搜档网
当前位置:搜档网 › Wafer Bonding for the Manufacture of High-Brightness and High-Efficiency Light-Emitting Diodes

Wafer Bonding for the Manufacture of High-Brightness and High-Efficiency Light-Emitting Diodes

Wafer Bonding for the Manufacture of High-Brightness and High-Efficiency   Light-Emitting Diodes
Wafer Bonding for the Manufacture of High-Brightness and High-Efficiency   Light-Emitting Diodes

10.1149/1.3483553 ? The Electrochemical Society

Wafer Bonding for the Manufacture of High-Brightness and High-Efficiency

Light-Emitting Diodes

In memoriam Ulrich Goesele

Andreas Pl??l, Johannes Baur, Dieter Ei?ler, Karl Engl, Volker H?rle, Berthold Hahn, Alexander Heindl, Stefan Illek, Christoph Klemp, Patrick Rode, Klaus Streubel

&Ivar Tangrin

OSRAM Opto Semiconductors GmbH, Leibnizstra?e 4, D-93055 Regensburg, Germany Wafer bonding based layer transfer approaches permit the

fabrication of powerful volume or surface-emitting light-emitting

diodes (LEDs). Here we briefly review the basic approaches taken

and show some exemplary results of our metal-bonded UX:3-

LEDs with buried mirror and buried metallic current distribution

for both polarities, . The overall device performance benefits from

the UX:3 variant of our ThinGaN technology: (i) at a drive current

of 350 mA, a 5 % brightness increase for blue and green emission;

through improved interaction of chip and phosphor coating, a 10-

20% brightness increase for white LEDs; (iii) when trebling the

current from 350 mA to 1 A, the sublinear brightness increase,

called droop, is reduced to only 15%; (iv) at a 1 A drive current, a

drop in forward voltage of only 200 mV occurs.

Introduction

Wafer bonding is a joining technology. Ulrich G?sele greatly contributed to the research on wafer direct bonding, the joining of mirror-polished wafers without the addition of any glue (1, 2). He also played an important role in the investigation of layer splitting. Joined with either a thinning or lift-off step, this forms the basis of layer transfer techniques. He regarded layer transfer as a tool box for semiconductor technology. Here we wish to present how layer transfer technology helps in the manufacture of high-brightness and high-efficiency light-emitting diodes for the expanding field of solid state lighting (SSL), and especially to show how powerful surface emitting devices can be made with the thinfilm approach.

LEDs have been commercially available since the late 1960s (3). They directly convert electricity to light, without the detour of heating a metal wire to incandescence. Formerly, their use had been restricted to low-power applications. Only with the development of metal-organic precursors for chemical vapour deposition, the epitaxial growth of high-efficiency group 13-15 compound semiconductors opened up new application fields. The introduction of efficient blue LEDs based on the GaInN material system and the concomitant possibility to create white light using conversion phosphors gave the field tremendous impetus.

Modern LEDs essentially comprise of a few micrometer thick, heteroepitaxially synthesised, semiconductor layers. The visible spectrum is covered by two material

systems, AlGaInP (i. e. Al1-x-y Ga x In y P) for the red to the green part of the spectrum, and by GaInN (i. e. for Al1-x-y Ga x In y N) for the green to the blue part. The typical growth substrate for AlGaInP is GaAs whose band gap of only 1.4 eV makes it a strong absorber of light; for GaInN, substrates of sapphire (highly transparent) or SiC (transparent) are commercially used. Vis-à-vis the refractive index, n, of the surrounding media, be it air (n = 1), encapsulant resin (n = 1.5) or the transparent substrate (n sapphire = 1.8), the refractive indices of AlGaInP (n ≈ 3 – 3.5) or GaInN (n ≈ 2 – 2.5) are rather high. Because of the large difference in refractive indices, total internal reflection at the semiconductor surface confines all light falling at the surface outside the respective critical angle to the semiconductor body. The reflected light may be absorbed by the active layer and, because of the isotropic nature of electroluminescence, be re-emitted in a more favourable direction. In the virtual absence of internal losses, this photon-recycling may aid in avoiding the geometrical trap.

Traditionally, LED chips come in the shape of a right parallelepiped, with a side length of some 0.2 – 0.3 mm and a height of roughly 0.2 mm (Fig. 1); nowadays, some power LEDs exhibit a side length of 2 mm and more. In some cases, the dies are shaped in the form of a frustrum (truncated pyramid). One distinguishes volume emitting LEDs, which emit from the top surface and from the side walls (mounted with the bottom surface to the package) and surface emitting LEDs from which light escapes basically from the top surface only.

When trying to turn the high internal efficiency of the modern 13-15 compound semiconductors into high external efficiency of the LED device, one increasingly turns to wafer bonding techniques . Transferring the epitaxial layers from the growth substrate to alternative materials allows to separately optimise material synthesis and light extraction in the manufacture of volume or surface emitting devices.

Volume Emitters: Transparent Substrate AlGaInP LEDs

In the case of AlGaInP LEDs, epitaxial growth requires a lattice template with a lattice constant of about 5.6 ?, a precondition met by GaAs (and Ge). As both become transparent only in the infrared, no transparent AlGaInP LED can be deposited in a straightforward manner. For an efficient AlGaInP LED, the absorption in the growth substrate first needs to be prevented. Distributed Bragg reflectors epitaxially placed between substrate and LED structure reduce the absorption losses, and because of the strong angular dependence of their reflectivity, they cannot eliminate it. At Hewlett Packard, a wafer bonding solution to this problem was pioneered in the 1990s, creating an artificial transparent substrate die. They first deposited the epitaxial layers of the LED structure onto GaAs by MOCVD and grew a thick GaP window layer using hydride vapour phase epitaxy. The window layer made the epitaxial structure self supporting, allowing the removal of the GaAs growth substrate and replacing it with a transparent and conductive GaP wafer by wafer direct bonding. (4; 5). When the dies were fashioned as an inverted pyramidal frustum, the most efficient AlGaInP volume emitters were created (6). Adhesive bonding was used to transfer AlGaInP layers onto sapphire, thus forming a volume emitter akin to conventional GaInN sapphire LED (7).

In many modern applications the high luminance of surface emitters is advantageous and we will turn next to surface emitting LEDs created by wafer bonding, termed thinfilm LEDs (8).

Thinfilm LEDs

The high internal quantum efficiency of modern active layer material systems makes it possible to escape the total internal reflection trap through buried omnidirectional mirrors. The idea of the thinfilm LEDs originated with the epitaxial lift-off-concept of Yablonovitch (9) and with a record external efficiency reported for an optically pumped LED layer (10). Figure 2 schematically depicts the basic principle of light extraction. On one surface, a very good mirror confines the light to the semiconductor layer. The opposing surface is tailored to facilitate ease of light extraction; the figure shows surface roughening. As a photon may need several round trips, perhaps even absorption and re-emission from the active layer, the concepts success hinges on high-quality mirrors and as little as possible thermalising absorption.

With layer transfer, the epitaxial structure can be optimised independent from the efforts in perfecting mirrors and anti-reflection surfaces. In addition, non-epitaxial layers can be added so as to attain a uniform current density over the entire chip area.

The generic processing sequence, schematically illustrated in Fig. 3, starts with the usual epitaxy. Metal semiconductor contacts and metallic mirrors are deposited onto the top surface, followed by a suitable alternative substrate bonding to the mirror side. The growth substrate is removed and a top contact is applied.

The transfer of the epitaxial layer from its growth substrate to the alternative stock substrate essentially flips the structure over. The possibility to treat in turn the top and bottom surfaces of the epitaxial layers makes this thinfilm LED concept attractive not only for AlGaInP grown on absorbing GaAs but also for a material system like GaInN with the transparent growth substrates, sapphire and silicon carbide. Therefore a number of measures can be applied to both surfaces to increase the outcoupling efficiency. Fashioning various geometrical micro-reflectors on the mirror-side or surface roughening, or a combination of both, help in the design of highly efficient LEDs.

If the epitaxial film is grafted onto an electrically conductive “stock” substrate, conventional LED dies can be made having one contact at the top emission surface and the other electrode at the backsurface. When mounting such a die in a device package, the bottom electrode connects directly to the respective electrode of the package, and the top contact is connected by a wire bond to the package’s other electrode. On the other hand, when using electrically insulating stock substrates, contacts for both polarities are located on the top surface, and two wire bonds are used to connect the die to the package leads, in the same way as with normal GaInN chips on sapphire.

AlGaInP-Thinfilm LEDs

At OSRAM Opto Semiconductors GmbH, the thinfilm approach was first developed for AlGaInP LEDs (11), followed in 2003 by GaInN-LEDs (12), which was then labelled ThinGaN technology. The thinfilm technology provides a unified LED design and way of manufacturing, covering the entire spectrum, from the infrared to the ultraviolet. The radiation pattern of thinfilm LEDs is essentially of Lambertian character, with negligible side emission (Fig. 2b). This is an important advantage for close spaced mounting in multi-chip applications.

The metallic mirror of thinfilm LEDs relaxes the requirements placed on the properties of the bonding interface. There is no longer the need for transparency, making it possible to use conventional metal contacts for connecting the epitaxial film to the alternative substrate. Other bonding techniques than wafer direct bonding may become appropriate. Good electrical and thermal conductivity can be achieved with thin solder

layers while simultaneously relaxing the requirements placed on surface topography, ensuring good manufacturability. Therefore, we chose solder bonding for our thinfilm LEDs chips as the wafer bonding technique. For high reliability, the stock substrate should closely match the thermal expansion behaviour of the donating substrate. The fortuitous similarity in thermal expansion properties of the two most important growth substrates sapphire and gallium arsenide allows using the same material as stock substrate for all thinfilm LEDs. And with the thermal expansion behaviour of germanium being alike to sapphire and GaAs, an arsenic free, environmentally benign stock substrate has been chosen.

For AlGaInP it has been found advantageous not only to use surface roughening to improve light extraction but also to shape the back surface into a micromirror for enhanced light extraction (Fig. 4 a). Very efficient devices can be obtained this way. Fig.

4 b shows the external quantum efficiency as a function of drive current for a hyperred LED. These long-wavelength devices can play an important role in multi-chip approaches for high colour-quality lighting.

ThinGaN – GaInN Thinfilm LEDs

In the case of GaInN-LEDs grown on sapphire substrates, the substrate removal after the bonding step can be accomplished most economically by the so called laser-lift-off (13). Here, UV laser light is focused through the sapphire onto the GaInN growth interface. There the laser light is absorbed and thereby decomposes a thin GaN layer. This separates the epitaxial layer from its growth substrate and the sapphire wafer can then be re-used for epitaxy. For AlGaInP-LEDs, the GaAs growth substrate is simply dissolved. In the following section we focus on the GaInN thinfilm LEDs, experiencing the most dramatic commercial growth rates for backlighting applications and solid state lighting. In the context of GaInN LEDs, the thinfilm type sometimes is s referred to as vertical LEDs to emphasise the vertical separation of the electrodes in comparison to the horizontal positioning of both electrodes on sapphire chips (14, 15)

The mirror quality, internal efficiency, anti-reflection property of the surface, current distribution, contact and series resistance determine the overall efficiency of the thinfilm LED. Optimising the internal efficieny is mainly the task of epitaxy. The epitaxial design, however, also needs to take into account the issues of current spreading and contact formation. After the layer transfer, pyramidal asperities are fashioned into the exposed n-GaInN layer to maximise the extraction of light. Lateral current distribution in GaInN layers is more easily achieved in n-type than in p-type layers. The prevalent growth order of n/p calls for a metallic mirror on the p-side. Combining high reflectivity in the buried mirror with good metal/semiconductor contact properties overcomes the limitations in lateral current spreading of p-GaInN. For small devices, the n-GaInN layer suffices for a uniform current density at all relevant operation conditions. In larger devices needed for power applications, the uniform current distribution is maintained only with supporting measures. Once the layer transfer has been completed, the most straightforward solution places metallic contact lines or fingers onto the exposed n-GaInN surface. The current spreaders require careful design as they also add the risk for light absorption, either due to imperfect reflection on the metal/semiconductor interface, or for light already within the encapsulant, by absorption of back-reflected light. Especially white LEDs with their phosphor cover, may suffer from back reflection. The metal/semiconductor contacts are tuned for low contact resistance and the dimensions of the metal layers are chosen for adequate electrical conduction. Figure 5 shows a power

ThinGaN chip featuring five current spreader lines distributing current from the bonding pad in the corner across the entire chip area (16).

ThinGaN UX:3 – Underground routing of p- and n-metallisation

The wafer bonding based layer transfer provides another option for imparting uniform current spreading on the n-side, burying the n-distribution layer very similar to the p-layer method (17). For this underground routing the p-mirror and contact layer are electrically insulated from the n-electrode deposited over it. Contact holes etched through the p-layer provide access to the n-layer for electrical contacting. The ThinGaN LEDs with this new feature of interpenetrating p- and n-current spreading are termed UX:3 by OSRAM. Figure 6 compares the n-current spreading for the old ThinGaN type with the new UX:3 one. Since the ThinGaN LEDs have the bottom contact with p-polarity and the top electrode with n-polarity, the UX:3 chips exhibit a reversed polarity. The stock wafer connects to the n-layer and the p-electrode is exposed on the top surface after the layer transfer by etching of the GaInN layer (Fig. 6). For the bonding, a soldering process has again been chosen. Putting the n-current spreading underground leaves the GaInN surface free of metal coverage. The area for light emission is increased and the risk of absorbing light reflected (or emitted) within the encapsulating silicone resin (perhaps filled with phosphor particles for white light generation) towards the LED layer is diminished. As an example, Figure 7 shows a chip with 46 n-contact points distributed over the chip area. The excellent current spreading qualities of the underground routing can be inferred from Fig. 7. The conventional ThinGaN structure shows already at 1.4 A drive current decrease in light output from the bond pad in the lower left corner toward the upper right corner. The novel ThinGaN UX:3 chip profits from the underground current routing for both polarities, as is borne out by the homogeneous light emission across the entire chip surface even at a current of 2.8 A (16).

With buried metal layers distributing the current across the entire chip area for both polarities, the device operates efficiently over a very wide current range (16). The improved high-current characteristics are important for power applications. A chip of 1 mm side length can thus be driven at a current of 3 A. Figure 8 shows the light output, I E, of a 1 mm by 1 mm chip. At a conventional drive current of 0.35 A, the device delivers about 640 mW optical power, and at 3.0 A 3200 mW. The sublinear increase in power output with drive current is called “droop” and a topic more of GaInN material properties (18).

Equipping the chips with suitable conversion phosphors for white light generation, a peak luminous efficiency of 136 lm/W was recorded and at high current operation with 3 A, 830 lm were extracted from a single device (16).

With green-emitting GaInN layers, the devices emitted 117 lm for a drive current of 0.35 A, and 224 lm at 1.0 A. A peak luminous efficiency of more than 200 lm/W was measured (Fig. 9) (16).

The thinfilm chip technology permits the manufacture of highly efficient high-brightness LEDs in all sizes. Scaling the chip area without needing to increase device thickness is a major advantage of the thinfilm approach. Wafer bonding for whole-scale layer transfer is more efficient than flipping individual chips and subsequently processing them. Removal of the sapphire not only allows recycling the wafer for re-use but also improves the extraction of heat from the remaining losses. Flip chips, in principle, also provide better heat extraction. For mounting in standard device packages, however, they require an additional interposer. In multi-chip applications with red LEDs, the reliance

on surface emitters eliminates efficiency losses from absorption of side emission in a neighbouring chip. In chip arrays, thinfilm chips serve to attain homogenous emission with high and uniform luminance. They are well suited for integration into optical systems for, e. g., projection, automotive headlamps or general illumination.

Outlook

Modern high-brightness and high-efficiency LEDs find many applications in, for instance, backlighting, interior or exterior automotive lighting. Their low power consumption, flat design, suitability for automated assembly and their longevity and reliability explain their strong increase in market penetration. For general illumination, they are about to replace incandescent light bulbs. The use of LEDs for general lighting is called solid state lighting. The improvement in energy efficiency is seen as an important contribution to energy saving and an evolution of sustainable industrialised lifestyle. However, the LEDs can not only replace traditional light sources but can also afford a new degree of control over the colour spectrum. With solid state lighting based on LEDs, it is easy to allow the user not only to dim the light at will but also to adjust the colour temperature. In the following we briefly want to outline, how and why this can foster our well-being. The eye not only is receptive to light to allow vision, but, it also takes part in regulating the circadian rhythm. A decade ago a new type of photoreceptor in the eye has been discovered which is responsible for circadian rhythm. Figure 10 shows the spectral dependence for suppression of melatonin in response to illumination of these new photoreceptors, labelled “c” for circadian; the peak occurs at a wavelength of 464 nm. Melatonin is the hormone that transmits information about environmental light conditions to different parts of the body. As the visual sensitivity has its peak at a longer wavelength, visually acceptable lighting can be engineered with differing physiological effectivity.

As sketched in Fig. 11, during darkness the pineal gland produces melatonin. Day light with its short wavelength suppresses the melatonin. In this way, the human body follows the circadian rhythm of day and night. The biorhythm regulates the body temperature, heart beat, alertness and responsitivity. It affects our mood and the quality of our sleep. Often, modern man is more exposed to artificial illumination than to daylight. Staying in tune with the natural sequence of day and night requires illumination with a stronger blue component during day and a lower colour temperature in the evening. Our well-being, or just our optimum work performance, calls for biologically adequate lighting. Dynamically adapting the light spectrum to the time of day is readily feasible with LED illumination. While we age, less and less blue light reaches our retina: the yellowing of the eye lens reduces the transmission of the shorter wavelengths, and the smaller pupil opening adds another reduction. As we, hopefully, grow old, blue light may indeed imply a bit of happiness, as an advertisement slogan once promised. Wafer bonding helps to manufacture the necessary light sources.

(a) (b)

Figure 1: (a) AlGaInP thinflim LED chip, its bottom electrode connected to the p-lead of the package with Ag filled adhesive, and a wire bond connecting the n-contact to the other lead. (b) Comparison of differing die sizes.

(a)

Figure 2: (a) Principle operation of thinfilm LEDs: With internal absorption virtually suppressed, light which at first cannot escape is internally reflected until it can escape or is absorbed and re-emitted with a new chance of escaping the crystal. (b) Lambertian radiation pattern of thinfilm chip.

Figure 3: Generic thinfilm processing sequence. The GaAs growth substrate is simply etched away; in the case of GaInN on sapphire, the LLO process retrieves the substrate for re-use.

…stock”substrate with “grafted”

epitaxial layer

Sapphire

epi-layer Bonding

(a) (b)

Figure 4: (a) AlGaInP Thinfilm LED with microreflectors fashioned into the epitaxial layer before bonding. (b) 1 mm2 sized hyper-red LED with a dominant wavelength of 660 nm mounted in Golden Dragon Plus package, radiating 300 mW at 0.4 A drive current.

Figure 5: (a) Top view of a bare power ThinGaN chip with five current spreader lines. (b) Schematic cross-section through ThinGaN chip with top surface current spreading.

Figure 6: Comparison of the cross-sectional views of the old (left) ThinGaN chip structure and (right) UX:3 design. The light extraction can be enhanced by moving the n-side current spreading layers below the buried p-contact (arrow).

Figure 7: Emission patterns of (left) a standard ThinGaN chip structure and (right) the new UX:3 design optimised for high current operation. The new technology shows even at 2,8 Amm-2, a homogeneous emission pattern. Current distribution no longer limits the device performance.

Figure 8. Light output, I E, versus drive current I of a blue emitting ThinGaN UX:3 chip

in a Golden Dragon Plus package (16).

Figure 9. Luminous flux and luminous efficiency of a green emitting 1-mm2 chip in a OSRAM Golden Dragon Plus package (16).

Figure 10: A new type of photoreceptor has been found; the curve labelled “c” shows its spectral sensitivity. In comparison to the visual sensitivity of the eye, here labelled “v”, it is distinctively shifted to lower wavelengths. In addition, the diagram shows the evolution of the transmission of the human eye with age. The transmission deteriorates especially in the short wavelength part of the spectrum, affecting the circadian receptors more than the receptors for vision. (After van de Kraats & van Norren (19))

Figure 11: Schematic description of the melatonin concentration in the blood during exposure to light. The bright areas denote day light, the grey areas darkness. The effectiveness of the light depends on its ability to reach the receptors on the retina. Its angular dependence is indicated to the right of the diagram.

Dedication

The authors are greatly honoured to pay tribute to Ulrich G?sele. One of them (A. P.) was privileged to enjoy formative years as a post-doc with him at the Max-Planck-Institute of Microstructure Physics in Halle (Saale). Ulrich G?sele was an extremely energetic and gregarious man. His death deprived us of a true friend and inspirator. The paper is dedicated to his memory.

Acknowledgments

We are grateful to Dieter Lang for figure 10 and to Markus Klein for figure 11. Financial support by the Bundesministerium für Bildung und Forschung (POLO) and by the European Commission (OSIRIS) is gratefully acknowledged.

References

1.Q.-Y. Tong and U. G?sele, in Semiconductor Wafer Bonding: Science and

Technology, 1st ed., John Wiley & Sons, New York (1999).

2.M. Alexe and U. G?sele, Editors, in Wafer Bonding: Applications and Technology.

Springer Series in Materials Science, 75, Springer-Verlag, Heidelberg (2004).

3. E. F. Schubert, in Light-Emitting Diodes, 1st ed., Cambridge University Press,

Cambridge (2003).

4. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P.

Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A.

Steigerwald, M. G. Craford and V. M. Robbins, Appl. Phys. Lett., 64, 2839-41 (1994).

5. F. A. Kish, D. A. DeFevere, D. A. Vanderwater, G. R. Trott, R. J. Weiss and J. S.

Major Jr., Electron. Lett., 30, 1790-2 (1994).

6.M. R. Krames, M. Ochiai-Holcomb, G. E. H?fler, C. Carter-Coman, E. I. Chen, I.-

H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A.

Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G.

Sasser and D. Collins, Appl. Phys. Lett., 75, 2365-7 (1999).

7.T.-P. Chen and M.-H. Hsieh, Compound Semiconductor, 14, 14-5 (2008

8. A. Pl?βl, in Wafer Bonding, M. Alexe and U. G?sele, Editors., Springer (2004).

9. E. Yablonovitch, T. Gmitter, J. P. Harbison and R. Bhat, Appl. Phys. Lett., 51,

2222-4 (1987).

10.I. Schnitzer, E. Yablonovitch, C. Caneau and T. J. Gmitter, Appl. Phys. Lett., 62,

131-3 (1993).

11.S. Illek, U. Jacob, A. Pl?βl, P. Stauβ, K. Streubel, W. Wegleiter and R. Wirth,

Compound Semiconductor, 8, 39-42 (2002).

12.V. H?rle, B. Hahn, S. Kaiser, A. Weimar, D. Eisert, S. Bader, A. Pl?ssl and F.

Eberhard, in Light-emitting diodes: research, manufacturing, and applications VII,

E. F. Schubert, H. W. Yao, K. J. Linden, and D. J. McGraw, Editors.Proceedings of

SPIE, 4996., pp. 133-8, SPIE, Bellingham, WA, USA (2003). (Photonics West, 25-

31 January 2003, San Jose, CA USA).

13.M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh and M. Stutzmann, Phys.

Status Solidi A, 159, R3 (1997).

14.D. W. Kim, H. Y. Lee, M. C. Yoo, M. C. Yoo and G. Y. Yeom, Appl. Phys. Lett.,

86, 52108-1-3. (2005).

15.T. Jeong, K. H. Kim, H. H. Lee, S. J. Lee, S. H. Lee, J. H. Baek and J. K. Lee,

IEEE Photonics Technology Letters, 20, 1932-4 (2008).

16.A. Laubsch, M. Sabathil, J. Baur, M. Peter and B. Hahn, IEEE Trans. Electron

Devices, 57, 79-87 (2010).

17.S. Illek, A. Pl?βl, A. Heindl, P. Rode and D. Eiβler, Offenlegungsschrift

DE102007019776A1, 2007.

18.A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S.

Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow and S. W.

Koch, phys. stat. sol. C, 6, S913-6 (2009).

19.van de Kraats and D. van Norren, Journal of the Optical Society of America A

(Optics, Image Science and Vision), 24, 1842-57 (2007).

技术积累之linux bonding

目录 bonding的介绍 (3) bonding的应用 (3) bonding的参数详解 (3) bonding的模式 (5) bonding的链路监控 (6) bonding的配置 (7) 单个bonding的主备模式的配置 (7) 单个bonding带arp监控的主备模式 (10) 多个不同模式bonding的混合配置 (11) bonding的子接口配置 (12) 总结 (13)

?bonding的介绍 linux bonding 驱动提供了一个把多个网络接口设备捆绑为单个的网络接口设置来使用,用于网络负载均衡及网络冗余。 ●bonding的应用 1、网络负载均衡; 对于bonding的网络负载均衡是我们在文件服务器中常用到的,比如把三块网卡,当做一块来用,解决一个IP地址,流量过大,服务器网络压力过大的问题。如果在内网中,文件服务器为了管理和应用上的方便,大多是用同一个IP地址。对于一个百M的本地网络来说,文件服务器在多个用户同时使用的情况下,网络压力是极大的,为了解决同一个IP地址,突破流量的限制,毕竟网线和网卡对数据的吞吐量是有限制的。如果在有限的资源的情况下,实现网络负载均衡,最好的办法就是bonding 。 2、网络冗余; 对于服务器来说,网络设备的稳定也是比较重要的,特别是网卡。大多通过硬件设备的冗余来提供服务器的可靠性和安全性,比如电源。bonding 也能为网卡提供冗余的支持。把网个网卡绑定到一个IP地址,当一块网卡发生物理性损坏的情况下,另一块网卡也能提供正常的服务。 ●. Bonding参数详解 Bonding驱动的选项是通过在加载时指定参数来设定的。可以通过insmod 或modprobe命令的命令行参数来指定,但通常在/etc /modules.conf或 /etc/modprobe.conf配置文件中指定. 下面列出可用的bonding驱动参数。如果 参数没有指定,驱动会使用缺省参数。刚开始配置bond的时候,建议在一个 终端窗口中运行"tail -f /var/log/messages"来观察bonding驱动的错误信息.有些 参数必须要正确的设定,比如miimon、arp_interval和arp_ip_target,否则在链 接故障时会导致严重的网络性能退化。有些选项不仅支持文本值的设定,出于 兼容性的考虑,也支持数值的设定,比如,"mode=802.3ad"和"mode=4"效果是 一样的。 2

(完整word版)自动化设备技术协议

设备技术协议 甲方: 乙方: (甲方)向(乙方)购置设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。 2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训

供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他 1、本协议一式三份,甲方两份、乙方一份,每份具有同等效力。 2、除非有甲方的书面同意,否则乙方不得将其任何合同权利或义务转给第 三方。

IT设备操作及维护手册

信息部TI硬件操作及维护手册 目录 第一章:信息部工作职责 (2) 一、信息部经理岗位职责 (2) 二、网络管理专员岗位职责 (3) 第二章:门店设备的使用及维护 (3) 一、机房环境注意与日常维护 (3) 二、服务器操作与维护 (4) 三、网络设备的日常维护 (6) 四、监控系统的操作与维护 (6) 五、功放设备的使用和日常维护 (9) 六、UPS不间断供电源 (10) 七、点单收银电脑使用和维护 (12) 八、微型打印机使用和维护 (16) 九、排号等位使用和维护 (18) 十、门店网费电话费缴费流程 (19) 十一、钉钉考勤机操作流程 (21) 十二、钉钉审批流程 (26) 十三、天子星前厅点餐系统操作流程 (31)

第一章:信息部工作职责 一、信息经理岗位职责 1,拟定和执行企业信息化战略。 1)负责制订公司信息化中长期战略规划、当年滚动实施计划。 2)制定企业信息化管理制度、制定信息化标准规范。 3)负责公司信息化网络规划、建设组织。 4)制订IT基础资源(硬、软件)运行流程、制定网络安全、信息安全措施并组织实施, 实现IT资源集约管理。 5)负责公司集成信息系统总体构架,构建企业信息化实施组织,结合业务流程重组、项目管理实施企业集成信息系统。 6)负责集团公司网站建设计及总体规划。 2、办公自动化系统开发与运行 (1)根据公司发展战略和实际需要,组织实施公司办公自动化系 统、网站的运行管理和维护与更新,协助信息管理工作; (2)负责公司办公自动化设备(计算机及其软件、打印机)的维护、管理工作。 3、企业信息资源开发 根据企业发展战略和信息化战略要求,负责企业内外部信息资源开发利用。导入知识管理,牵头组织建立企业产业政策信息资源、竞争对手信息资源、供应商信息资源、企业客户信息资源、企业基础数据资源五大信息资源库。 4、建立信息化评价体系 根据公司信息化战略和企业实情,建立公司信息化评价体系和执行标准、制定全员信息化培训计划。 5、信息处理 负责信息的收集、汇总、分析研究,定期编写信息分析报告报公司领导决策参考;参与公司专用管理标准和制度的

Linux双网卡绑定和解除绑定的实现

Linux双网卡绑定和解除绑定的实现 双网卡绑定实现就是使用两块网卡虚拟成为一块网卡,这个聚合起来的设备看起来是一个单独的以太网接口设备,通俗点讲就是两块网卡具有相同的IP地址而并行链接聚合成一个逻辑链路工作。根据交换机可支持的功能不通,最常见的是设定为主备方式的双网卡绑定。 一、操作步骤 这里以绑定两个网卡为示例描述。配置文件都在/etc/sysconfig/network-scripts/目录下。 1、编辑新的ifcfg-bond0文件 增加如下内容: 引用 # cat /etc/sysconfig/network-scripts/ifcfg-bond0 DEVICE=bond0 IPADDR=192.168.1.155 NETMASK=255.255.255.0 ONBOOT=yes BOOTPROTO=none USERCTL=no 这是最后bond0设备的实际IP设置。 2、分别编辑ifcfg-eth0和ifcfg-eth1文件 引用 # cat /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 USERCTL=no ONBOOT=yes MASTER=bond0 SLAVE=yes BOOTPROTO=none # cat /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1 USERCTL=no ONBOOT=yes MASTER=bond0 SLAVE=yes BOOTPROTO=none 3、修改/etc/modules.conf文件 # vi /etc/modules.conf 添加如下内容: 引用 alias bond0 bonding options bond0 miimon=100 mode=1 说明: 引用 miimon是用来进行链路监测的。比如:miimon=100,那么系统每100ms监测一次链路连接状态,如果有一条线路不通就转入另一条线路; mode的值表示工作模式,他共有0,1,2,3四种模式,常用的为0,1两种。需根据交换机可提供的工作模式选择。 mode=0表示load balancing (round-robin)为负载均衡方式,两块网卡都工作。 mode=1表示fault-tolerance (active-backup)提供冗余功能,工作方式是主备的工作方式,也就是说默认情况下只有一块网卡工作,另一块做备份。 ※注意: 引用 a、bonding只能提供链路监测,即从主机到交换机的链路是否接通。如果只是交换机对外的链路down掉了,而交换机本身并没有故障,那么bonding会认为链路没有问题而继续使用。 b、设置的模式要与交换机设置的模式一致。

监控自动化设备危险点分析与控制措施手册

监控自动化设备危险点分析与控制措施手册 12. 1 控制系统巡视 1、系统运行异常 1、巡视设备时,不得进行巡视规定以外的工 作。 2、巡视工程中应按照电厂规定的路线和项目 开展巡视,防止漏项未能及时发现系统异常造 成事故。 巡视设备如发现异常,应设法处理,并报告有 关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或 其他伤害、如触电、高空摔伤 1、巡视设备应戴安全帽。 2、巡视应携带照明器具。

3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 2 水机保护系统巡 视 1、损坏模件引起保护系统误 动或拒动 1、巡视设备时,不得进行巡视规定以外的工 作。 巡视工程中应按照企业规定的路线和项目开 展巡视,防止漏项未能及时发现系统异常造成 事故。 巡视设备如发现异常,应设法处理,并报告有

关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或其他伤害、如触电、高空摔伤1、巡视设备应戴安全帽。 2、巡视应携带照明器具。 3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 3 控制系统的维护 1模件插拔、检查、更换和存 储损坏 1、维护人员应按规定戴防静电手带,防静电 工作服,以防止静电损坏模件。 2、模件接线错误或新旧换件 接线不一致造成系统故障 1、必须事前进行检查,确保模件上的位开关、 跨接线和跳线完全一致。

自动化设备(DCS仪表)管理办法

XXXXXXX有限公司仪表自动化管理办法 文件编号:xxxxxx 拟文部门:动力设备部 编制人:xxx 审核人:xxx 批准人:xxx 发布日期:2015-1-5

第一章总则 第一条为了加强仪表自动化设备的管理工作,提高仪表自动化设备安全经济运行,依据中石化《仪表及自动控制设备管理制度》并结合公司实际情况,制定本办法。 第二条本办法所称仪表自动化设备包括测量、监测、控制、质量分析仪表、数据采集系统、控制系统(DCS、PLC等)、执行器、组合及智能仪表以及由它们组成的自动化系统和安全保护报警联锁系统。 第三条本办法适用于在用仪表自动化设备、更新零购项目仪表自动化设备管理,新、改、扩建、技改项目仪表管理按规建部有关规定执行。 第二章职责 第四条设备管理部职责 (一)负责贯彻执行中国石化及行业部门有关仪表自动化的管理制度、规程、办法、指令等。 (二)负责制订和修订仪化股份公司仪表自动化管理办法、检修规程及有关规定。 (三)负责组织对各使用单位的仪表自动化的完好及投用情况和管理工作进行检查、监督、考核。 (四)组织仪表自动化方面的技术交流、培训、咨询和应用开发,努力提高其应用水平。 (五)根据设备全过程管理的要求,负责组织重点更新、零购项目仪表自动化设备的规划调研、方案论证、设计选型和安装验收全过程工作,参与技术改造、新建装置仪表自动化设备的规划、设计、安装验收等工作。

第五条生产中心职责 (一)负责贯彻执行中国石化及仪化股份公司有关仪表自动化的管理制度、规程、办法、指令等规定。 (二)建立技术档案,对本单位仪表自动化的完好及投用情况进行管理考核。 (三)各单位负责对仪表自动化的管理。按规定及时上报有关仪表自动化的报表、资料。 (四)运保室(或同类机构)为仪表自动化的主管部门。 第六条安全环保监督部职责 负责对可燃、有毒气体报警器的管理进行安全监督。 第三章管理规定 第七条各单位应建立明确的仪表管理网络,明确职责。 第八条各单位要加强对仪表自动化设备的维护和检修,以保证仪表测量精度、可靠性和控制质量,使检测仪表和自动化系统处于良好状态。做好故障的统计和分析,及时消除故障,定期进行检修校验工作,健全原始记录和信息反馈。以上各项工作均要按公司统一表式填写建档。 第九条操作工应掌握仪表及自动化设备的简单原理、结构、性能,正确使用与操作,保持仪表自动化设备的清洁。 第十条设备主管部门应参与新建装置、技措项目、设备零购项目的仪器、仪表选型、验收工作。在办理竣工验收手续后,移交生产装置使用,附件、备件、工具、资料要齐全。 第十一条加强对仪器、仪表、DCS的电源、气源、伴热及空调系统的管理,仪器、仪表、DCS的电源、气源要保证专线专用,干净纯洁,并

多bond模式配置

一、双bond配置 注释:此配置文档为单台服务器网卡配置不同的bond模式,bond模式自行参考修改。 截图实验的Linux环境版本为redhat 6.4 1.配置网卡信息 所需要配置的网卡文件: 路径为:/etc/sysconfig-/network-scripts

1)配置ethX网卡 1.BOOTPROTO=none/dhcp/static 网卡的IP地址的获取模式:自动/自动分配/静态2.ONBOOT=yes/no 当系统启动时,是否激活网卡:激活/不激活 https://www.sodocs.net/doc/ed2478292.html,ERCTL=no 是否允许非root用户控制该设备。 4.MASTER=bond2 指定bond的模式。

配置bond网卡 2)配置bond模块信息

3)关闭NetworkManager服务 # /etc/init.d/NetworkManager stop # chkconfig NetworkManager off 4)重启网络 #service network restart 5)查看bond状态 # cat/proc/net/bonding/bond* 6)常用命令 关闭网卡: Ifdown eth* 开启网卡 Ifup eth* 1.Mode=0(balance-rr) 表示负载分担round-robin,和交换机的聚合强制不协商的方式配 合。 2.Mode=1(active-backup) 表示主备模式,只有一块网卡是active,另外一块是备的 standby,这时如果交换机配的是捆绑,将不能正常工作,因为交换机往两块网卡发包,有一半包是丢弃的。 3.Mode=2(balance-xor) 表示XOR Hash负载分担,和交换机的聚合强制不协商方式配 合。(需要xmit_hash_policy) 4.Mode=3(broadcast) 表示所有包从所有interface发出,这个不均衡,只有冗余机制... 和交换机的聚合强制不协商方式配合。 5.Mode=4(802.3ad) 表示支持802.3ad协议,和交换机的聚合LACP方式配合(需要 xmit_hash_policy) 6.Mode=5(balance-tlb) 是根据每个slave的负载情况选择slave进行发送,接收时使用 当前轮到的slave 7.Mode=6(balance-alb) 在5的tlb基础上增加了rlb。

提高wire bonding中焊点的定位精度的一种有效方法

COB 邦定制程
E-mail: cjjean@https://www.sodocs.net/doc/ed2478292.html, ; jean@https://www.sodocs.net/doc/ed2478292.html,
提高 Wire Bonding 中焊点的定位精度的一种有效方法
摘要:根据 Wire Bonding 中加工的 Pad 的外形特点,应用模式识别原理和 测量技术,提出在 Wire Bonding 的视觉系统上智能找准精确焊点的方法,阐述 为实现该方法的测量技术以及与模式匹配相结合的动态实时处理方法和技术, 此 方法提高了 Wire Bonding 系统运行中执行精度的稳定性和可靠性。
1. 引言
计算机视觉越来越多的应用于工业生产中。在产业领域里,图像处理与模式 识别主要应用于外观检测和挑选、 表面缺损的自动检查、 装配和生产线的自动化、 工业材料的质量检查等。而对于半导体封装来说,计算机视觉是一种新的发展方 向。计算机视觉研究的主要目的是试图模拟人类的视觉感知功能,通过 CCD 摄 像机得到外部视觉的二维图像,经过图像处理、图像分析和计算机视觉方法等处 理后,得到对图像的理解,进而实现物体的识别、定位和物体的三维表达。它是 提高半导体封装中 Wire Bonding 的精度以及智能化的一种有效途径。随着半导 体工业的发展,芯片向着尺寸更加微小,电路更加复杂,功能更加强大的方向发 展。芯片内部引脚的间距越来越小,精度要求越来越高,这样就给芯片内部的电 路连接、芯片的封装提出了更高的要求。计算机视觉系统通过对芯片中的 Pad 外形的识别,控制 Bond 头找到焊点的准确位置,实现精确焊接。 芯片上也有一些特殊形状的 Pad,但是总的来说是方形和条形,外形变化比 较简单而且比较有规则。通过对 Pad 外形特征的分析,根据图像的实时处理能 力和识别精度要求, 本文提出了图像测量技术以及与模式匹配相结合的模式识别 方法。
2. 运用测量技术给 Lead 上焊点定位的方法
测量技术是将一个二维的测量范围映射为一维的直线并计算水平或者垂直 方向的象素总和。这种计算依赖于测量范围的起始位置和被测量物的方向。每一 个和数代表在这一栏的象素密度。为了找到确切的边界,要应用边缘滤波器。用 边缘滤波器找到每一个轮廓的边界值。在一个轮廓值与另一个轮廓值之间,边界 值是不同的。差别越大边界值就越大。滤波器尽可能地除掉任何在边界阈值以下 的边界值。滤波器通过评价任何可能的基于人为定义的几何约束的边界,给每个 特征一个指定的权值或者重要程度值。 我们认为拥有最高分值的边界即为我们所 要找的边界。如图 1 所示:
jean
第 1 页
2003-12-6

自动化设备技术协议(完整版)

设备技术协议 甲方:____________________________________________ 乙方:____________________________________________ (甲方)向(乙方)购置 设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。

2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训 供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他

设备使用说明书范文 自动化设备说明书样本

自动化设备说明书样本 此文档为WORD 版可编辑修改 设备手册 目录 第1 章安全 ..................................................................... 5 1-1 内 容 . ......................................................................... 5 1-2安全装置的位 置 ................................................................ 6 1-3 安全装置的功 能 . ............................................................... 6 1-4 潜在危 险 . ..................................................................... 8 测试的过程中,压力测试增压缸是动作的 . ............................................. 8 压力测试完产品时动作 的 ........................................................... 8 推动产品时动作 的 ................................................................. 8 1-5 安全预 防 . (8) 1-5-1 机械方面 ................................................................ 8 1-5-2 电气方 面 ................................................................ 8 1-5-3 Lockout / Tag-out 程 序 (9)

linux下网卡bond配置

Linux 7.x OS bond配置 一、bonding技术 bonding(绑定)是一种linux系统下的网卡绑定技术,可以把服务器上n个物理网卡在系统内部抽象(绑定)成一个逻辑上的网卡,能够提升网络吞吐量、实现网络冗余、负载等功能,有很多优势。 bonding技术是linux系统内核层面实现的,它是一个内核模块(驱动)。使用它需要系统有这个模块, 我们可以modinfo命令查看下这个模块的信息, 一般来说都支持. # modinfo bonding filename: /lib/modules/2.6.32-642.1.1.el6.x86_64/kernel/drivers/net/bonding/bonding.ko author: Thomas Davis, tadavis@https://www.sodocs.net/doc/ed2478292.html, and many others description: Ethernet Channel Bonding Driver, v3.7.1 version: 3.7.1 license: GPL alias: rtnl-link-bond srcversion: F6C1815876DCB3094C27C71 depends: vermagic: 2.6.32-642.1.1.el6.x86_64 SMP mod_unloadmodversions parm: max_bonds:Max number of bonded devices (int) parm: tx_queues:Max number of transmit queues (default = 16) (int) parm: num_grat_arp:Number of peer notifications to send on failover event (alias of num_unsol_na) (int) parm: num_unsol_na:Number of peer notifications to send on failover event (alias of num_grat_arp) (int) parm: miimon:Link check interval in milliseconds (int) parm: updelay:Delay before considering link up, in milliseconds (int) parm: downdelay:Delay before considering link down, in milliseconds (int) parm: use_carrier:Usenetif_carrier_ok (vs MII ioctls) in miimon; 0 for off, 1 for on (default) (int) parm: mode:Mode of operation; 0 for balance-rr, 1 for active-backup, 2 for balance-xor, 3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, 6 for balance-alb (charp) parm: primary:Primary network device to use (charp) parm: primary_reselect:Reselect primary slave once it comes up; 0 for always (default), 1 for only if speed of primary is better, 2 for only on active slave failure (charp) parm: lacp_rate:LACPDUtx rate to request from 802.3ad partner; 0 for slow, 1 for fast (charp) parm: ad_select:803.ad aggregation selection logic; 0 for stable (default), 1 for bandwidth, 2 for count (charp) parm: min_links:Minimum number of available links before turning on carrier (int)

PS6000+自动化系统用户操作手册

国电南自 PS 6000+ 自动化系统 用户操作手册 国电南京自动化股份有限公司 GUODIAN NANJING AUTOMATION CO.,LTD.

PS 6000+ 自动化系统 用户操作手册 国电南京自动化有限公司 2009年12月1日 * 本说明书可能会被修改,请注意最新版本资料 * 200 年月第版第次印刷

版本声明 本说明书适用于PS 6000+自动化系统版本 1.软件 软件版本 2.硬件 产品说明书版本修改记录表 * 技术支持电话:(025) 传真:(025) * 本说明书可能会被修改,请注意核对实际产品与说明书的版本是否相符* 2009年10月第3版第1次印刷 * 国电南自技术部监制

目录 版本声明 1 启动控制台 (1) 启动方法 (1) 启动进程 (1) 用户管理 (2) 退出进程 (5) 2 实时进程 (6) 实时库服务进程 (6) 103规约进程 (6) 在线系统 (6) 告警显示窗 (25) 用户管理 (30) 计算服务 (30) 历史服务 (30) 保护设备管理 (30) 曲线 (38) 实时库浏览 (41) 3 高级应用 (42) 拓扑分析 (42) 事故追忆 (42) 4 报表浏览器 (44) 报表浏览器菜单项 (44) 报表打印 (46) 5 故障录波分析软件 (49) 使用界面整体介绍 (49) 菜单 (50)

1 启动控制台 PS 6000+自动化系统的进程都集中在控制台,用户可以通过控制台启动或停止各进程。 启动方法 方法一:单击电脑桌面上的控制台图标 方法二:打开终端,输入命令: $cd $CPS_ENV/bin $./console 控制台启动后界面如图1所示: 图 1 启动进程 控制台把进程分为三类,分别是配置工具、功能配置和实时进程。每类对应一个按钮,点击按钮,弹出下拉框,列出该分类下的常用进程,选中即可启动对应进程。 点击配置工具,弹出下拉框,如图2所示: 图 2 点击功能配置,弹出下拉框,如图3所示: 图 3 点击实时进程,弹出下拉框,如图4所示:

bonding双网卡配置

网络设备热备方案 为了提供网络的高可用性,我们可能需要将多块网卡绑定成一块虚拟网卡对外提供服务,这样即使其中的一块物理网卡(或者其所连接的交换机)出现故障,也不会导致连接中断。在Linux下叫bonding,效果是将两块或更多的网卡当做一块网卡使用,可以提高冗余性。测试方案将服务器的eth0和eth1绑定成虚拟网卡bond0,bongding1服务器的虚拟网卡ip为192.168.3.60;bonding2服务器的虚拟网卡ip为192.168.3.61。如图: 一、配置双网卡绑定同一个ip地址: 1.插件安装:apt-get install ifenslave 2.在/etc/modules文件末尾加入:bonding 3.编辑网卡配置:vi/etc/network/inerfaces: auto lo iface lo inet loopback auto bond0 iface bond0 inet static address 192.168.3.60 netmask 255.255.252.0

network 192.168.0.0 broadcast 192.168.3.255 gateway 192.168.0.66 bond-mode 1 bond-miimon 100 bond-slaves none post-up /sbin/ifenslave bond0 eth0 eth1 pre-down /sbin/ifenslave -d bond0 eth0 eth1 auto eth0 iface eth0 inet manual bond-master bond0 bond-primary eth0 eth1 auto eth1 iface eth1 inet manual bond-maser bond0 bond-primary eth0 eth1 说明:miimon是用来进行链路监测的。比如:miimon 100,那么系统每100 ms 监测一次链路连接状态,如果有一条线路不通就转入另一条线路;mode的值表示工作模式,常用的为0,1两种。Mode 0表示load balancing (round-robin)为负载均衡方式,两块网卡都工作。Mode 1表示fault-tolerance (active-backup)提供冗余功能,工作方式是主备的工作方式,也就是说默认情况下只有一块网卡工作,另一块做备份。特点:一个端口处于主状态(eth0),一个处于从状态,所有流量都在主链路上处理,从不会有任何流量。当主端口down掉时,从端口接手主状态。此模式只能解决交换机故障,单台服务器处于主状态的端口故障的情况不适用此模式,如果配合交换机的MSTP可以达到很好的冗余效果。Mode 3表示fault-tolerance(broadcast),一个报文会复制两份往bond下的两个接口分别发送出去。

非标自动化设备机械技术规范

非标自动化设备机械技术规范 为了在今后设备前期管理过程中,加强非标设备的质量控制工作,改善设备初期状态,确保设备在生产服役过程中有良好的开动率,特制定本规范。希望参与前期管理的技术人员参照执行,使技术要求更全面、准确、严密。 一、技术要求 一)、结构要求 1).机械机构设计需符合人机工程学,方便人员操作与维修; 2).机械结构设计需经过计算,达到正常使用的强度要求,并在安全余量之内; 3).机械结构设计需根据我方具体要求,对关键点进行FEMA分析和验证; 4).机械结构总体设计需考虑经济、环保、安全的原则。 二)、材料要求 1).结构件、面板类钢材要求Q235,传动件、一般零部件材料要求45#、需热处理部件材料要求20-40Cr或指定其他材料,各类型材必须是国标型材,特殊要求根据设备设计需求具体提出来; 2).所有材料必需有相应的合格证或符合质量要求的检验证书; 3).对于特殊部件的材料,需同时提供检测报告,报告内容主要涉及:成分、力学性能、物理性能等。 三)、钢构表面要求 1).钢结构件表面需经喷砂处理,除锈等级Sa2.5;若手工进行表面处理,需介于St2与St3之间。 2).喷砂后需喷涂底漆为红丹防锈漆一遍,面漆为醇酸调和漆两遍,总干膜厚度为125μm;附着力达到ISO等级1级或ASTM等级4B级; 3).结构件表面不能有明显的变形、划伤、撞伤、凹槽、凸现、缺失、分层等缺陷。四)、焊接要求 1).所有焊接都需有相应的焊接规范和标准,并进行焊接工艺验证;

2).现场焊接时,需满足焊接规范的要求; 3).焊缝表面不能有裂纹、气孔、夹渣、未熔合、未焊透、虚焊、形状缺陷及上述以外的其他缺陷; 4).主梁受拉区的翼缘板、腹板的对接焊缝应进行无损探伤,超声波探伤不低于11345中的I级,并提供报告的复印件。 五)、传动要求 1).传动设计需考虑传动效率最优化; 2).传动机构要求简单合理,以最少的环节实现功能; 3).传动设计需考虑现场噪音控制,尽一切可能降低噪音的产生; 4).变速箱(SIEMENS或SEW)、电机(SIEMENS或SEW变频电机)、轴承(SKF或NSK)等部件要求指定厂家或品牌; 5).变频电机采用的范围:风机、需调速的传动机构、需要和传动机构配合的传动系统。 六)、液压系统 1).液压系统应确保其安全性、系统的连续运行能力、可维护性和经济性,并能保证系统的使用寿命延长; 2).系统的所有部件应在设计上或以其他保护措施,防止压力超过系统或系统任何部分的最高工作压力及各具体元件的额定压力; 3).系统的设计、制造和调整,应使冲击压力和增压压力减至最低。冲击压力和增压压力不应引起危险; 4).应考虑由于阻塞、压降或泄漏等原因影响元件安全工作的后果; 5).无论是预期的还是意外的机械运动(包括加速、减速或物体的提升/夹持),都不应造成对人员有危险的状态; 6).系统设计需尽可能减少管路、管接头; 7).液压系统需实现防尘、防爆功能; 8).所有执行元件、管接头、阀门等部件需易于接近,且方便操作;

linux双网卡绑定七种模式

今天分享的是linux操作系统下双网卡绑定有哪七种模式,分别是如何工作的。现在一般的企业都会使用双网卡接入,这样既能添加网络带宽,同时又能做相应的冗余,可以说是好处多多。而一般企业都会使用linux操作系统下自带的网卡绑定模式,当然现在网卡产商也会出一些针对windows操作系统网卡管理软件来做网卡绑定(windows操作系统没有网卡绑定功能需要第三方支持)。 进入正题,linux有七种网卡绑定模式:0. round ro bin,1.active-backup,2.load balancing (xor), 3.fault-tolerance (broadcast),https://www.sodocs.net/doc/ed2478292.html,cp, 5.transmit load balancing,6.adaptive load balancing。 第一种:bond0:round robin 标准:round-robin policy: Transmit packets in sequential order from the first available slave through the last. This mode provides load balancing and fault tolerance. 特点:(1)所有链路处于负载均衡状态,轮询方式往每条链路发送报文,基于per packet方式发送。服务上ping 一个相同地址:1.1.1.1 双网卡的两个网卡都有流量发出。负载到两条链路上,说明是基于per packet方式,进行轮询发送。(2)这模式的特点增加了带宽,同时支持容错能力,当有链路出问题,会把流量切换到正常的链路上。 实际绑定结果: cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.6.0 (September 26, 2009) Bonding Mode: load balancing (round-robin)-----RR的模式 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth0 MII Status: up Link Failure Count: 0

仪表自动化管理办法

仪表自动化管理办法 第一章总则 第一条为了加强仪表自动化设备的管理工作,提高仪表自动化设备安全经济运行,依据中石化《仪表及自动控制设备管理制度》并结合公司实际情况,制定本办法。 第二条本办法所称仪表自动化设备包括测量、监测、控制、质量分析仪表、数据采集系统、控制系统(DCS、PLC等)、执行器、组合及智能仪表以及由它们组成的自动化系统和安全保护报警联锁系统。 第三条本办法适用于在用仪表自动化设备、更新零购项目仪表自动化设备管理,新、改、扩建、技改项目仪表管理按规建部有关规定执行。 第二章职责 第四条设备管理部职责 (一)负责贯彻执行及行业部门有关仪表自动化的管理制度、规程、办法、指令等。 (二)负责制订和修订仪化股份公司仪表自动化管理办法、检修规程及有关规定。 (三)负责组织对各使用单位的仪表自动化的完好及投用情况和管理工作进行检查、监督、考核。 (四)组织仪表自动化方面的技术交流、培训、咨询和应用开发,努力提高其应用水平。 (五)根据设备全过程管理的要求,负责组织重点更新、零购项目仪表自动化设备的规划调研、方案论证、设计选型和安装验收全过程工作,参

与技术改造、新建装置仪表自动化设备的规划、设计、安装验收等工作。 第五条生产中心职责 (一)负责贯彻执行及仪化股份公司有关仪表自动化的管理制度、规程、办法、指令等规定。 (二)建立技术档案,对本单位仪表自动化的完好及投用情况进行管理考核。 (三)各单位负责对仪表自动化的管理。按规定及时上报有关仪表自动化的报表、资料。 (四)运保室(或同类机构)为仪表自动化的主管部门。 第六条安全环保监督部职责 负责对可燃、有毒气体报警器的管理进行安全监督。 第三章管理规定 第七条各单位应建立明确的仪表管理网络,明确职责。 第八条各单位要加强对仪表自动化设备的维护和检修,以保证仪表测量精度、可靠性和控制质量,使检测仪表和自动化系统处于良好状态。做好故障的统计和分析,及时消除故障,定期进行检修校验工作,健全原始记录和信息反馈。以上各项工作均要按公司统一表式填写建档。 第九条操作工应掌握仪表及自动化设备的简单原理、结构、性能,正确使用与操作,保持仪表自动化设备的清洁。 第十条设备主管部门应参与新建装置、技措项目、设备零购项目的仪器、仪表选型、验收工作。在办理竣工验收手续后,移交生产装置使用,附件、备件、工具、资料要齐全。 第十一条加强对仪器、仪表、DCS的电源、气源、伴热及空调系统的

Redhat_Linux系统下做bonding双网卡绑定

Redhat Linux系统下做bonding网卡绑定 1. root 用户登录,用ifconfig 看网卡是否正常。 Linux 默认是DHCP获取ip,当网络中没有DHCP,则会请求超时,而造成网卡无法启动,不过网卡不启动也没关系,只要确认lsmod中网卡驱动模块已经正常加载了就可以了,然后我们需要修改网卡配置文件。 2. 新建虚拟绑定网卡bond0 执行cd /etc/sysconfig/network-scripts进入网卡配置文件目录 这个目录下会有网卡的配置文件 ifcfg-eth0 对应eth0 ifcfg-eth1 对应eth1

拷贝ifcfg-eth0为ifcfg-bond0 3. 编辑网卡配置文件 编辑ifcfg-bond0文件 #vi ifcfg-bond0 修改后需要添加静态ip地址(网卡绑定不建议使用动态ip)、子网掩码和网关如下 (注意:除了bond0设置IP等信息外其他的真实网卡不能设置IP地址) 编辑ifcfg-eth0文件 #vi ifcfg- eth0

编辑ifcfg-eth1文件 #vi ifcfg-eth1 三个网卡配制好了 [root@ZH201E ~]# ifconfig | grep HW bond0 Link encap:Ethernet HWaddr AC:16:2D:7B:27:44 eth0 Link encap:Ethernet HWaddr AC:16:2D:7B:27:44 eth1 Link encap:Ethernet HWaddr AC:16:2D:7B:27:45 eth2 Link encap:Ethernet HWaddr AC:16:2D:7B:27:46 eth3 Link encap:Ethernet HWaddr AC:16:2D:7B:27:47 eth0和eth1两个接口加入bond0,从上面的信息看到,eth1接口的mac地址和bond0不一致。按照这种模式绑定的结果是所有bond0下的成员口和bond0使用同一个mac 地址,否则无法正常通信。最后在接口下发现6.1x比之前的版本多了个 NM_CONTROLLED参数,这个参数的作用是把接口交给networkmanager来管理,如果把NM_CONTROLLED设置成yes的话,在起机的时候networkmanager会调用 networkmanager的配置文件,直接会调用接口实际物理mac。所以导致上面出现的接口物理mac地址和bond不一致的情况。所以我把接口下的NM_CONTROLLED设置成no,同时关闭networkmanager服务。 [root@ZH201E ~]# chkconfig NetworkManager off [root@ZH201E ~]# vi /etc/modprobe.d/dist.conf 在该文件的最下面添加如下2行 alias bond0 bonding options bond0 miimon=100 mode=1

相关主题