搜档网
当前位置:搜档网 › 基于matlab的图像边缘检测原理及应用

基于matlab的图像边缘检测原理及应用

基于matlab的图像边缘检测原理及应用
基于matlab的图像边缘检测原理及应用

目录

一.前言----------------------------------------- 二.边缘检测的与提取-----------------------

1.边缘检测的定义---------------------------

2.图像边缘检测算法的研究内容---------

3.边缘检测算子------------------------------

3.1.Sobel算子-----------------------------

3.2.Canny算子----------------------------

4.基于Matlab的实验结果与分析--------- 三.图像边缘检测的应用---------------------

一.前言

在实际图像边缘检测问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。

图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘检测算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。

该课程设计具体考察了两种最常用的边缘检测算子并运用MATLAB进行图像处理比较。

二.边缘检测于算子

1.边缘检测的定义

图像边缘是图像最基本的特征,边缘在图像分析中起着重要的用。所谓边缘(edge)是指图像局部特征的不连续性。灰度或结构信息的突变称为边缘,例如:灰度级的突变、颜色的突变、纹理结的突变。边缘是一个区域的结束,也是另一个区域的开始,利用该征可以分割图像。

当人们看一个有边缘的物体时,首先感觉到的便是边缘,如

一条理想的边缘应该具有如图2.1(a) 所示模型的特性。每个像素

都处在灰度级跃变的一个垂直的台阶上(例如图形中所示的水平线通过图像的灰度剖面图)。

而实际上,诸如图像采集系统的性能、采样频率和获得图像的照明条件等因素的影响,得到的边缘往往是模糊的,边缘被模拟成具有“斜坡面”的剖面,如图2.1(b) 所示,在这个模型中不再有细线(宽

为一个像素的线条),而是出现了边缘的点包含斜坡中任意点的情况。由此可以看到:模糊的边缘使边缘的“宽度”较大,面清晰的边缘使边缘的宽度较小。

图像的边缘有方向的幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶导数或二阶导数来检测边缘,不同的是一阶导数认为最大值对应边缘位置,而二阶导数以过零点对应边缘位置。实际上,对于图像中的任意方向上的边缘都可以进行类似的分析。图像边缘检测中对任意点的一阶导数可以利用该点梯度的幅度来获得,二阶导数可以用拉普拉斯算子得到。

2.图像边缘检测算法的研究内容

图像边缘检测和分析可定义为应用一系列方法获取、校正、增强、变换、检测或压缩可视图像的技术。其目的是提高信息的相对质量,以便提取有用信息。图像边缘检测中的变换属于图像输入-图像输出模式,图像边缘检测是一种超越具体应用的过程,任何为解决某一特殊问题而开发的图像边缘检测新技术或新方法,几乎肯定都能找到其他完全不同的应用领域。

图像边缘检测的主要研究内容包括:

(1)图像获得和抽样,其中通过人眼观察的视野获取图像的问题有:最常用的图像获取装置——电视(TV)摄像机问题,对所获得信号进行独立的采样和数字化就可用数字形式表达景物中全部彩色内容;电荷-耦合装置,用作图像传感器,对景物每次扫描一行,或通过平行扫描获得图像;选择正确的分辨力或采样密度,一幅图像实质上是二维空间中的信号,所以适用于信号处理的法则同样适用于图像边缘检测,在放射学中常常需要高分辨力,要求图像至少达到2048像素×2048像素;灰度量化,图像强度也必须进行数字化,通常以256级(按1字节编码)覆盖整个灰度,一般一幅灰度分辨力为8位,空间分辨力为512像素×512像素的图像需0.25兆字节的存贮容量。

(2)图像分割,目的是把一个图像分解成它的构成成分,以便对每一目标进行测量。图像分割是一个十分困难的过程。但其测量

结果的质量却极大地依赖于图像分割的质量。有两类不同的图像分割方法。一种方法是假设图像各成分的强度值是均匀的并利用这种均匀性;另一种方法寻找图像成分之间的边界,因而是利用图像的不均匀性。主要有直方图分割,区域生长,梯度法等。

(3)边界查索,用于检测图像中线状局部结构,通常是作为图像分割的一个预处理步骤。大多数图像边缘检测技术应用某种形式的梯度算子,可应用对水平方向、垂直方向或对角线方向的梯度敏感的梯度算子,用它们的复合结果可检测任意方向的边界。

(4)图像增强和复原,用于改进图像的质量。不同的增强技术可以用于不同的目的,这取决于应用的类型。如果打算直接观察图像,可以增强对比度。如果是为了进一步对图像作数字处理,可以选择分割(一种突出各图像成分之间的边界和线状结构的运算)。该技术可以是整体的或局部的,也可以在某个频域或者空间域中进行。图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

(5)图像分类(识别),图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

(6)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像边缘检测中也有着广泛而有效的应用。

3.边缘检测算子

3.1 Sobel 算子

索贝尔算子(Sobel operator )是图像处理中的算子之一,主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:

1

01202*101x G A -+?? ?=-+ ? ?-+?? 121000*121y G A +++?? ?= ? ?---??

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的 。 Sobel 算子另一种形式是各向同性Sobel(Isotropic

Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的。各向同性Sobel算子比普通Sobel算子的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。

由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。美中不足的是,Sobel 算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel 算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。Sobel边缘算子的卷积和图3.2所示,图像中的每个像素都用这两个核做卷积。这两个核分别对垂直边缘和水平边缘响应最大,两个卷积的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。

Sobel算子认为邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越大,产生的影响越小。

3.2 Canny算子

检测阶跃边缘的基本思想是在图像中找出具有局部最大梯度幅值的像素点。图像边缘检测必须满足两个条件:一是必须能有效地抑制噪声;二是必须尽量精确确定边缘的位置。既要提高边缘检测算子对边缘的敏感性,同时也提高了对噪声的敏感。

1.Canny边缘检测基本原理:

(1)具有既能滤去噪声又保持边缘特性的边缘检测最优滤波器,其采用一阶微分滤波器。采用二维高斯函数的任意方向上的一阶方向导数为噪声滤波器,通过与图像卷积进行滤波;然后对滤波后的图像寻找图像梯度的局部最大值,以此来确定图像边缘。根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。

(2)类似与Marr(LOG)边缘检测方法,也属于先平滑后求导数的方法。

2.Canny边缘检测算法:

step1:用高斯滤波器平滑图象;

step2:用一阶偏导的有限差分来计算梯度的幅值和方向;

step3:对梯度幅值进行非极大值抑制;

step4:用双阈值算法检测和连接边缘。

其数学描述如下:

step1:

二维为高斯函数为:

),(y x G =221

πδ()???? ??+-2222exp δy x

在某一方向n 上是),(y x G 的一阶方向导数为:

n G =n G ??= n ▽G

n=??????θθsin cos G ?=?????????

?????

??

y G x G

式中:n 式方向矢量,▽G 是梯度矢量。

将图像),(y x f 与n G 作卷积,同时改变n 的方向,n G *),(y x f 取得最大值时的n 就是正交于检测边缘的方向。

step2:

X E =

*x G ??),(y x f , y E =y G ??*),(y x f ),(y x A =22Y X E E + ???? ??=Y X E E Arc tan θ

),(y x A 反映了图像(x,y)点处的边缘强度,

θ是图像(x,y)点处的法向矢量。

step3:

仅仅得到全局的梯度并不足以确定边缘,因此为确定边缘,必须保留局部梯度最大的点,而抑制非极大值。(non-MaxiMa suppression,NMS )

解决方法:利用梯度的方向。

图示--非极大值抑制

四个扇区的标号为0到3,对应3*3邻域的四种可能组合。在每一点上,邻域的中心像素M与沿着梯度线的两个像素相比。如果M 的梯度值不比沿梯度线的两个相邻像素梯度值大,则令M=0。

step4:

减少假边缘段数量的典型方法是对G(x,y)使用一个阈值。将低于阈值的所有值赋零值。但问题是如何选取阈值?

解决方法:双阈值算法进行边缘判别和连接边缘。

①首先是边缘判别:凡是边缘强度大于高阈值的一定是边缘点;凡是边缘强度小于低阈值的一定不是边缘点;如果边缘强度大于低阈值又小于高阈值,则看这个像素的邻接像素中有没有超过高阈值的边缘点,如果有,它就是边缘点,如果没有,它就不是边缘点。

②其次是连接边缘:双阈值算法对非极大值抑制图像作用两个阈值τ1和τ2,且2τ1≈τ2,从而可以得到两个阈值边缘图像G1(x,y)和G2(x,y)。由于G2(x,y)使用高阈值得到,因而含有很少的假边缘,但有间断(不闭合)。双阈值法要在G2(x,y)中把边缘连接成轮廓,当到达轮廓的端点时,该算法就在G1(x,y)的8邻点位置寻找可以连接到轮廓上的边缘,这样,算法不断地在G1(x,y)中收集边缘,直到将G1(x,y)连接起来为止。

实际上,还有多种边缘点判别方法,如:将边缘的梯度分为四种:

水平、竖直、45度方向、135度方向。各个方向用不同的邻接像素进行比较,以决定局部极大值。若某个像素的灰度值与其梯度方向上前后两个像素的灰度值相比并不是最大的,那么将该像素置为零,即不是边缘。

此外,在实际应用中,检测效果还与滤波模板大小有关,当N时有较好的检测效果。

b

1

2+

Canny算子检测方法的优点:①低误码率,很少把边缘点误认为非边缘点;②高定位精度,即精确地把边缘点定位在灰度变化最大的像素上;③抑制虚假边缘。

在这几种算法中除Roberts算子外都使用了图像模板,模板运算是图像的一种处理手段——邻域处理,有许多图像增强效果都可以采用模板运算实现,如平滑效果,中值滤波,油画效果,图像的凹凸效果等等。在模板运算中,首先定义一个模板,模板的大小以3*3的较常见,也有2*2, 5*5或更大尺寸的。运算时,把模板中心对应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素进行数学运算,算出的结果作为输出图像对应像素点的值。

这些经典的边缘提取算子,虽然各自不同,有不同的长处,但是它们也有共同的特点:每种算子对应的预定义的边缘是它们最适合使用的情形,也就是说它们有针对性。这一点在应用中是有优越性的,它们的针对性可以帮助我们完成特定的任务。同时这也是算子的局限性,对于一般的问题或者情况未知的问题,预定义边缘的方法可能不会达到最佳效果。

5.基于Matlab的实验结果与分析

qq=imread('lena.jpg'); %读取图像

figure(1)

imshow(qq);

title('原图像');

qq=rgb2gray(qq);

[m,n]=size(qq); %用Sobel微分算子进行边缘检测pp = edge(qq,'sobel');

figure(2)

imshow(pp);

title('sobel边缘检测得到的图像');

ww= edge(pp,'canny'); %用canny微分算子进行边缘检测figure(3)

imshow(ww);

title('canny边缘检测得到的图像');

原图

sobel边缘检测

canny边缘检测

分析比较:

1、sobel算子根据像素点上下、左右邻点灰度值加权值,在边缘处打到极大值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高的时候,是一种较为常用的边缘检测的方法。

2.canny算子是边缘检测中最具有代表的一种局部极值边缘检测无论从视觉效果还是客观评价来看,canny算子提取的边缘线性连接程度较好,对此类的边缘提取的比较完整,边缘细腻

三.图像边缘检测应用领域图像是人类获取和交换信息的主要来源,因此,图像边缘处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像边缘检测与提取处理的应用领域也将随之不断扩大。数字图像边缘检测(Digital Image Processing)又称为计算机图像边缘检测,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像边缘检测最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像边缘检测中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像边缘检测处理方法有图像增强、锐化、复原、编码、压缩、提取等。数字图像边缘检测与提取处理的主要应用领域有:

(1)航天和航空技术方面的应用,数字图像边缘检测技术在航天和航空技术方面的应用,除了月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。现在改用配备有高级计算机的图像边缘检测系统来判读分析首先提取出其图像边缘,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。

(2)生物医学工程方面的应用,数字图像边缘检测在生物医学工程方面的应用十分广泛,而且很有成效。除了CT技术之外,还有一类

是对阵用微小图像的处理分析,如红细胞、白细胞分类检测,染色体边缘分析,癌细胞特征识别等都要用到边缘的判别。此外,在X光肺部图像增强、超声波图像边缘检测、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像边缘分析处理技术。

(3)公安军事方面的应用,公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前己投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别(主要是汽车牌照的边缘检测与提取技术)都是图像边缘检测技术成功应用的例子。在军事方面图像边缘检测和识别主要用于导弹的精确制导,各种侦察照片的判读,对不明来袭武器性质的识别,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;

(4交通管理系统的应用,随着我国经济建设的蓬勃发展,城市的人口和机动车拥有量也在急剧增长,交通拥挤堵塞现象日趋严重,交通事故时有发生。交通问题已经成为城市管理工作中的重大社会问题,阻碍和制约着城市经济建设的发展。因此要解决城市交通问题,就必须准确掌握交通信息。目前国内常见的交通流检测方法有人工监测、地埋感应线圈、超声波探测器、视频监测4类。其中,视频监测方法比其他方法更具优越性。

视频交通流检测及车辆识别系统是一种利用图像边缘检测技术来实现对交通目标检测和识别的计算机处理系统。通过对道路交通状况信息与交通目标的各种行为(如违章超速,停车,超车等等)的实

时检测,实现自动统计交通路段上行驶的机动车的数量、计算行驶车辆的速度以及识别划分行驶车辆的类别等各种有关交通参数,达到监测道路交通状况信息的作用。

图像边缘检测应用在视频交通流检测和车辆识别系统概述:

1.视频交通流量检测及车辆识别系统是一个集图像边缘检测系统和信息管理系统为一体的综合系统。计算机图像边缘检测主要由图像输入,图像存储和刷新显示,图像输出和计算机接口等几大部分组成,这些部分的总体构成方案及各部分的性能优劣直接影响处理系统的质量。图像边缘检测的目标是代替人去处理和理解图像,因此实时性,灵活性,精确性是对系统的主要要求。

2.通过摄像机将道路交通流图像捕捉下来,再将这些捕捉到的序列图像送入计算机进行图像边缘检测、图像分析和图像理解,从而得到交通流数据和交通状况等交通信息。

3.应用举例

对于车牌识别技术的研究现状,车牌的自动识别是计算机视觉、图像边缘检测与模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节,主要包括车牌定位、字符车牌分割和车牌字符识别三个关键环节。发达国家LPR系统在实际交通系统中已成功应用,而我国的开发应用进展缓慢,基本停留在实验室阶段。

matlab图像处理的几个实例

Matlab图像处理的几个实例(初学者用) 1.图像的基本信息及其加减乘除 clear,clc; P=imread('yjx.jpg'); whos P Q=imread('dt.jpg'); P=im2double(P); Q=im2double(Q); gg1=im2bw(P,0.3); gg2=im2bw(P,0.5); gg3=im2bw(P,0.8); K=imadd(gg1,gg2); L=imsubtract(gg2,gg3); cf=immultiply(P,Q); sf=imdivide(Q,P); subplot(421),imshow(P),title('郁金香原图'); subplot(422),imshow(gg1),title('0.3'); subplot(423),imshow(gg2),title('0.5'); subplot(424),imshow(gg3),title('0.8'); subplot(425),imshow(K),title('0.3+0.5'); subplot(426),imshow(L),title('0.5-0.3'); subplot(427),imshow(cf),title('P*Q'); subplot(428),imshow(sf),title('P/Q'); 2.图像缩放 clear,clc; I=imread('dt.jpg'); A=imresize(I,0.1,'nearest'); B=imresize(I,0.4,'bilinear'); C=imresize(I,0.7,'bicubic'); D=imresize(I,[100,200]); F=imresize(I,[400,100]); figure subplot(321),imshow(I),title('原图'); subplot(322),imshow(A),title('最邻近插值'); subplot(323),imshow(B),title('双线性插值'); subplot(324),imshow(C),title('二次立方插值'); subplot(325),imshow(D),title('水平缩放与垂直缩放比例为2:1'); subplot(326),imshow(F),title('水平缩放与垂直缩放比例为1:4');

基于MATLAB图像处理报告

基于M A T L A B图像处理报告一、设计题目 图片叠加。 二、设计要求 将一幅礼花图片和一幅夜景图片做叠加运算,使达到烟花夜景的美图效果。 三、设计方案 、设计思路 利用matlab强大的图像处理功能,通过编写程序,实现对两幅图片的像素进行线性运算,利用灰度变换的算法使图片达到预期的效果。 、软件介绍 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB 也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。

MATLAB图像增强总结程序

MATLAB图像增强程序举例 1.灰度变换增强程序: % GRAY TRANSFORM clc; I=imread('pout.tif'); imshow(I); J=imadjust(I,[0.3 0.7],[0 1],1); %transforms the walues in the %intensity image I to values in J by linealy mapping %values between 0.3 and 0.7 to values between 0 and 1. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],0.5); % if GAMMA is less than 1,the mapping si weighted to ward higher (brighter) %output values. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],1.5); % if GAMMA is greater than 1,the mapping si weighted toward lower (darker) %output values. figure; imshow(J) J=imadjust(I,[0.3 0.7],[0 1],1); % If TOP

2.直方图灰度变换 %直方图灰度变换 [X,map]=imread('forest.tif'); I=ind2gray(X,map);%把索引图像转换为灰度图像 imshow(I); title('原图像'); improfile%用鼠标选择一条对角线,显示线段的灰度值 figure;subplot(121) plot(0:0.01:1,sqrt(0:0.01:1)) axis square title('平方根灰度变换函数') subplot(122) maxnum=double(max(max(I)));%取得二维数组最大值 J=sqrt(double(I)/maxnum);%把数据类型转换成double,然后进行平方根变换%sqrt函数不支持uint8类型 J=uint8(J*maxnum);%把数据类型转换成uint8类型

图像处理实例(含Matlab代码)

信号与系统实验报告——图像处理 学院:信息科学与工程学院 专业:2014级通信工程 组长:** 组员:** 2017.01.02

目录 目录 (2) 实验一图像一的细胞计数 (3) 一、实验内容及步骤 (3) 二、Matlab程序代码 (3) 三、数据及结果 (4) 实验二图像二的图形结构提取 (5) 一、实验内容及步骤 (5) 二、Matlab程序代码 (5) 三、数据及结果 (6) 实验三图像三的图形结构提取 (7) 一、实验内容及步骤 (7) 二、Matlab程序代码 (7) 三、数据及结果 (8) 实验四图像四的傅里叶变化及巴特沃斯低通滤波 (9) 一、实验内容及步骤 (9) 二、Matlab程序代码 (9) 三、数据及结果 (10) 实验五图像五的空间域滤波与频域滤波 (11) 一、实验内容及步骤 (11) 二、Matlab程序代码 (11) 三、数据及结果 (12)

实验一图像一的细胞计数 一、实验内容及步骤 将该图形进行一系列处理,计算得到途中清晰可见细胞的个数。 首先,由于原图为RGB三色图像处理起来较为麻烦,所以转为灰度图,再进行二值化化为黑白图像,得到二值化图像之后进行中值滤波得到细胞分布的初步图像,为了方便计数对图像取反,这时进行一次计数,发现得到的个数远远多于实际个数,这时在进行一次中值滤波,去掉一些不清晰的像素点,剩下的应该为较为清晰的细胞个数,再次计数得到大致结果。 二、Matlab程序代码 clear;close all; Image = imread('1.jpg'); figure,imshow(Image),title('原图'); Image=rgb2gray(Image); figure,imshow(Image),title('灰度图'); Theshold = graythresh(Image); Image_BW = im2bw(Image,Theshold); Reverse_Image_BW22=~Image_BW; figure,imshow(Image_BW),title('二值化图像'); Image_BW_medfilt= medfilt2(Image_BW,[3 3]); figure,imshow(Image_BW_medfilt),title('中值滤波后的二值化图像'); Reverse_Image_BW = ~Image_BW_medfilt; figure,imshow(Reverse_Image_BW),title('图象取反'); Image_BW_medfilt2= medfilt2(Reverse_Image_BW,[20 20]); figure,imshow(Image_BW_medfilt2),title('第二次中值滤波的二值化图像'); [Label, Number]=bwlabel(Image_BW_medfilt,8);Number [Label, Number]=bwlabel(Image_BW_medfilt2,8);Number

基于MATLAB的图像处理

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像滤波设计 初始条件:1.MATLAB软件 2.滤波器处理相关函数 要求完成的主要任务: (1)读入图像并分别加入高斯噪声、椒盐噪声和乘性噪声,并比较结果。 (2)设计巴特沃斯低通滤波对图像进行低通滤波处理,显示结果。 (3)设计高斯高通滤波器对图像进行处理,显示结果。 (4)采用维纳滤波和中值滤波对图像进行处理,显示结果 参考书: 1.《信号与系统》第一版刘泉江雪梅主编高等教育出版社 2.《数字图像处理》MATLAB版冈萨雷斯主编电子工业出版社 时间安排: 第15周:任务安排、分组 第16周:理论设计及仿真 第18周:撰写设计报告及答辩 指导教师签名:年月日系主任(或责任教师)签名:年月日

摘要 (3) 1.MATLAB简介 (5) 1.1 MATLAB的概况 (5) 1.2 MATLAB产生的历史背景 (5) 2.编程及运行结果 (7) 2.1常见基本运算 (7) 2.1.1极限的计算 (7) 2.1.2微分的计算 (7) 2.1.3积分的计算 (8) 2.1.4级数的计算 (9) 2.1.5求解代数方程 (10) 2.1.6求解常微分方程 (10) 2.2 矩阵基本计算 (11) 2.2.1矩阵的最大值 (11) 2.2.2矩阵的最小值 (11) 2.2.3矩阵的均值 (12) 2.2.4矩阵的方差 (13) 2.2.5矩阵的转置 (13) 2.2.6矩阵的逆 (14) 2.2.7矩阵的行列式 (15) 2.2.8矩阵的特征值计算 (15) 2.2.9矩阵的相乘 (16) 2.2.10矩阵的右除和左除 (17) 2.2.11矩阵的幂运算 (18) 2.3 多项式基本计算 (18) 2.3.1多项式加减运算 (18) 2.3.2多项式乘除运算 (19) 2.3.3多项式求导 (20) 2.3.4求根和求值运算 (20) 2.3.5多项式的部分分式展开 (21) 2.3.6多项式的拟合 (22) 2.3.7插值运算 (23) 3.基于MATLAB的图像滤波设计 (25) 3.1读入图像并分别加入高斯噪声、椒盐噪声和乘性噪声,并比较结果 (25) 3.2设计巴特沃斯低通滤波对图像进行低通滤波处理,显示结果 (29) 3.2.1叠加椒盐噪声的巴特沃斯低通滤波 (29) 3.2.2叠加高斯噪声的巴特沃斯低通滤波 (31) 3.2.3叠加乘性噪声的巴特沃斯低通滤波 (32) 3.3用MATLAB实现高斯高通滤波器对图像的处理 (33) 3.4维纳滤波和中值滤波对图像进行处理 (35) 4.总结 (38) 参考文献 (39)

MATLAB中图像函数大全 详解及例子

图像处理函数详解——strel 功能:用于膨胀腐蚀及开闭运算等操作的结构元素对象(本论坛随即对膨胀腐蚀等操作进行讲解)。 用法:SE=strel(shape,parameters) 创建由指定形状shape对应的结构元素。其中shape的种类有 arbitrary' 'pair' 'diamond' 'periodicline' 'disk' 'rectangle' 'line' 'square' 'octagon 参数parameters一般控制SE的大小。 例子: se1=strel('square',6) %创建6*6的正方形 se2=strel('line',10,45) %创建直线长度10,角度45 se3=strel('disk',15) %创建圆盘半径15 se4=strel('ball',15,5) %创建椭圆体,半径15,高度5

图像处理函数详解——roipoly 功能:用于选择图像中的多边形区域。 用法:BW=roipoly(I,c,r) BW=roipoly(I) BW=roipoly(x,y,I,xi,yi) [BW,xi,yi]=roipoly(...) [x,y,BW,xi,yi]=roipoly(...) BW=roipoly(I,c,r)表示用向量c、r指定多边形各点的X、Y坐标。BW选中的区域为1,其他部分的值为0. BW=roipoly(I)表示建立交互式的处理界面。 BW=roipoly(x,y,I,xi,yi)表示向量x和y建立非默认的坐标系,然后在指定的坐标系下选择由向量xi,yi指定的多边形区域。 例子:I=imread('eight.tif'); c=[222272300270221194]; r=[21217512112175]; BW=roipoly(I,c,r); imshow(I)

matlab图像几何变换和图像增强

一.图像几何变化 (1)放大,缩小,旋转 程序: I=imread('111.jpg'); J=imresize(I,1.5); L=imresize(I,0.75); K=imrotate(I,35,'bilinear'); subplot(221),subimage(I); title('原图像'); subplot(222),subimage(J); title('放大后图像'); subplot(223),subimage(L); title('缩小后图像'); subplot(224),subimage(K);title('旋转后图像'); 二.图像频域变换 (1)傅里叶变换 真彩图像灰度图像傅里叶变换谱程序:I=imread('111.jpg'); figure(1); imshow(I); B=rgb2gray(I); figure(2);

imshow(B) D=fftshift(fft2(B)); figure(3); imshow(log(abs(D)),[ ]); (2)离散余弦变换 真彩图灰度图进行离散余弦变换后程序: RGB=imread('111.jpg'); figure(1); imshow(RGB); G=rgb2gray(RGB); figure(2); imshow(G); DCT=dct2(G); figure(3); imshow(log(abs(DCT)),[]); 三.图像增强: (1)指数变换 程序:

f=imread('111.jpg') f=double(f); g=(2^2*(f-1))-1; f=uint8(f); g=uint8(g); subplot(1,2,1),subimage(f); subplot(1,2,2),subimage(g); (2)直方图均衡 程序: I=imread('111.jpg'); I=rgb2gray(I); figure subplot(221);imshow(I); subplot(222);imhist(I) I1=histeq(I); figure; subplot(221);imshow(I1) subplot(222);imhist(I1) (3)空域滤波增强 锐化滤波(Roberts算子Sobel算子拉普拉斯算子)

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像imread Syntax: A = imread(, fmt) :指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到所制定的文件,会尝试查找一个名为的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含RGB 真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow() himage = imshow(...)

●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像素在图像中出现的概率。 图像的灰度直方图:是一个离散函数,表示图像每一灰度级与该灰度级出现概率的对应关系。 图像的灰度直方图运算: imhist()函数,其横坐标表示像素的灰度级别,纵坐标为像素点的个数。 ●Imhist函数=Display histogram of image data显示灰度直方图的函数 ●Syntax: ①imhist(I) % I为要计算的灰度直方图图像 ②imhist(I, n) % n指定的灰度级的数目,表示所有灰度级均匀分布在n个小区间内。 ③imhist(X, map) ④[counts,x] = imhist(...) %counts直方图数据向量。counts(i)第i个灰度区间中的像素数目。x是保存了对应的灰度小区间的向量。 注意:若调用时不接受这个函数的返回值,则直接显示直方图;在得这些返回数据之后,也可以使用stem(x,counts)手绘直方图。 ●例1:显示某一图像的灰度直方图

图像增强及MATLAB实现

《数字图像处理》课程设计 课设题目:图像增强与MATLAB实现学校学院:华东交通大学理学院 学生班级:13级信息计算(2)班学生:超 学生学号:20130810010216 指导老师:自柱

图像增强与MATLAB实现 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键字:图像;图像增强;算法

目录 一、MATLAB的简介 (1) 1.1MATLAB主要功能 (1) 二、MATLAB的主要功能 (1) 2.1数字增强技术概述 (1) 2.2数字图像的表示 (2)

三、直方图的均衡化 (2) 3.1图像的灰度 (2) 3.2灰度直方图 (2) 3.3直方图均衡化 (3) 四、图像二值化 (5) 4.1图像二值化 (5) 五、对比度增强 (7) 5.1对比度增强 (7) 5.2灰度调整 (8) 5.3对数变换 (9) 六、滤波 (10) 6.1平滑滤波 (10) 6.2线性平滑滤波程序: (11) 6.3非线性滤波 (12) 七、锐化 (18) 八、参考文献 (19) 九、自我评价 (20)

一、Matlab的简介 1.1 MATLAB主要功能 MATLAB是建立在向量、数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的“工具箱”,如常用的矩阵代数运算、数组运算、方程求根、优化计算及函数求导积分符号运算等;同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的工程问题;也可绘制二维、三维图形,输出结果可视化。目前,已成为工程领域中较常用的软件工具包之一。 二、MATLAB的主要功能 2.1数字增强技术概述 图像增强是按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些信息使得图像更加实用。图像增强技术主要包含直方图修改处理、图像平滑处理、图像尖锐化处理等。 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:频域处理法和空域处理法。 频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。

MATLAB课程设计报告图像处理

一.课程设计相关知识综述...................................................................... 1.1 研究目的及意义 (3) 1.2 数字图像处理研究的内容........................................................... 1.3 MATLAB 软件的介绍.................................................................. 1.3.1 MATLAB 语言的特点......................................................... 1.3.2 MATLAB 图像文件格式.................................................... 1.3.3 MATLAB 图像处理工具箱简介........................................ 1.3.4 MATLAB 中的图像类型.................................................... 1.3.5 MATLAB 的主要应用........................................................ 1.4 函数介绍........................................................................................ 二.课程设计内容和要求........................................................................... 2.1 主要研究内容................................................................................ 2.2 具体要求....................................................................................... 2.3 预期达到的目标........................................................................... 三.设计过程............................................................................................... 3.1 设计方案及步骤............................................................................ 3.2 程序清单及注释........................................................................... 3.3 实验结果........................................................................................ 四.团队情况................................................................................................ 五.总结....................................................................................................... 六.参考文献............................................................................................... 一.课程设计相关知识综述. 1.1研究目的及意义

图像处理matlab程序实例

程序实例 1旋转: x=imread('d:\MATLAB7\work\flower.jpg'); y=imrotate(x,200,'bilinear','crop'); subplot(1,2,1); imshow(x); subplot(1,2,2); imshow(y) 2.图像的rgb clear [x,map]=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shh1.jpg');y=x(90:95,90:95);imshow(y)R=x(90:95,90:95,1);G=x(90:95,90:95,2);B=x(90:95,90:95,3);R,G,B 3.加法运算clear I=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shh3.jpg');J=imnoise(I,'gaussian',0,0.02);%向图片加入高斯噪声subplot(1,2,1),imshow(I);%显示图片subplot(1,2,2),imshow(J);K=zeros(242,308);%产生全零的矩阵,大小与图片的大小一样for i=1:100%循环100加入噪声J=imnoise(I,'gaussian',0,0.02);J1=im2double(J);K=K+J1;end K=K/100; figure,imshow(K);save

4.减法 clear I=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao.jpg'); J=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao1.jpg'); K=imsubtract(I,J);%实现两幅图相减 K1=255-K;%将图片求反显示 figure;imshow(I); title('有噪声的图'); figure;imshow(J); title('原图'); figure;imshow(K1); title('提取的噪声'); save 5.图像的乘法 H=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao.jpg'); I=immultiply(H,1.2);将此图片乘以1.2 J=immultiply(H,2); subplot(1,3,1),imshow(H); title('原图'); subplot(1,3,2),imshow(I); title('·放大1.2'); subplot(1,3,3),imshow(J); title('放大2倍'); 6除法运算 moon=imread('moon.tif'); I=double(moon); J=I*0.43+90; K=I*0.1+90; L=I*0.01+90; moon2=uint8(J); moon3=uint8(K); moon4=uint8(L); J=imdivide(moon,moon2); K=imdivide(moon,moon3); L=imdivide(moon,moon4); subplot(2,2,1),imshow(moon); subplot(2,2,2),imshow(J,[]); subplot(2,2,3),imshow(K,[]); subplot(2,2,4),imshow(L,[]);

matlab提供的红外图像增强实例

matlab里提供的TM图像增强实例: View code for landsatdemoRun this demo Landsat Color Composite landsatdemo Landsat color composite demo. This demo allows you to experiment with creating color composites from Landsat Thematic Mapper https://www.sodocs.net/doc/e72464493.html,ndsat data consists of7spectral bands that each reveal different features of the region that is imaged.The data is read into a512-by-512-by-7array.To create a color composite, we form an RGB image by assigning spectral bands to red,green,and blue intensities. Try out some common color composites by clicking on the radio buttons.The numbers in square brackets map the spectral bands to red, green,and blue.The array[321]means band3will be shown as red intensities,band2will be shown as blue intensities,and band1will be shown as green intensities. "True Color[321]"-shows what our eyes would see from an airplane. "Near Infrared[432]"-shows vegetation as red,water as dark. "Shortwave Infrared[743]"-shows changes due to moisture. Click on"Custom Composite",and change the popup menus to create your own combinations of red,green,and blue. Click on"Single Band Intensity"to see individual bands as gray intensity images. Try turning off"Saturation Stretch"by clicking on the checkbox.For most Landsat data sets,saturation stretching is important.When saturation stretching is turned on,the demo clips2%of the pixels in each band and does a linear contrast stretch before displaying the image. Try turning on"Decorrelation Stretch"by clicking on the checkbox. This visual enhancement increases color separation by eliminating correlation between channels,making subtle spectral differences easier to recognize.If both"Saturation Stretch"and"Decorrelation Stretch"are checked,the decorrelation stretch is followed by a linear saturation stretch.

数字图像处理MATLAB程序【完整版】

第一部分数字图像处理

实验一图像的点运算 实验1.1直方图 一.实验目的 1 ?熟悉matlab图像处理工具箱及直方图函数的使用; 2?理解和掌握直方图原理和方法; 二.实验设备 1. PC 机一台; 2.软件matlab。 三.程序设计 在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。l=imread('camerama n.tif);% 读取图像 subplot(1,2,1),imshow(l) % 输出图像 title(' 原始图像')% 在原始图像中加标题subplot(1,2,2),imhist(l) % 输出原图直方图 title(' 原始图像直方图')%在原图直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab 环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像; 3?浏览源程序并理解含义; 4. 运行,观察显示结果; 5. 结束运行,退出; 五.实验结果 观察图像matlab环境下的直方图分布。 (a)原始图像(b) 原始图像直方图 六.实验报告要求 1、给出实验原理过程及实现代码; 2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2灰度均衡 一.实验目的 1 .熟悉matlab图像处理工具箱中灰度均衡函数的使用; 2?理解和掌握灰度均衡原理和实现方法; 二.实验设备 1. PC机一台; 2. 软件matlab ; 三.程序设计 在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。l=imread('camerama n.tif);% 读取图像 subplot(2,2,1),imshow(l) % 输出图像title(' 原始图像')% 在原始图像中加标题subplot(2,2,3),imhist(l) % 输出原图直方图 title(' 原始图像直方图')%在原图直方图上加标题a=histeq(l,256); % 直方图均衡化,灰度级为256 subplot(2,2,2),imshow(a) % 输出均衡化后图像title(' 均衡化后图像')%在均衡化后图像中加标题 subplot(2,2,4),imhist(a) % 输出均衡化后直方图 title(' 均衡化后图像直方图')%在均衡化后直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab 环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的灰度均衡函数,设置参数;最后输出处理后的图像; 3?浏览源程序并理解含义; 4. 运行,观察显示结果; 5. 结束运行,退出; 五.实验结果 观察matlab环境下图像灰度均衡结果及直方图分布。 均衡化后图像

matlab数字图像处理—图像增强汇总

图像增强 图像增强的定义 图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程[9]。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的[10]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST 转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 常用的图像增强方法 图像增强可分成两大类:空间域法和频率域法。基于空间域的算法处理时直接对图像灰度级做运算;基于频率域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。 基于空间域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。 基于频率域的算法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。 ?????? ?????????????????????彩色图像灰度图像处理对象局部处理全局处理处理策略频率域模板处理(滤波)点处理(变换)空间域处理方法图像增强

matlab中的图像增强实验附程序代码

图像增强实验

一:试验目的 熟悉并掌握数字图像空域增强:空域变换增强,空域滤波增强 二:实验内容 (1)直方图均衡化进行图像增强代码: imag=imread('pout.tif'); imag=im2double(imag); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imhist(imag);title('原始图像的直方图'); imag1=histeq(imag); subplot(2,2,3);imshow(imag1);title('直方图均衡化后的图像'); subplot(2,2,4);imhist(imag1);title('直方图均衡化后的图像的直方图'); 直方图均衡化进行图像增强效果图 (2)对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的代码: imag2=imnoise(imag,'salt',0.02); imag3=medfilt2(imag2); imag4=wiener2(imag2); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imshow(imag2);title('加入椒盐噪声后的图像'); subplot(2,2,3);imshow(imag3);title('进行中值滤波后的图像'); subplot(2,2,4);imshow(imag4);title('进行自适应滤波后的图像'); 对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的效果 原始图 像 0.5 1 原始图像的直方图 直方图均衡化后的图像 0.5 1 0直方图均衡化后的图像的直方图

图像增强及其matlab实现实例

图像增强及其matlab实现实例 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:1)频域处理法2)空域处理法;频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。 2.1 空域滤波增强 空域滤波增强:使用空域模板进行的图像处理被称为空域滤波,模板本身被称为空域滤波器。空域滤波器包括:线性滤波器和非线性滤波器 空域滤波处理效果来分类,可以分为平滑滤波器,和锐化滤波器,平滑的目的在于消除混杂在图像中的干扰因素,改善图像质量,强化图像表现特征。锐化的目的在于增强图像边缘,以及对图像进行识别和处理。 2.1.1 平滑滤波器:用于模糊处理和减小噪声, 线性平滑滤波器 平滑线性空间滤波器的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。因此这些滤波器也被称为均值滤波器。平滑滤波器的概念很简单:它是用滤波掩模确定的领域内像素的平均值去代替图像每个像素点的值。这种处理减少了图像灰度的尖锐化。 注:每个掩模前边的乘数等于它的系数值的和,以计算平均值。(详见数字图像处理P--93) 我们经常用这些极端类型的模糊处理来去除图像中的一些小物体。 例子:在matlab中利用线性平滑滤波器处理一副图像(详见matlab7.0图像处理) I=imread('eight.tif'); J=imnoise(I,'salt & pepper',0.02); >> %添加椒盐噪声 >> subplot(221) >> imshow(I) >> title('原图像') >> subplot(222) >> imshow(J) >> title('添加椒盐噪声图像')

相关主题