搜档网
当前位置:搜档网 › MOSFET特性解析及选型

MOSFET特性解析及选型

如何看懂MOSFET规格书

如何看懂MOSFET规格书 作为一个电源方面的工程师、技术人员,相信大家对MOSFET 都不会陌生。在电源论坛中,关于MOSFET 的帖子也应有尽有:MOSFET 结构特点/工作原理、MOSFET 驱动技术、MOSFET 选型、MOSFET 损耗计算等,论坛高手、大侠们都发表过各种牛贴,我也不敢在这些方面再多说些什么了。 工程师们要选用某个型号的 MOSFET,首先要看的就是规格书/datasheet,拿到 MOSFET 的规格书/datasheet 时,我们要怎么去理解那十几页到几十页的内容呢?本帖的目的 就是为了和大家分享一下我对 MOSFET 规格书/datasheet 的理解和一些观点,有什么错误、不当的地方请大家指出,也希望大家分享一下自己的一些看法,大家一起学习。PS: 1. 后续内容中规格书/datasheet 统一称为 datasheet2. 本 帖中有关 MOSFET datasheet 的数据截图来自英飞凌 IPP60R190C6 datasheet1VDSDatasheet 上电气参数第一个就是 V(BR)DSS,即 DS 击穿电压,也就是我们关心的 MOSFET 的耐压 此处V(BR)DSS的最小值是600V,是不是表示设计中只要MOSFET上电压不超过600V MOSFET就能工作在安全状态?

相信很多人的答案是“是!”,曾经我也是这么认为的,但这个正确答案是“不是!” 这个参数是有条件的,这个最小值600V是在Tj=25℃的值,也就是只有在Tj=25℃时,MOSFET上电压不超过600V 才算是工作在安全状态。 MOSFET V(BR)DSS是正温度系数的,其实datasheet上有一张 V(BR)DSS与Tj的关系图(Table 17),如下:要是电源用在寒冷的地方,环境温度低到-40℃甚至更低的话,MOSFET V(BR)DSS值 所以在MOSFET使用中,我们都会保留一定的VDS的电压裕量,其中一点就是为了考虑到低温时MOSFET V(BR)DSS值变小了,另外一点是为了应对各种恶例条件下开关机的VDS电压尖峰。2ID相信大家都知道 MOSFET 最初都是按 xA, xV 的命名方式(比如 20N60~),慢慢的都转变成Rds(on)和电压的命名方式(比如 IPx60R190C6, 190 就是指Rds(on)~).其实从电流到 Rds(on)这种命名方式的转变就表明 ID 和 Rds(on)是有着直接联系的,那么它们之间有什么关系呢?在说明 ID 和 Rds(on)的关系之前,先得跟大家聊聊封装和结温:1). 封装:影响我们选择 MOSFET 的条件有哪些?a) 功耗跟散热性能 -->比如:体积大的封装相比

标准件选用手册(2015版)

标准件选用手册

目次 1紧固件产品分类 (1) 1.1按大类分 (1) 1.2螺栓连接的分类 (1) 1.2.1按受力形式分类 (1) 1.2.2根据安装状态分类 (1) 1.2.3按产品等级分类 (2) 1.3按采用产品的螺纹分类 (2) 1.4按螺栓材料与性能等级分类 (2) 1.5高强度螺栓简单分类 (2) 2紧固件常用螺纹 (2) 2.1基本尺寸 (2) 2.2普通螺纹公差与配合的选用 (2) 2.3普通螺纹的标记 (5) 2.4自攻(含锁紧)螺钉用螺纹、螺杆螺纹 (5) 2.4.1自攻螺钉用螺纹 (5) 2.4.2自攻锁紧螺钉的螺杆粗牙普通螺纹系列 (6) 3紧固件的机械性能 (6) 3.1螺栓、螺钉、螺柱的机械性能 (6) 3.1.1适用范围 (6) 3.1.2 螺栓、螺钉、螺柱的性能等级 (6) 3.1.3 材料和热处理、回火温度 (6) 3.1.4 螺栓、螺钉和螺柱的机械和物理性能 (7) 3.1.5 粗牙螺纹最小拉力载荷 (8) 3.1.6 粗牙螺纹保证载荷 (9) 3.1.7 细牙螺纹最小拉力载荷 (10) 3.1.8 细牙螺纹保证载荷 (11) 3.2螺母(粗牙、细牙)的机械性能 (12) 3.2.1 适用范围 (12) 3.2.2 螺母粗牙螺纹的性能等级 (12) 3.2.3 螺母细牙螺纹的性能等级 (17)

3.3 自攻螺钉 (20) 3.3.1金相与硬度 (20) 3.3.2机械性能 (21) 3.4抽芯铆钉 (21) 3.4.1机械性能等级 (21) 3.4.2机械性能 (22) 3.5 蝶形螺母保证扭矩 (22) 4 紧固件的连接方式选用 (22) 4.1紧固件的连接特性及基本要求 (22) 4.1.1紧固件连接的受力和传力方式 (22) 4.1.2紧固件连接的失效形式 (23) 4.1.3紧固件连接设计的基本要求 (23) 4.2螺栓连接的预紧 (23) 4.2.1预紧的目的 (23) 4.2.2预紧力的确定 (23) 4.2.3拧紧力矩 (24) 4.2.3.1拧紧力矩的计算 (24) 4.2.3.2紧固件的拧紧扭矩 (24) 4.2.4预紧力的控制方法 (27) 4.3螺纹连接的防松 (27) 5紧固件的选用原则 (27) 5.1正确选择紧固件的外形 (27) 5.2选用适合的精度等级 (28) 5.3选择适用的紧固件材料 (28) 5.4选用合适的表面处理方法 (29) 6标准件选用范围及标注 (29) 6.1标准件分类 (29) 6.2标准件明细 (29) 6.3标准件的选用范围 (29)

MOSFET选型注意事项及应用实例

MOSFET选型注意事项及应用实例 MOSFET的选型基础MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的MOSFET。1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N 沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。 2)电压和电流的选择。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220V AC 应用为450~600V。在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。3)计算导通损耗。MOSFET器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变

汽车车身用标准件选型规范

车身用标准件选型规范

车身用标准件选型规范 1 范围 本标准主要介绍了车身所用标准件的常见类型,阐述了各类标准件在车身上的应用及选取则,包括螺栓长度的选用、螺栓和螺母公称直径的选用、螺纹牙距的选用、特殊螺栓、螺母的选用等,为以后车身标准件选用提供一个参考。 本标准适用于轿车、SUV等车型的设计。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是不注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T3098.1 紧固件机械性能螺栓、螺钉和螺柱 GB/T3098.2 紧固件机械性能螺母粗牙螺纹 GB/T3098.3 紧固件机械性能紧定螺钉 GB/T3098.4 紧固件机械性能螺母细牙螺纹 GB/T3098.5 紧固件机械性能自攻螺钉 GB/T5779.1 紧固件表面缺陷—螺栓、螺钉和螺柱 GB/T5779.2 紧固件表面缺陷—螺母 GB/T94.1 弹性垫圈技术条件弹簧垫圈 QC/T607 六角螺母和锥形弹性垫圈组合件 GB/T5783 六角头螺栓—全螺纹—A和B级 GB/T5789 六角法兰面螺栓—加大系列—B级 GB/T1664 六角法兰面螺栓 GB/T2673 内六角花形沉头螺钉 GB/T29.2 十字槽凹穴六角头螺栓 GB/T5782,GB/T5783 六角头螺栓—粗牙 GB/T5785,GB/T5786 六角头螺栓—较细牙 GB/T6177 六角法兰面螺母 GB/T6560 十字槽盘头自攻锁紧螺钉 GB/T70 内六角圆柱头螺钉 GB/T819 十字槽沉头螺钉 GB/T845 十字盘头自攻螺钉 GB/T847 十字槽半沉头自攻螺钉 QC/T613 六角法兰面自排屑螺母 GB/T9074.1 十字槽盘头螺钉和平垫圈组合件

MOSFET选型经验

功率MOSFET选型的几点经验 作者:Hugo Yu 使用功率MOSFET也有两年多时间了,这方面的技术文章看了不少,但实际应用选型方面的文章不是很多。在此,根据学到的理论知识和实际经验,和广大同行一起分享、探讨交流下功率MOSFET的选型。 由于相应理论技术文章有很多介绍MOSFET参数和性能的,这里不作赘述,只对实际选型用图解和简单公式作简单通俗的讲解。另外,这里的功率MOSFET应用选型为功率开关应用,对于功率放大应用不一定适用。不正之处,希望大家不吝指正。 功率MOSFET的分类及优缺点 和小功率MOSFET类似,功率MOSFET也有分为N沟道和P沟道两大类;每个大类又分为增强型和耗尽型两种。虽然耗尽型较之增强型有不少的优势(请查阅资料,不详述),但实际上大部分功率MOSFET都是增强型的。(可能因为实际的制作工艺无法达到理论要求吧,看来理论总是跟实际有差距的,哈哈) MOSFET是电压控制型器件,三极管是电流控制型器件,这里说的优缺点当然是要跟功率三极管(GTR)来做比较的:优点—开关速度快、输入阻抗高、驱动方便等;缺点—难以制成高电压、大电流型器件,这是因为耐压高的功率MOSFET的通态电阻较大的缘故。 言归正传,下面来看看具体如何选型— 功率MOSFET的选型 1. 我的应用该选择哪种类型的MOSFET? 前面说了,实际应用主要使用增强型功率MOSFET,但到底该选择N沟道的还是P沟道的呢?如果你对这个问题有疑问,下面的图和注释会让你一目了然! a) N沟道MOSFET b) P沟道MOSFET 负载(Load)的连接方式决定了所选MOSFET的类型,这是出于对驱动电压的考虑。当负载接地时,采用P沟道MOSFET;当负载连接电源电压时,选择N沟道MOSFET。

控制柜选型标准

控制柜选型标准 本公司生产的系列控制柜按结构分为五种:轻型 GC 柜、重型GD 柜、防尘GF 柜、低压配电柜 GGD 及低压抽屉柜GCK 。 GC 柜采用标准KS 型钢为骨架,用标准件联接组装而成的控制柜适用于安装重量轻,如小容 量接触器等电器元件。安装较重的电器元件如容量较大的变压器、电抗器、 ME 开关、大容量接触 器时不许选用。 GD 柜采用2.5mm 厚钢板生产的以宽度为 80mm 的立柱和横梁为骨架,焊接而成的控制柜,适 用于安装重量大的电器元件。 GF 柜采用标准FA38型钢为骨架,用标准件连接组装而成的控制柜适用于防尘要求极高的场所, 出口产品必须选用此柜型。 GGD 柜和GCK 柜为国家标准的低压配电柜型号,设计低压配电柜时,必须选用此柜体。 设计时在项目计划,总装图中必须注明选用的柜体型号。柜体型号如下: GD . □ □口 □口 □口 -F-R 柜型- 柜特征 柜高- 柜特征号: A —前单门后板 B —前双门后板 GF —防尘柜 GDD —低压配电柜 GCK —低压抽屉柜 柜咼: 22 — 2200mm 20 —2000mm 18— 1800mm 16— 1600mm 14— 1400mm 柜宽: 06 — 600mm 08- 800mm 10 — 1000mm 柜深: 06 — 600mm 08- 800mm 10 — 1000mm 12— 1200mm GF 、GD 、GC 柜门采用如图所示形式,门锁用两个一点锁,门铰链采用三点式形式,一般为单门。 柜宽大于900mm 时可选用大小门或双门。柜体标志板采用钢板弯制,其外形尺寸为(柜宽 -10) *100。 GGD 柜体采用国家标准柜型。标志板采用铝合金标准件,其外型尺寸为(柜宽 -10)*60 GCK 柜体为抽屉柜,可根据器件容量选择相应的抽屉组合,标志板同 GGD 柜体。 GC —轻型柜 C —前后单门 D —前后双门 GD —重型柜

紧固件(标准件)的选用原则

紧固件(标准件)的选用原则 选择紧固件时,应优先确定类别,再确定其品种和规格。 1. 确定类别 标准紧固件共分十二大类,选用时按紧固件的使用场合和其使用功能进行确定。 (1) 螺栓螺栓再机械制造中广泛应用于可拆连接,一般与螺母(通常再加上一个垫圈或两个垫圈)配套使用。 (2) 螺母螺母与螺栓相配使用。 (3) 螺钉螺钉通常是单独(有时加垫圈)使用,一般起紧固或紧定作用,应拧入机体的内螺纹。 (4) 螺柱螺柱多用于连接被连接件之一厚度大,需使用结构紧凑或因拆卸频繁而不宜采用螺栓连接的地方。螺 柱一般为两端都带有螺纹(单头螺柱为单端带螺纹),通常将一头螺纹牢固拧入部件机体中,另一端与螺母相配, 起连接和紧固的作用,但在很大程度上还具有定距的作用。 (5) 木螺钉木螺钉用于拧入木材,起连接或紧固作用。 (6) 自攻螺钉与自攻螺钉相配的工作螺孔不需预先攻丝,在拧入自攻螺钉的同时,使内螺纹成型。 (7) 垫圈垫圈放在螺栓、螺钉和螺母等的支承面与工件支承面之间使用,起防松和减小支承面应力的作用。 (8) 挡圈挡圈主要用来将零件在轴上或孔中定位、锁紧或止退。 (9) 销销通常用于定位,也可用于连接或锁定零件,还可作为安全装置中的过载剪断元件。 (10) 铆钉铆钉一端有头部,且杆部无螺纹。使用时将杆部插入被连接件的孔内,然后将杆的端部铆紧,起连接或 紧固作用。 (11)连接副连接副即螺钉或螺栓或自攻螺钉和垫圈的组合。垫圈装于螺钉后,必须能在螺钉(或螺栓)上自由转 动而不脱落。主要起紧固或紧定作用。 (12)其他主要包括焊钉等内容。 2.确定品种

(1) 品种的选择原则 ①从加工、装配的工作效率考虑,在同一机械或工程内,应尽量减少使用紧固件的品种; ②从经济考虑,应优先选用商品紧固件品种。 ③根据紧固件预期的使用要求,按型式、机械性能、精度和螺纹等方面确定选用品种。 (2) 型式 ①螺栓 a) 一般用途螺栓:品种很多,有六角头和方头之分。六角头螺栓应用最普通,按制造精度和产品质 量分为A、B、C等产品等级,以A和B级应用最多,并且主要用于重要的、装配精度高以及受较大冲击、振动或变载荷 的地方。六角头螺栓按其头部支承面积大小及安装位置尺寸,可分为六角头与大六角头两种;头部或螺杆有带孔的 品种供需要锁紧时采用。方头螺栓的方头有较大的尺寸和受力表面,便于扳手口卡住或靠住其他零件起止转作用, 常用在比较粗糙的结构上,有时也用于T型槽中,便于螺栓在槽中松动调整位置。见GB8、GB5780~5790等。 b) 铰制孔用螺栓:使用时将螺栓紧密镶入铰制孔内,以防止工件错位,见GB27等。 c) 止转螺栓:有方颈、带榫之分,见GB12~15等; d) 特殊用途螺栓:包括T型槽用螺栓、活节螺栓和地脚螺栓。T型槽用螺栓多用于需经常拆开连接的 地方;地脚螺栓用于水泥基础中固定机架或电机底座。见GB798、GB799等; e) 钢结构用高强度螺栓连接副:一般用于建筑、桥梁、塔架、管道支架及起重机械等钢结构的摩擦 型连接的场合,见GB3632等。 ②螺母 a) 一般用途螺母:品种很多,有六角螺母,方螺母等。六角螺母配合六角螺栓应用最普遍,按制造 精度和产品质量分为A、B、C级等产品等级。六角薄螺母在防松装置中用作副螺母,起锁紧作用,或用于螺纹连接副

mos管选型指导

MOS管选型指导 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如

电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。 在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。 第三步:确定热要求 选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

常用mos管(选型)

常用MOS管选型参考如下表所示: IRFU020 50V 15A 42W * * NmOS场效应IRFPG42 1000V 4A 150W * * NmOS场效应IRFPF40 900V 4.7A 150W * * NmOS场效应IRFP9240 200V 12A 150W * * PmOS场效应IRFP9140 100V 19A 150W * * PmOS场效应IRFP460 500V 20A 250W * * NmOS场效应IRFP450 500V 14A 180W * * NmOS场效应IRFP440 500V 8A 150W * * NmOS场效应IRFP353 350V 14A 180W * * NmOS场效应IRFP350 400V 16A 180W * * NmOS场效应IRFP340 400V 10A 150W * * NmOS场效应IRFP250 200V 33A 180W * * NmOS场效应IRFP240 200V 19A 150W * * NmOS场效应IRFP150 100V 40A 180W * * NmOS场效应IRFP140 100V 30A 150W * * NmOS场效应IRFP054 60V 65A 180W * * NmOS场效应IRFI744 400V 4A 32W * * NmOS场效应IRFI730 400V 4A 32W * * NmOS场效应IRFD9120 100V 1A 1W * * NmOS场效应IRFD123 80V 1.1A 1W * * NmOS场效应IRFD120 100V 1.3A 1W * * NmOS场效应IRFD113 60V 0.8A 1W * * NmOS场效应IRFBE30 800V 2.8A 75W * * NmOS场效应IRFBC40 600V 6.2A 125W * * NmOS场效应IRFBC30 600V 3.6A 74W * * NmOS场效应IRFBC20 600V 2.5A 50W * * NmOS场效应IRFS9630 200V 6.5A 75W * * PmOS场效应IRF9630 200V 6.5A 75W * * PmOS场效应IRF9610 200V 1A 20W * * PmOS场效应IRF9541 60V 19A 125W * * PmOS场效应IRF9531 60V 12A 75W * * PmOS场效应IRF9530 100V 12A 75W * * PmOS场效应IRF840 500V 8A 125W * * NmOS场效应IRF830 500V 4.5A 75W * * NmOS场效应IRF740 400V 10A 125W * * NmOS场效应IRF730 400V 5.5A 75W * * NmOS场效应IRF720 400V 3.3A 50W * * NmOS场效应IRF640 200V 18A 125W * * NmOS场效应

紧固件标准件的选用原则

紧固件(标准件)的选用原则选择紧固件时,应优先确定类别,再确定其品种和规格。 1. 确定类别 标准紧固件共分十二大类,选用时按紧固件的使用场合和其使用功能进行确定。 (1) 螺栓螺栓再机械制造中广泛应用于可拆连接,一般与螺母(通常再加上一个垫圈或两个垫圈)配套使用。 (2) 螺母螺母与螺栓相配使用。 (3) 螺钉螺钉通常是单独(有时加垫圈)使用,一般起紧固或紧定作用,应拧入机体的内螺纹。 (4) 螺柱螺柱多用于连接被连接件之一厚度大,需使用结构紧凑或因拆卸频繁而不宜采用螺栓连接的地方。螺 柱一般为两端都带有螺纹(单头螺柱为单端带螺纹),通常将一头螺纹牢固拧入部件机体中,另一端与螺母相配, 起连接和紧固的作用,但在很大程度上还具有定距的作用。 (5) 木螺钉木螺钉用于拧入木材,起连接或紧固作用。 (6) 自攻螺钉与自攻螺钉相配的工作螺孔不需预先攻丝,在拧入自攻螺钉的同时,使内螺纹成型。 (7) 垫圈垫圈放在螺栓、螺钉和螺母等的支承面与工件支承面之间使用,起防松和减小支承面应力的作用。 (8) 挡圈挡圈主要用来将零件在轴上或孔中定位、锁紧或止退。 (9) 销销通常用于定位,也可用于连接或锁定零件,还可作为安全装置中的过载剪断元件。 (10) 铆钉铆钉一端有头部,且杆部无螺纹。使用时将杆部插入被连接件的孔内,然后将杆的端部铆紧,起连接或 紧固作用。 (11)连接副连接副即螺钉或螺栓或自攻螺钉和垫圈的组合。垫圈装于螺钉后,必须能在螺钉(或螺栓)上自由转 动而不脱落。主要起紧固或紧定作用。 (12)其他主要包括焊钉等内容。 2.确定品种

(1) 品种的选择原则 ①从加工、装配的工作效率考虑,在同一机械或工程内,应尽量减少使用紧固件的品种; ②从经济考虑,应优先选用商品紧固件品种。 ③根据紧固件预期的使用要求,按型式、机械性能、精度和螺纹等方面确定选用品种。 (2) 型式 ①螺栓 a) 一般用途螺栓:品种很多,有六角头和方头之分。六角头螺栓应用最普通,按制造精度和产品质 量分为A、B、C等产品等级,以A和B级应用最多,并且主要用于重要的、装配精度高以及受较大冲击、振动或变载荷 的地方。六角头螺栓按其头部支承面积大小及安装位置尺寸,可分为六角头与大六角头两种;头部或螺杆有带孔的 品种供需要锁紧时采用。方头螺栓的方头有较大的尺寸和受力表面,便于扳手口卡住或靠住其他零件起止转作用, 常用在比较粗糙的结构上,有时也用于T型槽中,便于螺栓在槽中松动调整位置。见GB8、GB5780~5790等。 b) 铰制孔用螺栓:使用时将螺栓紧密镶入铰制孔内,以防止工件错位,见GB27等。 c) 止转螺栓:有方颈、带榫之分,见GB12~15等; d) 特殊用途螺栓:包括T型槽用螺栓、活节螺栓和地脚螺栓。T型槽用螺栓多用于需经常拆开连接的 地方;地脚螺栓用于水泥基础中固定机架或电机底座。见GB798、GB799等; e) 钢结构用高强度螺栓连接副:一般用于建筑、桥梁、塔架、管道支架及起重机械等钢结构的摩擦 型连接的场合,见GB3632等。 ②螺母 a) 一般用途螺母:品种很多,有六角螺母,方螺母等。六角螺母配合六角螺栓应用最普遍,按制造 精度和产品质量分为A、B、C级等产品等级。六角薄螺母在防松装置中用作副螺母,起锁紧作用,或用于螺纹连接副

常用MOS管选型参考

常用MOS管选型参考 IRFU02050V15A42W NmOS场效应IRFPG421000V4A150W NmOS场效应IRFPF40900V 4.7A150W NmOS场效应IRFP460500V20A250W NmOS场效应IRFP450500V14A180W NmOS场效应IRFP440500V8A150W NmOS场效应IRFP353350V14A180W NmOS场效应IRFP350400V16A180W NmOS场效应IRFP340400V10A150W NmOS场效应IRFP250200V33A180W NmOS场效应IRFP240200V19A150W NmOS场效应IRFP150100V40A180W NmOS场效应IRFP140100V30A150W NmOS场效应IRFP05460V65A180W NmOS场效应IRFI744400V4A32W NmOS场效应IRFI730400V4A32W NmOS场效应IRFD9120100V1A1W NmOS场效应IRFD12380V 1.1A1W NmOS场效应IRFD120100V 1.3A1W NmOS场效应IRFD11360V0.8A1W NmOS场效应IRFBE30800V 2.8A75W NmOS场效应IRFBC40600V 6.2A125W NmOS场效应IRFBC30600V 3.6A74W NmOS场效应IRFBC20600V 2.5A50W NmOS场效应IRFS9630200V 6.5A75W PmOS场效应IRF9630200V 6.5A75W PmOS场效应IRF9610200V1A20W PmOS场效应IRF954160V19A125W PmOS场效应IRF953160V12A75W PmOS场效应IRF9530100V12A75W PmOS场效应IRF840500V8A125W NmOS场效应IRF830500V 4.5A75W NmOS场效应IRF740400V10A125W NmOS场效应IRF730400V 5.5A75W NmOS场效应IRF720400V 3.3A50W NmOS场效应IRF640200V18A125W NmOS场效应IRF630200V9A75W NmOS场效应IRF610200V 3.3A43W NmOS场效应IRF54180V28A150W NmOS场效应IRF540100V28A150W NmOS场效应IRF530100V14A79W NmOS场效应IRF440500V8A125W NmOS场效应IRF230200V9A79W NmOS场效应IRF130100V14A79W NmOS场效应BUZ20100V12A75W NmOS场效应BUZ11A50V25A75W NmOS场效应BS17060V0.3A0.63W NmOS场效应

结构标准紧固件选用规范

结构标准紧固件选用规范

版本记录 最新状态号 修改/生效日期 修改页次 修改人 审批人 修改理由 RA 2013.08.22 刘少正 初次生成 2016.12.13 夏世霞 修订 变更说明 无

目 录 1.目的与范围 (4) 1.1目的 (4) 1.2 范围 (4) 2.引用标准 (4) 3.术语定义 (4) 3.1(螺钉)紧固 (4) 3.2预紧力 (4) 3.3旋合长度 (5) 3.4螺纹伸出量 (5) 4.常见的螺纹紧固失效的几种形式 (5) 4.1螺纹连接失效 (5) 4.2紧固件失效 (5) 4.3连接件失效 (5) 5.结构标准件选用原则 (5) 5.1结构标准件选型遵循原则 (5) 5.2结构标准件选型注意事项 (8)

1.目的与范围 结构标准件,也称为紧固件,是作紧固连接用的一类机械零件,其应用极为广泛。由于结构标准件的品种规格繁多,性能及用途各异,而且其标准化、系列化、通用化的程度极高,因此有必要对标准件的选用作相应的规定。 为了规范结构标准件正确选型,规定公司产品选用原则,以便有效地使用标准件,特制定本规范。 公司产品常用标准件的种类、规格见公司《常用标准件的种类、规格选型表》 本规范适用于烽火通信系统设备及终端设备的结构标准件选用。 1.1目的 从设计的角度规范螺钉的使用 1.2 范围 适用于公研部结构设计 2.引用标准 GB9145 《公制内外螺纹极限尺寸检查表》 GB9146 《普通螺纹粗超度优选极限尺寸》 JB/ZQ4005-2006 《扳手空间》 FHPD-SD-SP015《钣金结构件可加工性设计规范》 FHPD-SD-SP022《塑胶工艺规范》 3.术语定义 3.1(螺钉)紧固 使用装配工具,将螺纹连接件与螺纹紧固件紧密结合在一起,并保证一定预紧力的过程。表示同样意识的称谓有:拧紧、打紧、上紧、打螺丝。 3.2预紧力 连接中,在受到载荷前,为增强连接的可靠性和紧密性,以防止受载荷后出现缝隙或滑移而预先加的力。

不锈钢标准件选用注意事项

不锈钢标准件选用注意事项1、不锈钢标准件的标记 示例 : 1) A 2一 70表示: 奥氏体钢、冷加工、最小抗拉强度为700MPa 2)C 4一 70表示: 马氏体钢、悴火并回火、最小抗拉强度为700MPa 注:A一-奥氏体钢; C一马氏体钢; F一铁素体钢 ?字母表示钢的类别,数字表示该类钢的化学成分范围。 ?性能等级标记由两个数字组成,并表示紧固件抗拉强度的1/10。 2、化学成分 GB3098.6-2000T中规定了各组别的化学成分(见表一) 表一

3、A 类钢(奥氏体组织)性能用途(见表二、表三) 4、C 类钢(马氏体组织)和 F 类钢(铁素体组织)性能用途(见表四、表五)

1)从表一可以看出GB仅规定了各组别的化学成分,并未规定具体材料,所以我们可以根据自己的要求来选 择材料。一般情况下我们根据各组的用途,确定出所用标准件的性能等级就OK了。 2)在表一的注解中第五条还提到:Mo含量可能在制造者的说明书中出现,但对某些使用场合,如有必要限 定Mo的极限含量,则必须在订单中由用户注明。也就是说表一没有规定具体Mo含量,但在GB3098.6-2000T 中B2部分提到:对海洋或类似的使用环境,要求Cr和Ni含量各约20%,Mo的含量为4.59~6.5%。据此,我们 选择标准件时要考虑海洋环境。 3)如果是我们自己出的标准件图纸,根据注解中第五条图纸中就应该标明Mo含量了,如果放宽一步要求,我们选择材料316(0Cr17Ni12Mo2)也可以,但相应技术要求中的性能等级就是A4-70,如果选择材料304(0Cr19Ni9)的话,相应技术要求中的性能等级就是A2-70。 4)对于不用我们自己出图的标准件,我们只要求性能等级就可以了,根据使用条件选用哪个组别,然后根 据设计要求选择强度等级。 5)我咨询了一下不锈钢螺栓的价格,M10x25的六角头不锈钢螺栓报价:A2-70的为1.2元/件,A4-70的为2.3元/件,而且供应商称A2-70材质为304,A4-70材质为316。 6)还要考虑的一个问题是高温或低温的情况下,螺栓、螺钉或螺柱是否会符合要求。在高温下屈服点σs和 规定非比例伸长应为σp0.2的数值与在室温下的数值之比(用%表示),见表六,低温下不锈钢螺栓、螺钉和螺 柱的适用性见表七。但如果在高温下载荷是循环交变的、是大的或有高的应力腐蚀的可能性,使用者应向制造者咨询。 表六

如何正确的选择MOSFET

如何正确选择MOSFET 随着制造技术的发展和进步,系统设计人员必须跟上技术的发展步伐,才能为其设计挑选最合适的电子器件。MOSFET是电气系统中的基本部件,工程师需要深入了解它的关键特性及指标才能做出正确选择。 本文将讨论如何根据RDS(ON)、热性能、雪崩击穿电压及开关性能指标来选择正确的MOSFET。MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端, 因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOSFET能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOSFET的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。

(完整版)紧固件(标准件)的选用原则

紧固件(标准件)的选用原则 选择紧固件时,应优先确定类别,再确定其品种和规格。 1. 确定类 标准紧固件共分十二大类,选用时按紧固件的使用场合和其使用功能进行确定。 (1) 螺栓螺栓再机械制造中广泛应用于可拆连接,一般与螺母(通常再加上一个垫圈或两个垫圈)配套使用。 (2) 螺母螺母与螺栓相配使用。 (3) 螺钉螺钉通常是单独(有时加垫圈)使用,一般起紧固或紧定作用,应拧入机体的内螺纹。 (4) 螺柱螺柱多用于连接被连接件之一厚度大,需使用结构紧凑或因拆卸频繁而不宜采用螺栓连接的地方。螺柱一般为两端都带有螺纹(单头螺柱为单端带螺纹),通常将一头螺纹牢固拧入部件机体中,另一端与螺母相配,起连接和紧固的作用,但在很大程度上还具有定距的作用。 (5) 木螺钉木螺钉用于拧入木材,起连接或紧固作用。 (6) 自攻螺钉与自攻螺钉相配的工作螺孔不需预先攻丝,在拧入自攻螺钉的同时,使内螺纹成型。 (7) 垫圈垫圈放在螺栓、螺钉和螺母等的支承面与工件支承面之间使用,起防松和减小支承面应力的作用。 (8) 挡圈挡圈主要用来将零件在轴上或孔中定位、锁紧或止退。 (9) 销销通常用于定位,也可用于连接或锁定零件,还可作为安全装置中的过载剪断元件。 (10) 铆钉铆钉一端有头部,且杆部无螺纹。使用时将杆部插入被连接件的孔内,然后将杆的端部铆紧,起连接或紧固作用。 (11)连接副连接副即螺钉或螺栓或自攻螺钉和垫圈的组合。垫圈装于螺钉后,必须能在螺钉(或螺栓)上自由转动而不脱落。主要起紧固或紧定作用。 (12)其他主要包括焊钉等内容。 2.确定品种 (1) 品种的选择原则 ①从加工、装配的工作效率考虑,在同一机械或工程内,应尽量减少使用紧固件的品种; ②从经济考虑,应优先选用商品紧固件品种。 ③根据紧固件预期的使用要求,按型式、机械性能、精度和螺纹等方面确定选用品种。 (2) 型式 ①螺栓 a) 一般用途螺栓:品种很多,有六角头和方头之分。六角头螺栓应用最普通,按制造精度和产品质量分为A、

常见mos管的型号参数

电调常见的烧毁问题,可通过更换烧坏的MOS管来解决,如相应电流的,可用更多大额定电流的代替。注意,焊接MOS止静电。 TO-220 TO-252 TO-3

附SO-8(贴片8脚)封装MOS管IRF7805Z的引脚图。 上图中有小圆点的为1脚 注:下表按电流降序排列(如有未列出的,可回帖,我尽量补 封装形式极性型号电流(A)耐压(V)导通电阻(mΩ) SO-8N型SI43362230 4.2 SO-8N型IRF78312130 3.6 SO-8N型IRF783220304

SO-8N型IRF872114308.5 SO-8N型IRF78051330 SO-8N型IRF7805Q133011 SO-8N型IRF7413123018 SO-8N型TPC800312306 SO-8N型IRF7477113020 SO-8N型IRF7811113012 SO-8N型IRF7466103015 SO-8N型SI4410103014 SO-8N型SI4420103010 SO-8N型A27009307.3 SO-8N型IRF78078.330 SO-8N型SI48127.33028 SO-8N型SI9410 6.93050 SO-8N型IRF731363029 SO-8P型SI440517307.5 SO-8P型STM4439A143018 SO-8P型FDS667913309 SO-8P型SI441113308 SO-8P型SI446312.32016 SO-8P型SI44071230 SO-8P型IRF7424113013.5 SO-8P型IRF7416103020 SO-8P型IRF7416Q103020 SO-8P型SI442593019 SO-8P型IRF74248.83022 SO-8P型SI443583020 SO-8P型SI4435DY83020 SO-8P型A271673011.3 SO-8P型IRF7406 5.83045 SO-8P型SI9435 5.33050 SO-8P型IRF7205 4.63070 TO-252N型FDD668884305 TO-3N型IRF1504010055 TO-220N型IRF370321030 2.8 TO-220N型IRL3803140306 TO-220N型IRF140513155 5.3 TO-220N型IRF3205110558 TO-220N型BUZ111S80558

MOSFET设计选择

MOSFET设计选择/ 损耗组成及计算方法 2007年04月17日星期二22:10 一、设计选择 MOSFET 的应用选择须综合各方面的限制及要求。下面主要从应用的安全可靠性方面阐述选型的基本原则。 建议初选之基本步骤: 下面详细解释其中各参数选择之原则及注意事项。 1 )电压应力: 在电源电路应用中,往往首先考虑漏源电压 V DS的选择。在此上的基本原则为 MOSFET 实际工作环境中的最大峰值漏源极间的电压不大于器件规格书中标称漏源击穿电压的 90% 。即: V DS_peak≤ 90% * V(BR)DSS 注:一般地, V(BR)DSS具有正温度系数。故应取设备最低工作温度条件下之 V(BR)DSS值作为参考。 2)漏极电流: 其次考虑漏极电流的选择。基本原则为 MOSFET 实际工作环境中的最大周期漏极电流不大于规格书中标称最大漏源电流的 90% ;漏极脉冲电流峰值不大于规格书中标称漏极脉冲电流峰值的 90% 即: I D_max≤ 90% * I D I D_pulse ≤ 90% * I DP 注:一般地, I D_max及 I D_pulse 具有负温度系数,故应取器件在最大结温条件下之 I D_max及 I D_pulse 值作为参考。器件此参数的选择是极为不确定的—主要是受工作环境,散热技术,器件其它参数(如导通电阻,热阻等)等相互制约影响所致。最终的判定依据是结点温度(即如下第六条之“耗散功率约束”)。根据经验,在实际应用中规格书目中之 I D会比实际最大工作电流大数倍,这是因为散耗功率及温升之限制约束。在初选计算时期还须根据下面第六条的散耗功率约束不断调整此参数。建议初选于 3~5 倍左右 I D = (3~5)*I D_max。 3)驱动要求: MOSFEF 的驱动要求由其栅极总充电电量( Qg )参数决定。在满足其它参数要求的情况下,尽量选择 Qg 小者以便驱动电路的设计。驱动电压选择在保证远离最大栅源电压( V GSS)前提下使 Ron 尽量小的电压值(一般使用器件规格书中的建议值)。 4)损耗及散热: 小的 Ron 值有利于减小导通期间损耗,小的 Rth 值可减小温度差(同样耗散功率条件下),故有利于散热。

相关主题