本量与自变量个数接近时。 图3 回归方程显著性的F 检验 F=10.482,F α(n,n-p-1)=F α(30,18)=2.11(α=0.05),P 值=0.000,表明回归方程高度显著,即12个自变量整体对因变量y 产生显著线性影响。但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。 图4 回归系数的显著性t 检验(t 0.05(20)=1.725) y 对12个自变量的线性回归方程为: 1234 5678 9101112y 205.388 1.438 2.622 3.2970.9465.521 4.068 4.16215.40417.3389.15510.536 1.37x x x x x x x x x x x x =--++--++-++-+

一元线性回归分析的结果解释

一元线性回归分析的结果解释 1.基本描述性统计量 分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。 2.相关系数 分析:上表是相关系数的结果。从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。 3.引入或剔除变量表

分析:上表显示回归分析的方法以及变量被剔除或引入的信息。表中显示回归方法是用强迫引入法引入变量x的。对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。 4.模型摘要 分析:上表是模型摘要。表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。 5.方差分析表 分析:上表是回归分析的方差分析表(ANOVA)。从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数 分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。由此可得线性回归方程为: y=0.000413+0.059x 7.回归诊断 分析:上表是对全部观察单位进行回归诊断(Casewise Diagnostics-all cases)的结果显示。从表中可以看出每一例的标准

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用

————————————————————————————————作者: ————————————————————————————————日期: ?

多元回归分析法的介绍及具体应用 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。 1. 多元线性回归的定义 说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。 多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。 2. 多元回归线性分析的运用 具体地说,多元线性回归分析主要解决以下几方面的问题。 (1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们

Logistic回归模型基本知识

Logistic 回归模型 1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介 主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率 p 与那些因素有关。显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关 系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。于是Logit 变换被提出来: p p p Logit -=1ln )( (1) 其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便, 解决了上述面临的难题。另外从函数的变形可得如下等价的公式: X T X T T e e p X p p p Logit ββ β+= ?=-=11ln )( (2) 模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率) |1(X y P =就是模型要研究的对象。而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,T k ),,,(10ββββ =。为此模型(2)可以表述成: k x k x k x k x k k e e p x x p p βββββββββ+++++++= ?+++=- 11011011011ln (3) 显然p y E =)(,故上述模型表明) (1) (ln y E y E -是k x x x ,,,21 的线性函数。此时我们称满足上面条件 的回归方程为Logistic 线性回归。 Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。因此评价模型的拟合度的标准变为似然值而非离差平方和。 定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为 OR= k x k x e p p βββ+++=- 1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称

Logistic回归分析报告结果解读分析

Logistic 回归分析报告结果解读分析 Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic 回归分析,就可以大致了解胃癌的危险因素。 Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1. Logistic 回归的用法 一般而言,Logistic 回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2. 用Logistic回归估计危险度 所谓相对危险度(risk ratio , RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的

胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

回归分析概要(多元线性回归模型)

第二章 回归分析概要 第五节 多元线性回归分析 一 模型的建立与假定条件 在一元线性回归模型中,我们只讨论了包含一个解释变量的一元线性回归模型,也就是假定被解释变量只受一个因素的影响。但是在现实生活中,一个被解释变量往往受到多个因素的影响。例如,商品的消费需求,不但受商品本身的价格影响,还受到消费者的偏好、收入水平、替代品价格、互补品价格、对商品价格的预测以及消费者的数量等诸多因素的影响。在分析这些问题的时候,仅利用一元线性回归模型已经不能够反映各变量间的真实关系,因此,需要借助多元线性回归模型来进行量化分析。 1. 多元线性回归模型的基本概念 如果一个被解释变量(因变量)t y 有k 个解释变量(自变量)tj x ,k j ,...,3,2,1=, 同时,t y 不仅是tk x 的线性函数,而且是参数0β和k i i ,...3,2,1=,β(通常未知)的线性函数,随即误差项为t u ,那么多元线性回归模型可以表示为: ,...22110t tk k t t t u x x x y +++++=ββββ ),..,2,1(n t = 这里tk k t t t x x x y E ββββ++++=...)(22110为总体多元线性回归方程,简称总体回归方程。 其中,k 表示解释变量个数,0β称为截距项,k βββ...21是总体回归系数。k i i ,...3,2,1=,β表示在其他自变量保持不变的情况下,自变量tj X 变动一个单位所引起的因变量Y 平均变动的数量,因而也称之为偏回归系数。 当给定一个样本n t x x x y tk t t t ,...2,1),,...,,(21=时,上述模型可以表示为: ???? ??? ???????????+++++=+++++=+++++=+++++=t tk k t t t k k k k k k u x x x y u x x x y u x x x y u x x x y ββββββββββββββββ (22110333223110322222211021112211101) 此时,t y 与tj x 已知,i β与t u 未知。 其相应的矩阵表达式为:

一元线性回归分析教程文件

一元线性回归分析论 文

一元线性回归分析的应用 ——以微生物生长与温度关系为例 摘要:一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的预测方法。应用最小二乘法确定直线,进而运用直线进行预测。本文运用一元线性回归分析的方法,构建模型并求出模型参数,对分析结果的显著性进行了假设检验,从而了微生物生长与温度间的关系。 关键词:一元线性回归分析;最小二乘法;假设检验;微生物;温度 回归分析是研究变量之间相关关系的统计学方法,它描述的是变量间不完全确定的关系。回归分析通过建立模型来研究变量间的这种关系,既可以用于分析和解释变量间的关系,又可用于预测和控制,进而广泛应用于自然科学、工程技术、经济管理等领域。本文尝试用一元线性回归分析方法为微生物生长与温度之间的关系建模,并对之后几年的情况进行分析和预测。 1 一元线性回归分析法原理 1.1 问题及其数学模型 一元线性回归分析主要应用于两个变量之间线性关系的研究,回归模型模型为εββ++=x Y 10,其中10,ββ为待定系数。实际问题中,通过观测得到n 组数据(X i ,Y i )(i=1,2,…,n ),它们满足模型i i i x y εββ++=10(i=1,2,…,n )并且通常假定E(εi )=0,V ar (εi )=σ2各εi 相互独立且服从正态分布。回归分析就是根据样 本观察值寻求10,ββ的估计10?,?ββ,对于给定x 值, 取x Y 10?? ?ββ+=,作为x Y E 10)(ββ+=的估计,利用最小二乘法得到10,ββ的估计10?,?ββ,其中 ??? ? ??????? ??-???? ??-=-=∑ ∑ ==n i i n i i i x n x xy n y x x y 122111 0???βββ。

多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要 1.多元线性回归的数学模型 【模型的理论假设】设p x x x ,,,21 是) 2 ( ≥p 个自变量(解释变量),y 是因变量,则多元线性回归模型的理论假设是 εββββ+++++=p p x x x y 22110,),0(~2σεN , 其中,p ββββ,,,,210 是1+p 个未知参数,0β称为回归常数,p βββ,,,21 称为回归系数,),0(~2σεN 为随机误差. 【模型的建立】求p 元线性函数 p p x x x Ey ββββ++++= 22110 的经验回归方程 p p x x x y ββββ?????22110++++= , 其中,y ?是Ey 的统计估计,p ββββ?,,?,?,?210 分别是,,,,,210p ββββ 的统计估计,称为经验回归系数. 【模型的数据结构】设对变量向量y x x x p ,,,,21 的n 次观测得到的样本数据为 ),,,,(21i ip i i y x x x ,) 1 ( ,,2,1 +>=p n i .为了今后讨论方便,我们引进矩阵 ??????? ??=n y y y y 21,??????? ??=np n p p x x x x x x X 1221111111,?????? ? ??=p ββββ????10 ,????? ?? ??=n εεεε 21 于是,多元线性回归模型的数据结构为 εβ+=X y 称为多元样本回归方程,其中n p X rank <+=1)(,) ,(~21n n n n I O N ??σε且各个i ε相互独立. 由于矩阵X 是样本数据,X 的数据可以进行设计和控制,因此,矩阵X 称为回归设计矩阵或资料矩阵. 注释 对多元线性回归模型理论假设的进一步说明:

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。 1. 多元线性回归的定义 说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。 多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。 2. 多元回归线性分析的运用 具体地说,多元线性回归分析主要解决以下几方面的问题。 (1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它

多元线性回归分析

多元线性回归分析 为了研究两个变量之间的关系,最简单的方法是绘制散点图。就是把一个因素作为自变量x ,另一个因素作为因变量y ,将它们成对的观察值标在直角坐标图上,判断出各点分布是呈直线还是曲线,从而看出它们之间存在着怎样的关系,以上方法是解决两个变量之间的相关关系问题,然而,客观事物的变化往往受到多种因素的影响,即使其中一个因素起着主导作用,但有时其他因素的作用也是不可忽视的,这种对多因素的相关和回归,称为多元相关和回归因素分析,运算机理可以通过下面计算表示: 设影响因变量y 的自变量因素共有k 个:12,,,k x x x ,通过实验得到下列n 组观察值:(12,,,k x x x ,t y ), t=1,2,3 …n 。 一般地,如果因变量y 与解释变量12,,,k x x x 之间服从如下干系: 01122k k y b b x b x b x u =+++++ (4-1) 则对因变量y 及解释变量12,,,k x x x 作n 次观测后,所得到n 组观测样本 (t y ,12,,,t t k t x x x )(t=1,2, …,n)将满足如下关系: 01122 t t t k k t t y b b x b x b x u =++++ + (4-2) 这就是多元线性回归模型的一般形式。(t y ,12,,,t t k t x x x )(t=1,2,…,n)为第t 次观测样本,j b (j=0,2,…,k )为模型参数,t u 为随机误差项。 模型中的回归系数j b (j=0,2,…,k )就表示当其他解释变量不变的条件下,第j 个解释变量的单位变动对因变量均值的影响,多元线性回归模型中这样的回归系数,称为偏回归系数。 将n 次观测样本所遵从的n 个随机方程式(4-2)写成方程组形式,有: 1011122111k k y b b x b x b x u =+++++ 201 12 2 22 2 k k y b b x b x b x u =+++++ (4-3) …… …… …… 01122 n n n k k n n y b b x b x b x u =++++ + 其中,随机误差u 满足: ()0j E u = ()2 j V a r u σ = (4-4) (),0,j k C o v u u j k = ≠

非线性回归分析(常见曲线及方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a y x =+ 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a / e b x其中a>0, 7.S型曲线(Logistic) 1 e x y a b-= + 8.对数曲线y=a+b log x,x>0 9.指数曲线y=a e bx其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s 2 解: 1. 对将要拟合的非线性模型y=a/ e b x,建立M文件如下:

如何用spss17.0进行二元和多元logistic回归分析

如何用spss17.0 进行二元和多元logistic 回归分析一、二元logistic 回归分析 二元logistic 回归分析的前提为因变量是可以转化为0、1 的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes 或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic 回归分析。 (一)数据准备和SPSS 选项设置 第一步,原始数据的转化:如图1-1 所示,其中脑梗塞可以分为ICAS、ECAS 和NCAS 三种,但现在我们仅考虑性别和年龄与ICAS 的关系,因此将分组数据ICAS、ECAS 和NCAS 转化为1、0 分类,是ICAS 赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0 置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)” 的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。 如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

图1-2 图1-3 在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

如何用spss17.0进行二元和多元logistic回归分析

如何用spss17.0进行二元和多元logistic 回归分析 一、二元logistic 回归分析 二元logistic 回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes 或No ,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic 回归分析。 (一)数据准备和SPSS 选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS 、ECAS 和NCAS 三种,但现在我们仅考虑性别和年龄与ICAS 的关系,因此将分组数据ICAS 、ECAS 和NCAS 转化为1、0分类,是ICAS 赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss 中,而性别需要转化为(1、0)分类变量输入到spss 当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze )→回归(Regression )→二元logistic (Binary Logistic )”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。 如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05 ),因此我们这里选择以性别和年龄为例进行分 图 1-1

析。

在图1-3中,因为我们要分析性别和年龄与ICAS 的相关程度,因此将ICAS 选入因变量(Dependent )中,而将性别和年龄选入协变量(Covariates )框中,在协变量下方的“方法(Method )”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter ”)。 接下来我们将对分类(Categorical ),保存(Save ),选项(Options )按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中 图 1-2 图1-3 图1-3

如何用SPSS做logistic回归分析

如何用spss17.0进行二元和多元logistic回归分析 一、二元logistic回归分析 二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。 (一)数据准备和SPSS选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

二元logistic逻辑回归分析8)

《应用二分类Logistic回归模型分析浅表淋巴结良恶性的超声诊断结果》文中把与恶性相关的指标赋值记录为1,与良性相关的指标赋值记录为0:单发(记 为0),多发(记为1)。测量淋巴结最大切面的长径和短径,计算长短径比值,大于等于2 记为0,小于2记为1。边界以淋巴结周围亮线样回声完整为清晰(记为0),回声不完整或与其他淋巴结融合为不清晰(记为1)。内部回声及分布主要分析皮质回声,低于髓质为低回声(记为0),高于髓质为高回声(记为1);分布均匀一致(记为1),内部回声混杂多样(记 为0)。如果淋巴结内存在无回声区则为透声(记为0),否则为无透声(记为1)。淋巴结门结构主要分析髓质,以中心高回声带存在为清晰(记为0),消失为不清晰(记为1)。肿大淋巴结彼此孤立为不融合(记为0),不同肿大淋巴结不能区分开为相互融合(记为1)。淋巴结血供以清晰显示多条血管状血流信号为丰富(记为1),无明显血流或只有少量点状血流信号为不丰富(记为0)。其血流信号类型为无血流型(0 型),血流信号沿淋巴门分布为淋巴门型血流(1 型),淋巴结内有血流信号但无规则分布为中心型血流(2 型),淋巴门处无血流信号而血流信号主要分布在淋巴结周围为周边型血流(3 型),淋巴结内部及周边均有血流为混合型血流(4 型)。 本文以超声检查淋巴结的各观察值为自变量,以淋巴结的良恶性为因变量,构建二分类Logistic回归模型,采用偏最大似然估计前进法进行对因变量逐步回归,对模型的拟合优度进行Hosmer-Lemeshow(HL)检验,并采用2x检验,自由度为8,P=(>),证明模型拟合得较好,说明当前数据中的信息以及被充分提取,并且可以排除混杂因素的影响。模型判断恶性淋巴结概率预测值的ROC曲线中,得到AUC为±,P<,95%可信区间为(,),证明该模型的拟合效果较好,用于预测淋巴结的良恶性效果也很好。另外,血流类型亚变量分析结果显示,均以无血流信号型血流为参照水平,淋巴门型血流的OR值小于1,提示支持良性诊断,中心型血流的OR 值大于1,提示支持恶性诊断,但两组P值均大于,无显著统计学意义。而与无血流信号型相比,周边型血流和混合型血流的OR值均大于1,支持恶性诊断,且P值均小于,有非常显著的统计学意义。 在良恶性淋巴结超声诊断指标的对比结果中,其中边界是否清晰、内部回声是否均匀、有无淋巴门结构、血流是否丰富、是否有透声区以及长短径比值的赋值在良恶性淋巴结比较中P 值均小于,说明有显著统计学差异。血流类型的统计结果显示,淋巴结的良恶性与血流类型的P值小于,表示有非常显著统计学相关性。 因此,二分类Logistic 回归多元分析模型能够很好地描述和分析良恶性淋巴结的超声鉴别

多元线性回归方法介绍

多元线性回归方法介绍 回归分析主要研究因变量与自变量的关系,因变量是随机变量,自变量是因素变量,是可以加以控制的变量。多元回归分析一般解决以下问题:第一,确定因变量与多个因素变量之间联系的定量表达式,通常称为回归方程式或数学模型,并确定它们联系的密切程度;第二,通过控制可控变量的数值,借助于球而出的数学模型来预测或控制因变量的取值和精度;第三,进行因素分析,从影响因变量变化的因素中寻找出哪些因素对因变量的影响最为显著,哪些因素不显 著,以区别主要因素和次要因素。 在操作过程中,需要列出影响Y 的多个因素与Y 之间的关系方程。一般地,设因变量Y 于k 个自变量X1,X2,……,XK线性相关: Y=B0+ B1X1+ B2X2+ … + B k X k+ε(1) 其中Y 为可观察的随机变量,X1,X2,…,Xk为可观察的一般变量,B0,B1,B2,…,Bk为待定模型参数,其中B0为截距,ε为不可观测的随机误差。有n组独察的样本数据(yi,x i1,…,xik),i=1,2,…,n,带入方程(1)中,有: y i= b0+ b1x i1+ b2x i2+ … + b k x ik+ e i i=1,2,…, n其中n 个随机变量ei相互独立且服从同一正态分布Nor(0,σ2)。根据最小二乘原则,求B0,B1,B2,…,Bk的估计值b0,b1,…,bk,使上式的误差平方和 ∑(ei)2=∑[y i-(b0+b1x i1+b2x i2+…+b k x ik)]2最小,为此,分别将上式对b0,b1,…,bk求偏导数,令其等于0,当x1,x2,…,xk相互独立时,由极值原理, 可求出总体回归系数矩阵B 总体=[B0,B1,B2,…,Bk]T 的估计值矩阵B样本=[b0,b1,…,bk] T :B样本=(X T X) -1 X T X进而得到回归方程: y=b0+b1x1+b2x2+…+b k x k 本文将依据上述原理对后面的变量关系进行回归分析。

相关主题