搜档网
当前位置:搜档网 › MCM_41的磺酸官能化及催化性能研究_沈晓燕

MCM_41的磺酸官能化及催化性能研究_沈晓燕

MCM_41的磺酸官能化及催化性能研究_沈晓燕
MCM_41的磺酸官能化及催化性能研究_沈晓燕

第39卷第6期2011年12月

浙江工业大学学报

JOURNAL OF ZHEJIANG UNIVERSITY OF 

TECHNOLOGYVol.39No.6

Dec.2011

收稿日期:2010-09-

14基金项目:浙江省自然科学基金资助项目(Y3090551

)作者简介:沈晓燕(1985—),女,江苏苏州人,硕士研究生,研究方向为绿色有机合成,E-mail:shenxy

850919@163.com.MCM-41的磺酸官能化及催化性能研究

沈晓燕,高建荣,韩 亮,贾义霞,盛卫坚

(浙江工业大学绿色化学合成技术国家重点实验室培育基地,浙江杭州310032

)摘要:MCM-41与苯甲醇反应接枝苄基后,用氯磺酸对其磺酸化,合成得到了一系列不同酸量的磺酸官能化MCM-41(SO3H-MCM-41).用X射线衍射、红外光谱、氮吸附对SO3H-

MCM-41进行了表征,并以7-乙基色醇的Fischer吲哚合成为模型实验,测试了SO3H-

MCM-41的催化性能.结果表明:SO3H-MCM-41酸量越大,7-乙基色醇的收率越高,最高收率达50%,高于硫酸催化的均相反应.

关键词:MCM-41;磺酸基;官能化;7-乙基色醇中图分类号:TQ460.322 文献标识码:A

文章编号:1006-4303(2011)06-0605-

04Study 

on catalytic properties of mesoporous MCM-41 silica functionalizedwith sulfonic acid group

sSHEN Xiao-yan,GAO Jian-rong,HAN Liang

,JIA Yi-xia,SHENG Wei-jian(State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University 

of Technology,Hangzhou 310032,China)Abstract:A series of MCM-41silica functionalized with sulfonic acid groups(SO3H-MCM-41)with different acid amount were prepared through the condensation of MCM-41with benzylalcohol followed with sulfonation,which was characterized by XRD,FT-IR,nitrogenadsorption.Synthesis of 7-ethyltryptophol was selected as a model experiment to survey thecatalytic performance of SO3H-MCM-41.The results showed that the higher the acid amount thebetter the yield of 7-ethyltryptophol.The optimal yield of SO3H-

MCM-41catalyzed reaction was50%,which was higher than that of H2SO4catalyzed method.Key words:MCM-41;sulfonic group;functionalization;7-ethyltryptophol 固体酸作为绿色催化剂在有机合成中已经得到了广泛应用.介孔分子筛(孔径2~50nm)作为优良的催化剂载体,越来越受到人们的关注.六方相的MCM-41是典型代表,它具有六方有序的孔道结构,孔径尺寸可随合成时加入导向剂及合成条件的不同在1.5~10nm之间变化.而且MCM-41具有

孔径均匀、较高的比表面积(1 000m2/g)和大的吸附容量(0.7mL/g)

的特点,有利于有机分子的扩散,因而被广泛用于有机反应中.纯硅介孔MCM-

41酸性较弱,

催化活性低,因此,一般在其上负载各种金属、无机酸或引入有机基团,以合成酸性更强并

具有不同性质的催化剂[1-

2].对MCM-41进行磺酸

官能化是增强MCM-41酸性的一种主要方式.磺酸化的MCM-41具有较强的酸性,不仅可以替代液体酸催化各种反应,减少废水,而且其显著的择形催化性质也提高了反应选择性,

减少了反应副产物.近年

来,磺酸化的MCM-41在缩合、酯化及酰化等反应中表现出良好的活性和选择性[3-8],得到了广泛研究.

笔者根据前期研究结果制备了纯硅MCM-41,并将其与苯甲醇缩合后用氯磺酸磺化,将磺酸基团接枝到介孔分子筛上,合成了一系列磺酸官能化的MCM-41(SO3H-MCM-41),对其结构进行了表征,并研究了其催化性能.

1 实验部分

1.1 仪器及试剂

样品的XRD是在PANalytical公司的X PertPRO型X射线衍射仪上进行,采用Cu射线(60kV and55mA)进行测定;样品的IR谱在Thermo公司Nicolet 6700型红外光谱仪上测定,扫描范围为4 000~400cm-1,KBr压片;样品的比表面和孔径分布采用Quantachrome NovaWin2型物理吸附仪,在77K下进行测定;酸量测定采用滴定法,即取0.05g样品加入到15mL的2mol/L食盐水中,连续搅拌并待其平衡过夜,用0.01mol/LNaOH滴定此溶液测其酸度.7-乙基色醇的核磁在BRUKERAVANCE 300型核磁共振仪上进行测定,采用TMS为内标,CDCl3为溶剂.

邻乙基苯肼盐酸盐,2,3-二氢呋喃为工业品.苯甲醇,氯磺酸,环己烷,三氯甲烷,乙醇等均为市售分析纯试剂.

1.2 MCM-41的磺酸官能化

纯硅MCM-41[9]采用常规水热合成[10].将1gMCM-41与5mL苯甲醇、20mL甲苯放入四口烧瓶于82℃下搅拌回流12h,后将产品过滤,于60℃干燥过夜.用注射器将定量的氯磺酸注入前面所得固体及20mL CHCl

的混合物中,于62℃回流2h,过滤,干燥,得到磺酸官能化的MCM-41

(SO

3H-MCM-41-x

)其中x为固体酸的酸度.1.3 磺酸官能化的MCM-41催化合成7-乙基色氨醇

将邻乙基苯肼盐酸盐(4.5g,0.026mol)、无水乙醇(50mL)、水(127mL)加入三口烧瓶中搅拌加热,温度升至60~70℃时,滴加2,3-二氢呋喃(1.8g,0.026mol),恒温反应80min.再加入固体酸(0.025g),加热搅拌,氮气保护.当温度升至90℃时恒温反应,反应1h后,取样,液相检测.之后每隔半小时取样,

液相检测至反应终止.甲苯萃取反应液2或3次,合

并有机层,在80℃下旋蒸除去甲苯.粗产物通过V(石油醚)∶V(乙酸乙酯)=2∶1进行柱层析得到棕红色液体,收率为50%。1 H NMR(500MHz,CDCl

)δ∶8.03(bs,1H,NH),7.48(d,J=7.60Hz,1H,ArH),7.10(t,J=7.49Hz,2H,ArH),7.06(d,J=6.58Hz,1H,ArH),3.91(t,J=6.29Hz,2H,CH2OH),3.04(t,J=6.48Hz,2H,CH2CH2OH),2.87(q,J=7.58Hz,2H,ArCH2CH3),1.37(t,J=7.57Hz,3H,ArCH2CH3).

2 结果与讨论

2.1 磺酸官能化MCM-41的酸度测定

磺酸官能化的MCM-41是通过纯硅MCM-41与苯甲醇缩合、氯磺酸磺化两步合成得到.加入的氯

磺酸量不同,合成得到的SO

3H-MCM-41

的酸量不同,结果列于表1.从表1可以看出纯硅MCM-41酸量很低,仅为0.8mmol/g.随磺化加入的氯磺酸量

的增加,SO

3H-MCM-41

的酸量逐渐提高.当加入的

氯磺酸量为0.6mL/g(MCM-41)时,得到的SO

3H-MCM-41-0.6具有最高酸量8.2mmol/g,之后进一

步增加氯磺酸的量,SO

3H-MCM-41

酸量不再提高.磺酸官能化的MCM-41合成步骤如下

表1 不同氯磺酸负载量对SO3H-MCM-41酸度的影响

Table 1 Acid amount variety of SO3H-MCM-41with thedifferent amount of ClSO3H

样品

氯磺酸的负载量/

(mL·g-1)

酸度/

(mmol·g-1)MCM-41 0 0.8SO3H-MCM-41-0.2 0.2 1.2

SO3H-MCM-41-0.4 0.4 5.7

SO3H-MCM-41-0.5 0.5 6.8

SO3H-MCM-41-0.6 0.6 8.2

SO3H-MCM-41-0.8 0.8 8.2

·

·浙江工业大学学报第39卷

2.2 XRD分析

图1为纯硅MCM-41和SO3H-MCM-41-0.6样品的XRD图.两者均在2θ约0.8°~2.5°左右出现介孔材料的特征衍射峰,说明MCM-41接枝苄

基磺酸后,仍具有原MCM-41的介孔结构[11]

.与纯硅MCM-41的XRD图相比,SO3H-MCM-41(100)晶面的特征吸收峰强度明显下降,(110)和(200)

晶面的衍射峰大大减弱甚至消失,表明磺酸官能化后,SO3H-MCM-41的有序度有所下降.这可能是由于MCM-41接枝后,苄基磺酸基团的引入对结构产生一定影响:即孔道内由于接枝有机物,孔道尺寸减少,晶格缺陷增多,终使衍射峰强度降低

图1 MCM-41和SO3H-

MCM.41-0.6的XRD图Fig.1 XRD patterns of MCM-41and SO3H-

MCM-41-0.62.3 N2吸附分析

表2为纯硅MCM-41和SO3H-MCM-41-0.6样品通过N2吸附分析得到的介孔结构参数.

从表2中可以看出,与纯MCM-41相比,SO3H-MCM-41的孔隙容量,平均孔径和比表面积均显著减小,进一步证明了接枝后有机官能团的引入使孔道减小,有序性降低,这一结果与XRD表征结果相符.

表2 纯硅MCM-41和SO3H

-MCM-41-0.6样品的结构参数Table 2 Pore structure p

arameters of MCM-41and SO3H-MCM-41-0.6derived from the N2adsorption-de-sorp

tion isotherms样品V1)

BJH

/(cm3·g-1)D2)BJH/nmS3)

BET

(m

2·g-1

)MCM-41 0.84 3.62 1 080SO3H-

MCM-41-0.6 0.27 

1.39 

393

注:

1)孔隙体积;2)平均孔径;3)比表面积.2.4 IR分析

红外光谱分析表明,MCM-41的红外光谱特征峰位于3 425cm-1(vasO-H),1 089cm-1(vasSi-O),807cm-1(vsS

i-O),463cm-1(δSi-O-Si)(v伸缩振动,δ弯曲振动,s对称振动,as不对称振动,见图2).SO3H-MCM-41-0.6由于苄基结构和磺酸基团的引入,出现了相应的特征峰:2 936cm-1(v C-Hof benzy

l),1 504cm-1(v benzene)、878cm-1(δbenzene)和855cm-1(δbenzene)为苄基的特征峰;磺酸基团上的特征峰则出现在1 169cm-1(v SO2)和574cm-1(v 

S-O)

.图2 MCM-41和SO3H-

MCM-41-0.6样品的红外光谱图

Fig.2 FT-IR spectra of MCM-41and SO3H-

MCM-41-0.62.5 SO3H-

MCM-41催化合成7-乙基色醇7-乙基色醇是非甾体抗炎药依托度酸的关键

中间体,依托度酸的镇痛抗炎作用强,临床上广泛用于术后疼痛的治疗,缓解类风湿性关节炎和骨节炎的症状,延缓关节炎所引起的骨病病理改

变[12].Fischer吲哚合成是7-乙基色醇的主要合成

方法,其通常以邻乙基苯肼和2,3-二氢呋喃为原料,在硫酸的催化下环合制备而成.其工艺复杂,且易产生大量聚吲哚副产物,使收率降低,分离

困难[13-

14].

合成得到的SO3H-MCM-41作为催化剂,代替液体酸硫酸,催化邻乙基苯肼和2,3-二氢呋喃一锅法合成7-乙基色醇,结果列于表3.由表3可知,SO3H-

MCM-41的酸量越高,反应收率越好.纯硅MCM-41的酸量低,基本不具备催化活性.磺酸官能化后,SO3H-MCM-41酸量由0.8mmol/g提高到8.2mmol/g

,7-乙基色醇的收率也增至50%,优于液体酸硫酸催化的反应收率31%.

·

706·第6期沈晓燕,等:MCM-41的磺酸官能化及催化性能研究

表3 不同酸度的SO3H-MCM-41对7-乙基色醇收率的影响

Table 3 Acid amount variety of SO3H-MCM-41synthesis of7-ethyltryptophol

样品

酸度/

(mmol·g-1)7-

乙基色醇收率/%

MCM-41 0.8 2

SO3H-MCM-41-0.2 1.2 11

SO3H-MCM-41-0.4 5.7 15

SO3H-MCM-41-0.5 6.8 30

SO3H-MCM-41-0.6 8.2 50

H2SO4—31

3 结 论

以纯硅MCM-41为原料,通过与苯甲醇缩合、氯磺酸磺化两步合成得到苄基磺酸接枝的SO

3H-MCM-41.SO3H-MCM-41的酸量随着氯磺酸加入

量的增加而提高.酸度为8.2mmol/g的SO

3H-MCM-41成功催化邻乙基苯肼盐酸盐和2,3-二氢呋喃的Fischer吲哚反应,合成得到了7-乙基色醇,收率达到50%,高于传统合成方法.

参考文献:

[1] CHEN Feng-xi,HUANG Qian-dan,LI Quan-zhi.Mesoporous

molecular sieves[J].Kexue Tongbao,1999,44:1905-1920.[2] PARASURAMAN S,SURESH K B,CHANDRASHEKARG S.Catalytic wet air oxidation of aniline on transition metal

modified MCM-41catalysts[J].Ind Eng Chem Res,2001,40:3237-3261.

[3] BRUNEL D,BLANC A C,GALARNEAU A,et al.Hydro-

carbon technologies[J].Catal Today,2002,73:139-152.[4] DAS D,LEE J F,CHENG S.Synthesis and characterizationof new organic-inorganic based catalyst effect of steric hin-drance on catalytic performance[J].J Catal,2004,223:152-160.

[5] BOSSAERT W D,VOS D E,VANRHIJN W M,et al.Meso-porous sulfonic acids as selective heterogeneous catalysts forthe synthesis of monoglycerides[J].J Catal,1999,182:156-164.

[6] DIAZ I,ALVAREZ M C,MOHION C,et al.Combined alkyland sulfonic acid funcionalization of MCM-41-type silica:part2.esterification of glycerol with fatty acids[J].J Catal,2000,193:295-302.

[7] DIAZ I,MOHINO F,PARIENTE P J,et al.Synthesis,characterization and catalyticactivity of MCM-41-type meso-porous silicas functionalized with sulfonicacid[J].Appl Catal,2001,205:19-30.

[8] WILSON K,LEE A F,MACQUARRIE D J,et al.Structureand reactivity of sol-gel sulphonic acid silicas[J].Appl Catal,2002,228:127-133.

[9] LIU Qian,WANG Ai-qin,WANG Xiao-dong,et al.Morpho-logically controlled synthesis of mesoporous alumina[J].JCatal,2007,100:35-44.

[10] LIU L,ZHANG G Y,DONG J X,et al.The coordinationchemistry of tin porphyrin complexes[J].Chem Sci,2004,20:65-69.

[11] BECK J S,VARTULI J C,ROTH W J,et al.Fluorometricchemodosimetry[J].J Am Chem Soc,1992,114:9704-9705.[12] SHI Jin-min,LI Duan.A chiralnonsteroidal anti-inflammato-ry drug of etodolac[J].Chinese Journal of Clinical Pharmacy,2000,9:321-324.

[13] DAI Li-yan,WANG Xiao-zhong,CHEN Ying-qi.Synthesisof etodolac[J].Chem Ind and Eng,2005,56:1536-1540.[14] YOU Jin-zong,JIANG Shan-hui.A preparation method of 7-ethyltryptophol:CNP,1740154A[P].2006-03-01.

(责任编辑:陈石平)

·

·浙江工业大学学报第39卷

催化材料的研究背景与意义

催化材料的研究背景与意义 随着工业的发展和技术的发展,大量有害污染物进入环境。近年来,各国关于污染物排放的法律法规越来越严格,因此,为了现代工业可持续发展,把环境中的污染物消除,已经成为当今社会的一个重要问题,也是重中之重的关键因素。研究和开发更高效的废水处理技术是不可避免的。在清除污染物的方法中,采用催化降解的方法是当前研究的热点话题。过渡金属硫化物由于其独特的物理化学性质已经在催化、锂离子电池和超电容等领域引起了广泛关注。硫化钴由于其独特的光电特性,具有多种化学计量比,如CoS、CoS2、Co3S4、Co9S8等,磁性能和电化学性能被广泛应用于各个领域。通过对Co9S8/Ni3S2的制备以及在污染物降解方面的应用进行研究,有利于Co9S8/Ni3S2在污染降解方面的应用,改善环境的污染现状。 1、催化材料的研究现状 催化材料有很多种,但是真正能被应用于工业化的却不是太多。由于催化材料在碱性条件下必须保持结构稳定、耐腐蚀性和较长的催化寿命。 (1)金属及合金材料 Ni是一种相对比较便宜的金属,并且Ni在碱性溶液中的耐腐蚀性比较高,而且它对析氧反应的催化效率要高于其他的金属元素。所以工业中常用Ni作为电解水的催化剂材料。除此之外,其他的一些金属如Co、Zr、Nb等也具有一定的催化效果从而引起了广泛关注。 与金属材料相比,掺杂材料通常具有较低的氧演化过电压。这样的例子有很多,比如Ni2Co合金,Co50Ni25Si15B10和Ni2Co2P合金等,因为它们能在表面形成高度活性的含NiCo2O4或者含有CoO (OH)的钴化合物,直到达到析氧电位,这显著提高了Ni电极的电催化活性。另外一个例子是镍铜合金,Cu的存在能够显著的提高Ni电极的催化活性。这都是由于合金材料发生析氧反应的时候表面的离子价态发生转变,所以就会有高化合价的中间产物产生,这些中间产物可以显著提高电极的催化活性。但是,长时间工作在高电位和强碱性环境下,在金属材料和合金材料的表面,都会形成一层金属氧化膜,增加其内阻,从而增加能耗。 (2)贵金属氧化物

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

MoS2电催化剂的制备性能研究

第1章MoS2 材料的制备及催化性能研究 3.1 引言 本章主要从理论和实验两个方面对MoS2 电催化剂进行研究,具体研究内容如下: (1) 通过基于密度泛函理论的第一性原理对MoS2 模型进行计算,探究MoS2 的不同位置对氢原子的结合能力。 (2) 通过液相剥离法制备了尺寸不同的MoS2 纳米片,详细介绍了其制备工 艺,并对其形貌表征及电化学性能进行分析。 (3) 通过水热法制备了花状M0S2纳米材料,介绍了这种材料的制备方法,利用TEM 、XPS 等手段对其结构、成分进行分析。利用LSV 和CV 法对其电化学性能进行分析。 3.2 理论模型及计算方法 MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。这种特殊结构使M0S2较容 易被剥离,形成少层甚至单层的M0S2纳米材料。这种材料在电化学析氢反应中表现出较好的催化活性,为了研究M0S2催化析氢反应的活性位点。从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层M0S2结构模型。 3.2.1 Materials Studio 仿真软件介绍 Materials Studio 为美国Accelrys 公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。被广泛应用于催化剂、化学反应、固体物理等材料领域。 Materials Studio 软件包含多种算法模块,其中Visualizer 为建模模块的核心,包含如Castep、DMol 3、Discover、Amporphous、COMPASS 等多个计算和分析 模块。本文主要利用CASTEP模块来完成计算和分析。Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层M0S2分子模型计算其对氢原子的吸附能力,从而确定M0S2的电催化析氢反应活性位点。 3.2.2 模型建立及计算 模型为3X3X1的M0S2超胞模型,如图3-1。为使计算结果更为准确,在正式

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

MoS2电催化剂的制备及性能研究(仅供参考)

第1章MoS2材料的制备及催化性能研究 3.1 引言 本章主要从理论和实验两个方面对MoS2电催化剂进行研究,具体研究内容如下: (1)通过基于密度泛函理论的第一性原理对MoS2模型进行计算,探究MoS2的不同位置对氢原子的结合能力。 (2)通过液相剥离法制备了尺寸不同的MoS2纳米片,详细介绍了其制备工艺,并对其形貌表征及电化学性能进行分析。 (3)通过水热法制备了花状MoS2纳米材料,介绍了这种材料的制备方法,利用TEM、XPS等手段对其结构、成分进行分析。利用LSV和CV法对其电化学性能进行分析。 3.2 理论模型及计算方法 MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。这种特殊结构使MoS2较容易被剥离,形成少层甚至单层的MoS2纳米材料。这种材料在电化学析氢反应中表现出较好的催化活性,为了研究MoS2催化析氢反应的活性位点。从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层MoS2结构模型。 3.2.1 Materials Studio仿真软件介绍 Materials Studio为美国Accelrys公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。被广泛应用于催化剂、化学反应、固体物理等材料领域。 Materials Studio软件包含多种算法模块,其中Visualizer为建模模块的核心,包含如Castep、DMol3、Discover、Amporphous、COMPASS等多个计算和分析模块。本文主要利用CASTEP模块来完成计算和分析。Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层MoS2分子模型计算其对氢原子的吸附能力,从而确定MoS2的电催化析氢反应活性位点。 3.2.2模型建立及计算 模型为3×3×1的MoS2超胞模型,如图3-1。为使计算结果更为准确,在正

新材料研究

新材料无疑将受益于国家产业政策支持,很多股票本身因稀土、锂电池等概念前期已大幅炒高,真正受益产业政策的股票还有待观察产政策公布回调后再作打算。新材料简直囊括万象,很多公司都能和新材料沾上边,挖掘真正受益产业政策的长线优质股需要加倍深入研究。 9月7日,工业和信息化部原材料司副司长高云虎在中国国际新材料产业博览会上介绍,“十二五”期间,我国新材料产业预计总产值达2万亿元,年均增长率超过25%。到2020年,新材料产业会成为国民经济的先导产业。 高云虎说,“十二五”期间将建立稳定的财政投入机制,设立新材料产业发展专项资金,加大对新材料产业的扶持力度。建立健全投融资保障机制,鼓励和支持民间资本投资新材料产业。 新材料,是在传统材料基础上发展起来的一种新概念,它是指新出现的或者已经在发展中,具有传统材料所不具备的优异性能和特殊功能的材料。新材料本身是一种高新技术,同时它也是新一代高新技术的基础和先导,新材料的发展,体现一个国家的科技水平和国家综合实力。新材料,是一切高新技术的基础,所以任何一个技术的突破,都要首先从新材料开始突破,比如说碳纤维复合材料,这是一种新兴的,轻质高强的结构材料,用碳纤维做复合材料,主要用在航空航天的高端领域,用碳纤维做成的飞机材料,飞机结构与美国飞机相比,减重效果达到20%至40%,在节能效果上体现出重大的经济效益来。 据高云虎介绍,“十二五”期间我国新材料产品综合保障能力提高到70%,关键新材料保障能力达到50%,实现碳纤维、钛合金等关键品种产业化、规模化。十二五”期间,国家将对高强轻型合金材料、高性能钢铁材料、功能膜材料、新型动力电池材料、碳纤维复合材料、稀土功能材料等6类新材料进行重点支持。 1.新型动力电池 股市中新型动力电池材料主要指新能源电池概念。首先,真正的新能源电池股票,只有6家:中信国安、德赛电池、科力远、中炬高新、亿纬锂能、万向钱潮。只有德赛电池、亿纬锂能、科力远这3家企业,是全行业都生产电池的厂家,属于纯正的新能源电池概念。中信国安、万向钱潮、中炬高新都是公司所属的旗下某一个子公司生产电池。 德赛电池:生产一次、二次(充电)各型锂电池;科力远:镍氢电池+车载动力电池;亿纬锂能:生产锂离子/亚硫酰氯电池。新能源汽车动力电池股,目前,只有中信国安、万向钱潮、科力远、中炬高新四家上市公司能生产车载动力电池。德赛电池、亿纬锂能,目前

NiCr-LDHs的制备及光催化性能研究

化学工程学院 新产品开发训练报告 2014-12 课题名称: CoCr-LDHs的制备及光催化性能研究 课题类型:论文 班级:应化 1102 姓名:周柳 学号: 1112083076 指导教师:薛莉 (使用说明:设计/论文请选一使用,左侧装订)

第一部分文献综述 1.1 水滑石的定义及研究背景 层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)[1]。 水滑石材料属于阴离子型层状化合物。层状化合物是指具有层状结构、层间离子具有可交换性的一类化合物,利用层状化合物主体在强极性分子作用下所具有的可插层性和层间离子的可交换性,将一些功能性客体物质引入层间空隙并将层板距离撑开从而形成层柱化合物。水滑石类化合物(LDHs) 是一类具有层状结构的新型无机功能材料, LDHs的主体层板化学组成与其层板阳离子特性、层板电荷密度或者阴离子交换量、超分子插层结构等因素密切相关。 LDHs的发展已经历了一百多年的历史,但直到二十世纪六十年代才引起物理学家和化学家的极大兴趣。1842年,Hochstetter首先在片岩矿层中发现了天然水滑石矿物。[2]后来又相继在挪威的Sunarum地区以及俄罗斯的Ural地区发现了少量的天然水滑石矿。在二十世纪初,人们发现了LDH对氢加成反应具有催化作用,并由此开始了对LDH结构的研究。1942年,Feitknecht等首次通过金属盐溶液与碱金属氢氧化物反应人工合成出了LDH,并提出了双层结构模型的设想。1966年,Kyowa公司首先将LDH的合成工业化。1969年,Allmann等通过测定LDH单晶结构,首次确认了LDH的层状结构。[3,4]七八十年代时,Miyata等对其结构进行了详细研究,并对其作为新型催化材料的应用进行了探索性的工作。在此阶段,Taylor和Rouxhet 还对LDH热分解产物的催化性质进行了研究,发现它是一种性能良好的催化剂和催化剂载体。Reichle等研究了LDH及其焙烧产物在有机催化反应中的应用,指出它在碱催化、氧化还原催化过程中有重要的价值。 进入二十世纪九十年代,人们对LDHs的研究更为迅速。随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化,对LDHs层状结构的认识加深,其层状晶体结构的灵活多变性被充分揭示。特别是近年来,基于超分子化学定义及插层组装概念,有关LDHs的研究工作获得了更深层次上的理论支持,在层状前体制备、结构表征、超分子结构模型建立、插层组装动力学和机理、插层组装体的功能开发等诸方面得到了许多具有理论

高性能钢铁粉末冶金材料关键技术与应用

高性能钢铁粉末冶金材料关键技术与应用项目推荐公示容 一、项目名称: 高性能钢铁粉末冶金材料关键技术与应用 二、推荐单位意见: 粉末冶金技术不仅可提高材料性能,而且可实现零部件的近终形制造,是国际上公认的“绿色制造技术”,是近些年来工业发达国家优先发展的高技术领域。该项目选择应用面最广、产量最大的钢铁粉末冶金材料为研究重点,开展了高压缩性铁粉工业化生产及应用技术研发,任务来源于国家科技支撑计划和国家973计划。 该项目的创新性主要体现在:攻克了高纯冶炼、高效水雾化和精还原等产业化关键技术,创立了压缩性在7.20g/cm3以上的高压缩性铁粉工业化高效生产新工艺;基于粉体塑性特性和改性原理,开发出了粘结化混合粉末,其压坯密度可达7.60g/cm3;在探明Ni、Mo、Cu等合金元素的强化作用机理和规律的基础上,发明了具有“烧结硬化”特性的预合金粉和燃油发动机气门阀座专用粉及其工业化生产工艺;发明了雾化铁粉的表面绝缘双层包覆新方法和关键装备,创立了铁基软磁复合材料(零件)的致密成形和热处理工艺。项目关键技术和产品性能达到了国际先进水平。本项目共取得发明专利11项,实用新型专利15项,发表学术论文20篇,出版著作1 部,主持和参与修订国家标准3 项。4项科技成果先后通过了省科技厅的鉴定,均“达到国际先进水平”,“产品密度居国际同类产品的领先水平”。 该项目形成了具有完全自主知识产权的钢铁粉末冶金材料生产成套技术,先后建设了8条工业化生产线,打破了国外公司的技术和市场垄断。近三年新增销售额19.30亿元,新增利润 2.48亿元。 项目成果丰富了粉末冶金过程理论和材料理论,提升了我国粉末冶金技术和产业的水平,对扩大粉末冶金的应用领域、推动我国粉末冶金行业品种结构的优化具有重要意义,并为我国汽车工业和高端装备制造业提供了有力的技术支撑。 经审查,提交的材料真实有效。 推荐该项目为国家科学技术进步奖_贰__等奖

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值入g 与Eg有关,其关系式为:入g=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种? OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一o TiO2主要有两种晶型一锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙( 3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

MoS2电催化剂的制备及性能研究第二章计算及实验原理

第1章计算及实验原理 2、1引言 研究M0S 2电催化性能首先需要知道其催化原理及催化性能如何测试。本章 主要从理论模型的计算与实验原理方向进行叙述 : (1) 介绍基于密度泛函理论的第一性原理,目的在于计算并理解 M O S 2材料结 构、形貌对于其催化性能的影响,寻找M O S 2电催化活性位点,对于正确设计实验 起着必不可少的指导作用。 (2) 介绍本文中主要使用的M0S 2电催化剂的制备方法原理,包括液相剥离法、 水热法与微波辅助法,主要介绍了各种方法的原理及特点。 ⑶介绍M O S 2电催化剂的电化学性能的测试与材料表征测试原理,包括:透射 电 子显微镜(TEM)、X 射线衍射(XRD)与X 射线光电子能谱(XPS)测试,并探索它 们在本课题中的应用。 2、2理论计算 为探究M O S 2这种材料对于电化学催化的活性位点,本文采用了基于密度泛函 理论(De nsity Fu nctio nal TheoryQFT)的第一性原理计算方法。第一性原理就是指 基于量子力学的方法,通过求解薛定谔方程获取多粒子系统的各种参数,如系统总 能量、固体能带、热导率、光学介电函数等。由于多粒子系统的复杂性使得直接 求解这一系统的薛定谔方程并不现实。在计算过程中,通过密度泛函理论近似,将 粒子的物理性质用粒子态密度函数描述。密度泛函理论由 Hebenberg 与Kohn 提 出,此外Kohn 与Sham 建立了科恩-沙姆(Kohn-Sham)方程[23],该方程为进行密度泛 函理论近似提供基础。 在求解Kohn-Sham 方程时需给出确定的交换关联能,常用方法包括由Kohn 与 Sham 提出的局域密度近似法(Local Density Approximaten,LDA)与 Perdew 等 人提出的广义梯度近似法(Generalized Gradient Approximation,GGA)。本文在计算 时采用GGA 近似方法,这种方法认为电子密度就是非均匀的。 通过引入电子密度 的梯度,得到GGA 近似下的交换相关能泛函: [2 V KS [ (r)]] i (r) E i i (r) V KS [ (r)] v(r) dr - (r ) E XC [] r r (r) N 其中(r) i (r) 2 (2-1) i 1

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

超细晶超高碳钢研究现状及展望

收稿日期:2004204202; 修订日期:2004206211基金项目:江苏省高校自然科学研究计划(03K JB430045) 作者简介:张振忠(19642  ),陕西汉中人,博士后,副教授.研究方向:金属纳米与非晶材料. Em ail :njutzhangzz @https://www.sodocs.net/doc/ea2990251.html, ?今日铸造 Today ’s Foundry ? 超细晶超高碳钢研究现状及展望 张振忠,赵芳霞 (南京工业大学材料科学与工程学院,江苏,南京210009) 摘要:超细晶超高碳钢是国外近年来发展起来的一类新型的、并具有重要发展前景的高性能钢铁材料。在系统总结大量文献资料的基础上,综述国内外近年来超细晶超高碳钢的研究进展,包括制备工艺,微观组织及其影响因素,室温力学性能,超塑性,层状超高碳钢复合材料等,指出今后超细晶超高碳钢研究的发展方向。关键词:超高碳钢;制备;力学性能;超塑性 中图分类号:TG 269 文献标识码:A 文章编号:100028365(2004)1020799204 Study Status and Prospect of U ltra 2f ine G rained U ltrahigh 2C arbon Steels ZHAN G Zhen 2zhong ,ZHAO Fang 2xia (College of Material Science &Engineering ,Nanjing University of Technology ,Nanjing 210009,China ) Abstract :Ultrahigh 2carbon steels (U HCSs )with the microstructure of ultra 2fine spheroidized carbides distributed in the ultrafine ferrite grains was a new kind of material which was developed in recent years at abroad.These steels posess unique properties that are unavailable in other materials ,which makes them have important potential structural applications in the later.Recent development of the U HCSs ,which include the fabrication techniques ,the influence factors and characteristics of the microstructure ,the ambient mechanical properties ,the superplasticity and the laminated composite of this new material were systematically summarized.In the end ,the future research directions on U HCSs had also been pointed out. K ey w ords :Ultrahighcarbon steels ;Fabrication ;Mechanical properties ;Superplasticity 超高碳钢(U HCS )是指含C 为1.0%~2.1%的过共析钢[1],由于传统方法制备的U HCS 具有极高的脆性[2],该材料的工业化应用在过去一直被人们所忽视。20世纪70年代中期以来,斯坦福大学O D Sher 2by [3]、美国Lawrence Livemore 国家实验室[3~7]和日本[8]等国学者相继开展了一些研究,当采用适当制备工艺获得超细铁素体基体上分布着超细粒状渗碳体组织后,该材料不仅具有高的超塑性和良好的综合力学性能,而且利用其高温下良好的固态连接特性,还可与自身及其它金属材料(黄铜、铝青铜等)连接制备成新型高性能层状复合材料,具有较好的市场前景。而国内至今对其研究甚少。为引起国内同行的重视,本文综述了目前国外超细晶U HCS 的研究现状,提出了今后的研究方向。1 超细晶超高碳钢的制备工艺 从国外近三十年来的研究结果看,U HCS 的超细晶制备工艺分为:形变热处理、普通热处理和粉末冶金 3大类。1.1 形变热处理 通过塑性变形与相变相结合实现U HCS 组织细化 的一类方法。由该方法衍生出的各种制备工艺路线见图1~图4。高温形变热处理工艺[3],由奥氏体(A )均匀化、A +渗碳体(Fe 3C )区的连续形变和铁素体(F )+Fe 3C 区的再等温形变3步组成,最终形成超细F +粒状Fe 3C 组织。Walser 等[9]利用该工艺,将含1.6%C 钢的F 细化至0.5μm 。等温形变热处理工艺可采用A 1以上[3]与A 1以下两种形变温度[10]。古原忠等[14]采用图1(c )工艺在温度为923K ,变形量为90%条件下,使SUJ 2轴承钢的F 和粒状Fe 3C 尺寸分别细化至0.4μm 和0.18μm 。温加工工艺[3],通过A 均匀化后快速冷却获得马氏体(M )+残余A 组织,然后在923K 高温回火时形变使Fe 3C 粒化,最终得到回火索 氏体和F 基体上弥散分布着粒状Fe 3C 组织。低温形变热处理工艺[11],采用冷轧,其超细化工艺简单,但对设备要求高,难用于含C 在1.5%以上的钢,Seto 等利用该工艺对1.2%C 的钢进行50%冷轧后退火,最终组织的0.5μmF +0.2μm Fe 3C 。离异共析转变工艺有3种路线[4],即HWW (Hot and Warm Working )+DET (Divorced Eutectoid Transformation )(图2)、 ? 997?Vol.25No.10Oct.2004铸造技术 FOUNDR Y TECHNOLO GY

相关主题