搜档网
当前位置:搜档网 › 二元一次不等式几何意义的应用

二元一次不等式几何意义的应用

二元一次不等式几何意义的应用

二元一次方程及其解法

一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3 x y y z +=?? +=?,5(2)6x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

(基本不等式)公开课教案知识分享

基本不等式 2a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2 a b +≤的证明过程。 难点:2a b +≤等号成立条件。 三、教学过程 1.课题导入 2a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的 面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有222a b ab +=。 2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(22ab b a ≥+ 4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤ 22a b ab +≤ 用分析法证明: 32a b ab +≤的几何意义 探究:课本第98页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过 点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本 2a b ab +≤的几何解释吗?

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

《基本不等式》教案

普安县第五届中小学优质课评选授课教案 【课题】3.4 基本不等式(1) 【执教人】吴应艳 【上课时间】2013、12、 【教学方法】探究学习、学案导学 【教学手段】投影仪、彩笔 【课型】新授课 【总课时数】1课时 【教学内容分析】 本节课是必修5第3章第4节的内容,内容安排在实数的性质与不等式性质之后,所以对于不等式的证明不存在太大难度。本节课内容的应用又十分广泛,因此引导学生学习好本节内容显得十分重要。 【学生学习情况分析】 授课的班级学生程度不太高,基础差不多,学习的知识结构较为合理。因此设计时也注重对探究能力的培养,同时也注意对基本不等式的应用教学。【教学目标】 知识目标:1、使学生了解基本不等式及其证明;2、让学生感知与基本不等式相近的一些不等式的证明与几何背景。 能力目标:1、通过对基本不等式的探究,培养学生观察、归纳、抽象的能力和语言表达能力;2、让学生初步了解用分析法证明不等式,培养学生分析问题能力与逻辑思维能力 情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好的探究学习习惯及勇于探索精神及灌输问题教学法。 【教学重点与难点】 重点:应用数形结合的思想理解基本不等式并从不同角度探索不等式的证明

过程,并能说明基本不等式的意义 难点:利用基本不等式推导一些与其相似的不等式 一、教学过程 (一)情景设置 【探究】右图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。 现将图中的“风车”抽象成下图, 这个会标中含有怎样的几何图形?你能否在这个图案中找出一些相等关系或不等关系? 问题1:我们把“风车”造型抽象成图一.在正方形ABCD 中有4个全等的直角三角形.如果设直角三角形的两直角边长为a、b,你能用a、b表示哪些图形的面积,这些面积有什么关系?那么正方形的边长为多少?面积为多少呢?4个直角三角形的面积和是多少呢?(由学生回答,培养学生独立思考问题的能力) (22 a b +,22a b +、2ab ) 问题2:比较大正方形的面积与4个直角三角形的面积,你能找到怎样的不 等关系? (根据观察4个直角三角形的面积和正方形的面积,我们可容易得到一个不等 式, >(a ≠b)) 图一 2 2 b a +a b 2

二元一次方程及其解法

. .. . . 一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3x y y z +=?? +=?,5(2)6 x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,2132 57m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

基本不等式

基本不等式2 b a a b +≤ (一) 学习目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并 掌握定理中的不等号“≥”取等号的条件. 学习重点:基本不等式的证明,正确运用基本不等式. 你看到市场买鸡蛋,商贩用不等臂天平秤称量,先把鸡蛋放在左盘,砝码放 在右盘,砝码质量为x ,然后把鸡蛋放在右盘,砝码放在左盘,此时,砝码质量为y ,最后商贩告诉你,鸡蛋质量为 2 y x +,并让你付钱,请问你觉得公平吗? 学习任务:阅读课本第97页至第100页,完成下列问题: 1.对于基本不等式2 b a a b +≤ ,你用能什么方法证明? 2.比较不等式ab b a 22 2≥+与2 b a ab +≤ ,它们有什么关系?有什么区别?它们适用范围和等号成立的条件各是什么? 3.基本不等式2 b a a b +≤ 有何结构特点?利用这个结构可以解决什么问题?应用时应注意什么? 4.精读课本P 97例1,思考:0,0>>y x (1)如果y x ?是定值P ,和y x +有最值吗?若有,是多少?何时取得最值? (2)如果y x +是定值S ,积y x ?有最值吗?若有,是多少?何时取得最值? 5.动手做例2. 6.证明:0,0>>y x (1) 2≥+x y y x (2)21 ≥+x x (3)(y x +)(2 2 y x +)(3 3 y x +)≥83 3y x 必做题: P 100练习2、3、4基本不等式2 b a a b +≤ (二) 芅蚀芃螆蒇罿袃 学习目标:会应用基本不等式求某些函数的最值,能够解决一些简单的实际问 题. 膀膁羃芆莀螂袄 学习重点:会恰当地运用基本不等式求数学问题中的最值. 学习任务: 1.(1)若0>x ,求x x x f 312 )(+= 的最小值. (2)若0>y x ,且 19 1=+y x ,求y x +的最小值. (2)已知:0,0>>y x ,且082=-+xy y x ,求y x +的最小值. (3)已知:1->x ,求1 3 32+++=x x x y 的最小值. 4. 学校食堂定期从某粮店以每吨1500元的价格买大米,每次购进大米需支付 运输劳务费100元. 已知食堂每天需要大米1吨,储存大米的费用为每吨每天2元,假如食堂每次均在用完大米的当天购买,问食堂多少天购买一次大米能使平均每天所支付的费用最少? 5. 经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y (千辆/ 时)与汽车的平均速度V (千米/时)之间的函数关系为y = 1600 39202 ++V V V (V > 0). (1)在该段时间内,当汽车的平均速度V 为多少时,车流量最大?最大车流 量是多少?

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

二元一次方程的解法

二元一次方程的解法 二元一次方程的解法:认识二元一次方程组的有关概念,会把一些简单的实际问题中的数量关系,用二元一次方程组的形式表示出来,学会用含有其中一个未知数的代数式表示另一个的方法。下面小编整理了二元一次方程的解法,供大家参考。 代入消元 (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法. (2)代入法解二元一次方程组的步骤。 ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值; ⑤用{联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边). 例题: {x-y=3① {3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 把y=1带入③ 得x=4 则:这个二元一次方程组的解 {x=4 {y=1 加减消元 (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[5] (2)加减法解二元一次方程组的步骤 ①利用等式的基本性质,将原方程组中某个未知数的系数化

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

柯西不等式的几何意义

柯西不等式的几何意义和推广 3. 柯西不等式的几何意义 柯西不等式的代数形式十分简单,但却非常重要。数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦掌握了它,就使这个结果变得不言而喻了。而一个代数结果最简单的解释,通常驻要借助于几何背景。现在就对柯西不等式的二维、三维情况做出几何解释。 (1)二维形式 2222()()()a b c d a c b d ++ ≥+ y x Q (c ,d ) P (a ,b ) O 图3-1 如图,可知线段OP ,OQ 及PQ 的长度分别由下面的式子给出: OP OQ PQ ===θ表示OP 与OQ 的夹角。由余弦定理,我们有 2 2 2 2cos PQ OP OQ OP OQ θ=+-? 将OP ,OQ ,PQ 的值代入,化简得到cos θ= 而2 0cos 1θ≤≤,故有2 2 2222 ()cos 1()() ac bd a b c d θ+=≤++ 于是 2222()()()a b c d a c b d ++≥ + 这就是柯西不等式的二维形式。 我们可以看到当且仅当2cos 1θ=,即当且仅当θ是零或平角,亦即当且仅当

,,O P Q 在同一条直线上是时等号成立。在这种情形,斜率之间必定存在一个等 式;换句话说,除非0c d ==,我们们总有 a b c d =. (2)三维形式 2222 22 12312311 2233()()()a a a b b b a b a b a b ++++ ≥++ 对于三维情形,设123123(,,),(,,)P a a a Q b b b 是不同于原点(0,0,0)O 的两个点,则OP 与OQ 之间的夹角θ的余弦有 2 3c o s θ= 又由2cos 1θ≤,得到柯西不等式的三维形式: 2222 2 2 12312311 2233()()()a a a b b b a b a b a b +++ + ≥++ 当且仅当,,O P Q 三点共线时,等号成立;此时只要这里的123,,b b b 都不是零,就有 3 12123 a a a b b b == 4. 柯西不等式的推广 前面的柯西不等式都是限制在实数范围内的,在复数范围内同样也有柯西不等式成立。 定理:若12(,,)n a a a a =???和12(,,,)n b b b b =???是两个复数序列,则有 2 2 2 1 1 1 ()()n n n k k k k k k k a b a b ===≤∑∑∑, 当且仅当数列a 和b 成比例时等式成立。 证明:设λ是复数,有恒等式 2 22 2 1 1 1 1 1 ()()2Re()n n n n n k k k k k k k k k k k k k k a b a b a b a b a b λλλλ λ=====-=--=+-∑∑∑∑∑ 若12 1n k k k n k k a b b λ=== ∑∑(其中0b ≠),则有 22 2 1 2 1 1 1 0n k k n n k k k k n k k k k a b a b a b λ====-=- ≥∑∑∑∑ 由此推出了复数形式的柯西不等式。

相关主题