搜档网
当前位置:搜档网 › 蛋白质的盐析

蛋白质的盐析

蛋白质的盐析
蛋白质的盐析

蛋白质的盐析(验证型)

一、实验目的

了解在工业化生产过程中使用(NH4)2SO4的情况,及(NH4)2SO4使用时的注意事项。

二、实验原理

用高浓度中性盐使蛋白质从溶液中沉淀出来的方法称盐析。常用的中性盐有(NH4)2SO4、NaCl等。高`浓度中性盐能使蛋白质沉淀是因为它具有脱水性,能脱去蛋白质胶粒水膜,又有中和蛋白质胶粒外双电层电荷的作用。不同蛋白质盐析时所需盐浓度不同,故调节盐浓度,可适当地将蛋白质分开。如球蛋白在半饱和硫酸铵溶液中沉淀,清蛋白在饱和硫酸铵溶液中沉淀,用盐析法沉淀的蛋白质并未变性,用稀释的方法或透析的方法可使之复溶。

三、器材与试剂

1、发酵溶液

2、10%的三氯醋酸溶液

3、饱和(NH4)2SO4溶液

4、(NH4)2SO4粉末

四、实验步骤

(1)取发酵溶液5ml,加饱和(NH4)2SO4溶液1ml 2ml 3ml 4ml 5ml,混匀,静止数分钟,即有白色沉淀析出,应为何物?过滤至清,除去沉淀,滤液备用。取少量沉淀,加H2O看是否复溶?

(2)取滤液0.5ml,加10%的三氯醋酸数滴,有白色沉淀产生,应为何物?然后在721分光光度计OD600下进行透光率的检测,检测时必须在倒入比色皿以后10秒内读取(为什么?)。(在进行检测时应注意将721分光光度计调整到OD600;在测量前应把机器预热半小时左右。在检测时应注意有效的检测范围是T值15%以上到70%以下)。

(3)另外,取滤液2.5ml于小烧杯中,加(NH4)2SO4粉末,随加随搅拌,直至(NH4)2SO4不能溶解为止,有白色沉淀产生,应为何物?然后过滤至清,除去沉淀,过滤备用。

(4)将(1)-(3)做的滤液中加10% 三氯醋酸数滴观察有无沉淀产生。找到没有沉淀的加饱和(NH4)SO4溶液的点。然后在721分光光度计OD600下进行透光率的检测。并且作出曲线。

2

(5)对大量的发酵液进行处理,在滤液中加10% 三氯醋酸数滴观察有无沉淀产生。

(6)盐析曲线的制作方法:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0℃~5℃,调至该蛋白质稳定的pH 值,分6~10 次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10 个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH 缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。

五、盐析注意事项:

1.盐析的成败决定于溶液的pH 值与离子强度,溶液pH 值越接近蛋白的等电点,蛋白质越容易沉淀。

2.盐析一般用的硫酸铵,容易吸潮,因而在使用前,一般先磨碎,平铺放入烤箱内60℃烘干后再称量,这样更准确。

3.在加入盐时应该缓慢均匀,搅拌也要缓慢,越到后来速度应该更注意缓慢,如果出现一些未溶解的盐,应该等其完全溶解后再加盐,以免引起局部的盐浓度过高,导致酶失活。

4.盐析后最好搅拌40 分钟到一个小时而且再在冰浴中放置一段时间。为了避免盐对酶的影响,一般脱盐处理后再测酶活性。

5.盐析后的蛋白质最好尽快脱盐处理,以免变性,透析较慢,一般可用超滤或者G-25,G-50 处理。

6.一般粗提物蛋白完全沉淀是在硫酸铵浓度在70%左右。

六、盐析影响因素:

1.蛋白质的浓度:中性盐沉淀蛋白质时,溶液中蛋白质的实际浓度对分离的效果有较大的影响。通常高浓度的蛋白质用稍低的硫酸铵饱和度即可将其沉淀下来,但若蛋白质浓度过高,则易产生各种蛋白质的共沉淀作用,除杂蛋白的效果会明显下降。对低浓度的蛋白质,要使用更大的硫酸铵饱和度,但共沉淀作用小,分离纯化效果较好,但回收率会降低。通常认为比较适中的蛋白质浓度是2.5%~3.0%,相当于25 mg/mL~30mg/mL。

2.离子强度:各种蛋白质的沉淀要求不同的离子强度。

3.盐的性质:最有效的盐是多电荷阴离子。

4.pH值:一般说来,蛋白质所带净电荷越多,它的溶解度就越大。改变pH 值可改变蛋白质的带电性质,因而就改变了蛋白质的溶解度。远离等电点处溶解度大,在等电点处溶解度小,因此用中性盐沉淀蛋白质时,pH 值常选在该蛋白质的等电点附近。

5.温度:除对温度敏感的蛋白质在低温(4℃)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25℃)比0℃时溶解度低,更容易盐析。蛋白质沉淀后宜在4℃放3 小时以上或过夜,以形成较大沉淀而易于分离。盐析时,分子量较小的蛋白质逐步沉淀下来可能就值得怀疑。具体的蛋白需要具体的摸索,当然,对肽来说,结论也是一样的。

七、思考问题

1.用高浓度中性盐盐析蛋白质时的注意事项是什么?

2.为什么在对对大量的发酵液进行处理时的效果没有小试是的效果好?

蛋白质磷酸化概述

蛋白质磷酸化概述 蛋白质磷酸化是敏感而可逆地调节蛋白质功能的一种最常见和最重要的机制,是调节细胞增值的基础。很多多肽生长因子(血小板来源的生长因子和表皮生长因子)和细胞因子(白细胞介素-2、集落刺激因子-2和γ-干扰素)在与其受体结合后均激发磷酸化作用,而这些被诱导的磷酸化反过来激活细胞质内的蛋白激酶如raf、MEK和MAP。此外,在所以有核生物中,细胞周期中G1/S期和G2/M期的转换均受依赖细胞周期蛋白的蛋白激酶(CDK)的调节。磷酸化作用也控制着分化和发育,如果蝇视网膜的R7细胞和秀丽新小杆线虫(Caenorhabditis elegans)的阴门发育受控于受体蛋白激酶和胞内蛋白激酶。最后,新陈代谢受磷酸化作用的调节控制,尤其是葡萄糖和糖元的相互转换及葡萄糖的转运的代谢作用。因而,形形色色的生物学家为了弄清楚他们最感兴趣的基因及其编码产物的调控和功能,他们常常不约而同,有时还是不由自主地必须蛋白质地磷酸化。 研究蛋白质磷酸化最常用地方法是利用32P标记的无机磷酸盐(32Pi)进行生物合成标记。这种方法非常简单,而只将标记物中加入到培养基中。在节中描述了用32Pi进行生物成标记的一般方法。该方法能达到最大限度的提高掺入效率和降低放射性对工作人员的伤害及对设备的污染。 大多数蛋白质是在丝氨酸和苏氨酸残基上磷酸化,而许多与信号传导有关的蛋白质还在酪氨酸位置上被磷酸化。这三种羟基磷酸氨基酸在

酸性PH条件下化学性质稳定,酸水解后它们可被回收并被直接鉴定出来。在节中介绍了通过酸水解和双向薄层电泳鉴定磷酸丝氨酸、磷酸苏氨酸和磷酸酪氨酸的技术。蛋白质也可在组氨酸、半胱氨酸和天冬氨酸位置上与磷酸共价键合,它们可以是以磷酸-酶的中间体或稳定修饰物的形式存在,这些磷酸氨基酸在酸性条件下不稳定,不能用对酸稳定磷酸氨基酸的标准技术来研究,它们只能通过排除法或演绎法来鉴定。研究这些酸不稳定的氨基酸已超出本书的范围,读者可以参考《酶学方法》(Methods in Enzymolcgy)第200卷有关鉴定这些新磷酸氨基酸的技术。 磷酸酪氨酸不是含量丰富的磷酸氨基酸,因而一般很难在用32Pi标记的样品中检出,尤其是当样品中含有大量在丝氨酸残基上磷酸化的蛋白质或有RNA污染时则更难。凝胶电泳分级后的样品以碱处理,使RNA水解并使磷酸丝氨酸脱磷酸,可以大大提高磷酸酪氨酸和磷酸苏氨酸的检出率,在节中描述一种碱处理的简单方法。 如果蛋白质被磷酸化,无需借助生物合成标记方法也可鉴定磷酸氨基酸。例如,蛋白质中所含的稀有的磷酸酪氨酸可用抗磷酸酪氨酸的抗体来检测,其特异性和敏感性相当高。更普遍的是,蛋白质的磷酸化常常使蛋白质在SDS-聚丙烯酰氨凝胶电泳中的迁移率发生变化,而且几乎总是改变它的等电点。将蛋白质和磷酸酶共同温育后,从凝胶迁移率的变动可以推论出非标记蛋白质存在磷酸化残基。这种方法在内源性ATP以[γ-32P]ATP进行标记的效率很差时很实用,如目的蛋白是来源于某些难以进行生物合成标记的组织或来源于体外翻译的情

第四章 蛋白质化学题答案

第四章蛋白质化学 一、单项选择题 1.蛋白质分子的元素组成特点是 A.含大量的碳B.含大量的糖C.含少量的硫D.含少量的铜E.含氮量约16% 2.一血清标本的含氮量为5g/L,则该标本的蛋白质浓度是 A.15g/L B.20g/L C.31g/L D.45g/L E.55g/L 3.下列哪种氨基酸是碱性氨基酸? A.亮氨酸B.赖氨酸C.甘氨酸D.谷氨酸E.脯氨酸 4.下列哪种氨基酸是酸性氨基酸? A.天冬氨酸B.丙氨酸C.脯氨酸D.精氨酸E.甘氨酸 5.含有两个羧基的氨基酸是 A.丝氨酸B.苏氨酸C.酪氨酸D.谷氨酸E.赖氨酸 6.在pH6.0的缓冲液中电泳,哪种氨基酸基本不移动? A.丙氨酸B.精氨酸C.谷氨酸D.赖氨酸E.天冬氨酸 7.在pH7.0时,哪种氨基酸带正电荷? A.精氨酸B.亮氨酸C.谷氨酸D.赖氨酸

E.苏氨酸 8.蛋氨酸是 A.支链氨基酸B.酸性氨基酸 C.碱性氨基酸D.芳香族氨酸 E.含硫氨基酸 9.构成蛋白质的标准氨基酸有多少种? A.8种B.15种 C.20种D.25种 E.30种 10.构成天然蛋白质的氨基酸 A.除甘氨酸外,氨基酸的α碳原子均非手性碳原子 B.除甘氨酸外,均为L-构型C.只含α羧基和α氨基D.均为极性侧链E.有些没有遗传密码11.天然蛋白质中不存在的氨基酸是 A.瓜氨酸B.蛋氨酸 C.丝氨酸D.半胱氨酸 E.丙氨酸 12.在中性条件下大部分氨基酸以什么形式存在? A.疏水分子B.非极性分子 C.负离子D.正离子 E.兼性离子 13.所有氨基酸共有的显色反应是 A.双缩脲反应B.茚三酮反应 C.酚试剂反应D.米伦反应 E.考马斯亮蓝反应 14.蛋白质分子中的肽键 A.氨基酸的各种氨基和各种羧基均可形成肽键 B.某一氨基酸的γ-羧基与另一氨基酸的α氨基脱水形成 C.一个氨基酸的α-羧基与另一氨基酸的α氨基脱水形成 D.肽键无双键性质

蛋白质的盐析与透析

蛋白质的盐析与透析 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液。 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。 附:胶棉半透膜的制备 市售5%的胶棉液,加入干燥的150mL锥形瓶中,将锥形瓶横斜不断转动,使瓶的内壁和瓶口都均匀沾有胶棉液。倒出多余的胶棉液,然后倒置约1min使乙醚、乙醇不断蒸发,直到干燥。逐步剥离瓶口的薄膜,沿瓶壁薄膜夹缝注入蒸馏水,使薄膜逐步跟瓶壁胶离,轻轻取出,浸入蒸馏水中备用。 如有侵权请联系告知删除,感谢你们的配合!

蛋白质的盐析与透析

蛋白质的分离纯化 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液,双缩脲试剂 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。

生物质谱分析蛋白质磷酸化位点

磷酸化蛋白的高效富集 在线酶解与快速鉴定 项目申请人:袁敏婷黄懿 指导教师:杨芃原 摘要:蛋白质的可逆磷酸化具有重要的生物学意义,对蛋白质磷酸化位点进行分析有助于阐明蛋白质磷酸化的机制与功能。生物质谱是目前进行蛋白质磷酸化分析最有力的方法之一,但由于蛋白质磷酸化的丰度低以及磷酸化的肽段离子化效率低,在质谱分析前,依然需要结合富集或分离的步骤。本作品旨在利用四氧化三铁磁性纳米材料对磷酸化肽或蛋白快速高效的特异性吸附,结合在线酶解技术的快速,高序列覆盖度特性构建一个快速,高效鉴定分析磷酸化蛋白的新技术。 关键词:蛋白质磷酸化;Fe3O4磁性材料富集;在线酶解 1.引言 蛋白质的翻译后修饰(PTMs)是目前蛋白质组研究中的一个重要课题。蛋白质磷酸化是最普遍、最重要的一种蛋白翻译后修饰方式,它几乎调节着生命活动的整个过程,包括细胞的增殖、发育和分化,神经活动,肌肉收缩,新陈代谢,肿瘤发生等。了解蛋白质磷酸化对功能的影响可深入理解生命系统如何在分子水平进行调控。据统计,在哺乳动物中大约有三分之一的蛋白质被认为是磷酸化修饰的,而脊椎动物基因组中有5%的基因编码蛋白激酶或磷酸酯酶。对众多生物化学功能起开/关调控作用,是一种普遍的调控机制。 蛋白质的可逆磷酸化使得蛋白质组学研究更为复杂。真核生物细胞蛋白质中主要的磷酸化氨基酸为丝氨酸、苏氨酸和酪氨酸,其比例大概为1800∶200∶1。大多数磷酸化蛋白质都有多个磷酸化位点,并且其磷酸化位点是可变的。因此,一种蛋白可能有多种磷酸化形式。对单一蛋白质进行研究的传统方法远不能满足分析这一层面上蛋白质的多样性和复杂性的需要,用蛋白质组技术和生物信息学高通量地研究翻译后蛋白质的修饰已成为必然趋势。虽然对磷酸化蛋白质组学分析已有很大进步,但依然存在多个难点亟待解决包括磷酸化蛋白和肽段的富集,可逆性磷酸化位点的鉴定以及磷酸化位点的定量等。 在过去几十年中已有多种分离和鉴定蛋白质磷酸化的技术发展起来,包括放射性同位素标记、免疫沉淀反应、化学修饰、固定金属离子亲合色谱法等,而生物质谱技术已经成为磷酸化蛋白鉴定的主要工具,串联质谱更是可以高通量,快速的给出详细的磷酸

、蛋白质的显色反应

实验二蛋白质的显色反应 一、实验目的 1、了解构成蛋白质的基本结构单位及主要连接形式。 2、了解蛋白质和某些氨基酸的呈色反应原理。 3、学习几种常用的鉴定蛋白质和氨基酸的方法。 二、呈色反应 1、双缩脲反应 (1)原理: 尿素加热至180o C左右,生成双缩脲并放出一分子氨。双缩脲在碱性条件下能与Cu2+结合生成紫红色化合物,此反应称为双缩脲反应。蛋白质分子中有肽键,其结构与双缩脲相似,也能发生此反应(二肽和氨基酸都不能发生双缩脲反应)。可用于蛋白质的定性或定量测定。 反应式如下: 双缩脲反应不仅为含有两个以上肽键的物质所有,含有一个肽键和一个 -CS-NH 2, -CH 2 -NH 2 , -CHR-NH 2 , -CH 2 -NH 2 -CH-NH 2 -CH 2 -OH或-CHOHCH 2 NH 2 等基团的物 质以及乙二酰二胺等物质也有此反应。NH 3也干扰此反应,因为NH 3 与Cu2+可生成 暗蓝色的络离子Cu(NH 3) 4 2+。因此,一切蛋白质或二肽以上的多肽都有双缩脲反 应,但有双缩脲反应的物质不一定都是蛋白质或多肽。 (2)试剂 ①尿素,②10%氢氧化钠溶液,③1%硫酸铜溶液,④2%卵清蛋白溶液(改为蛋清溶液:水= 1:9) (3)操作

取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。冷后,加10%氢氧化钠溶液约1mL,振荡混匀,再加1%硫酸铜溶液1滴,再振荡。观察出现的粉红颜色。要避免添加过量硫酸铜,否则,生成的蓝色氢氧化铜能掩盖粉红色。(由于杂质以及氨气的干扰,导致颜色不都是紫红色) 向另一试管加2%卵清蛋白溶液(改为蛋清溶液:水= 1:9)约1mL和10%氢氧化钠溶液约2mL,摇匀,再加1%硫酸铜溶液2滴,随加随摇。观察紫玫瑰色的出现。 2、茚三酮反应 (1) 原理 蛋白质、多肽和各种氨基酸以及所有 -氨基酸均能发生该反应,除无α-氨基的脯氨酸和羟脯氨酸呈黄色反应外,其它均生成蓝紫色化合物,最终生成蓝色化合物。氨、β-丙氨酸和许多一级氨化合物都有此反应。尿素、马尿酸、二酮吡嗪和肽键上的亚氨基不呈现此反应。因此,虽然蛋白质或氨基酸均有茚三酮反应,但能与茚三酮反应呈阳性反应的不一定都是蛋白质或氨基酸。该反应分为两步, 第一步是氨基酸被氧化脱氨形成酮酸,酮酸脱羧成醛,放出CO 2、NH 3 ,水合茚三 酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮同另一个水合茚三酮分子和氨缩合生成有蓝色物质。 反应机理如下: 该反应非常灵敏,1:150万浓度的氨基酸水溶液即能给出反应,是一种常用的氨基酸定量测定方法。但在定性、定量测定中,一方面要严防干扰物存在,另 蓝紫色

盐析的操作方法

③盐析的操作方法:最常用的是固体硫酸铵加入法。欲从较大体积的粗提取液中沉淀蛋白质时,往往使用固体硫酸铵,加入之前要先将其研成细粉不能有块,要在搅拌下缓慢均匀少量多次地加入,尤其到接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法,因为高浓度硫酸铵密度太大,要使蛋白质完全沉降下来需要较高的离心速度和 较长的离心时间。 各种饱和度需加入固体硫酸铵的量可由附录中查出。硫酸铵浓度的表示方法是以饱和溶液的百分数表示,称为百分饱和度,而不用实际的克数,这是由于当固体硫酸铵加到水溶液中去时,会出现相当大的非线性体积变化,计算浓度相当麻烦,为了克服这一困难,有人经过精心测量,确定出1L纯水提高到不同浓度所需加入硫酸铵的量,附录中的实验数据以饱和浓度的百分数表示,使用时十分方便。 ④盐析曲线的制作:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0~5℃,调至该蛋白质稳定的pH值,分6~10次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH值缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。 ⑤盐析的影响因素 (1)蛋白质的浓度:中性盐沉淀蛋白质时,溶液中蛋白质的实际浓度对分离的效果有较大的影响。通常高浓度的蛋白质用稍低的硫酸铵饱和度即可将其沉淀下来,但若蛋白质浓度过高,则易产生各种蛋白质的共沉淀作用,除杂蛋白的效果会明显下降。对低浓度的蛋白质,要使用更大的硫酸铵饱和度,但共沉淀作用小,分离纯化效果较好,但回收率会降低。通常认为比较适中的蛋白质浓度是2.5%~3.0%(质量分数),相当于25~30mg/ml。 (2)pH值对盐析的影响:蛋白质所带净电荷越多,它的溶解度就越大。改变pH值可改变蛋白质的带电性质,因而就改变了蛋白质的溶解度。远离等电点处溶解度大,在等电点处溶解度小,因此用中性盐沉淀蛋白质时,pH值常选在该蛋白质的等电点附近。

蛋白质磷酸化1

浅谈蛋白质磷酸化 摘要:蛋白质翻译后修饰几乎在所有的蛋白质上都会发生,被修饰后的蛋白质功能将会发生显著的变化。而蛋白质磷酸化是最常见、最重要的一种蛋白质翻译后修饰方式,在蛋白质翻译后修饰研究中有着重要地位,它参与和调控生物体内的许多生命活动。随着蛋白质组学技术的发展和应用,蛋白质磷酸化的研究越来越受到广泛的重视。本文主要介绍了蛋白质磷酸化的主要知识,主要类型与功能,以及研究蛋白质磷酸化的主要目的,最后简单了提到了预测蛋白质磷酸化位点的方法。 关键词:蛋白质修饰;蛋白质磷酸化;磷酸化位点预测 随着基因组计划基本完成,生命科学研究已进入后基因时代,主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是生命科学研究的核心内容。传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。它的研究内容包括:(1)蛋白质鉴定;(2)蛋白质翻译后修饰的研究;(3)蛋白质结构研究;(4)蛋白质细胞内定位及功能确定;(5)发现药物靶分子及制药等。 早期蛋白质组学的研究范围主要是指蛋白质的表达模式,随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。所谓蛋白质翻译后修饰指的是蛋白质折叠过程中和折叠过程后再多肽链上发生的共价反应,使蛋白质质量发生改变并且赋予蛋白质各种功能。 一、蛋白质磷酸化的概述 蛋白质的磷酸化反应是指通过酶促反应把磷酸基团从一个化合物转移到另一个化合物上的过程,是生物体内存在的一种普遍的调节方式,在细胞信号的传递过程中占有极其重要的地位。已经发现在人体内有多达2000个左右的蛋白质激酶和1000个左右的蛋白质磷酸酶基因。蛋白质的磷酸化是指由蛋白质激酶催化的把ATP或GTP上γ位的磷酸基转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白质磷酸酶催化的,称为蛋白质脱磷酸化。蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。其磷酸化和去磷酸化这一可逆过程,受蛋白激酶和磷酸酶的协同作用控制.酶蛋白的磷

磷酸化蛋白质组学

磷酸化蛋白质组学常用分析和定量方法 蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。目前已知有许多人类疾病是由于某些异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果。在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶。磷酸化修饰本身所具有的简单、灵活、可逆的特性以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受而成为一种最普遍的调控手段。鉴于磷酸化修饰在生命活动中所具有的重要意义,探索磷酸化修饰过程的奥秘及其对细胞功能的影响已成为众多生物化学家及蛋白组学家所关心的内容。用蛋白质组学的理念和分析方法研究蛋白质磷酸化修饰,可以从整体上观察细胞或组织中磷酸化修饰的状态及其变化,这对以某一种或几种激酶及其产物为研究对象的经典分析方法是一个重要的补充,同时提供了一个全新的研究视角,并由此派生出磷酸化蛋白质组学(phosphoproteomics)这一新概念。在蛋白质组学水平进行磷酸化蛋白质的分析定量研究已引起人们广泛关注,各种技术也相应地发展起来[60, 61]。 1. 磷酸化蛋白质和磷酸肽的富集[62] 1.1 免疫亲和色谱 富集磷酸化蛋白质最简单的方法就是用识别磷酸化氨基酸残基的特异抗体进行免疫共沉淀,从复杂混合物中免疫沉淀出目标蛋白质。目前,仅有酪氨酸磷酸化蛋白质的单克隆抗体可以用来进行有效的免疫共沉淀。这是因为该抗体具有较强的亲和力和特异性,可以有效地免疫沉淀酪氨酸磷酸化的蛋白质。Imam-Sghiouar等人从B-淋巴细胞中通过免疫沉淀获得酪氨酸磷酸化的蛋白质,然后再用二维电泳分离技术并结合质谱分析方法,从而鉴定出多个与斯科特综合症相关的酪氨酸磷酸化的蛋白质。由于抗磷酸化丝氨酸和苏氨酸抗体的抗原决定簇较小,所以令抗原抗体的结合位点存在空间障碍,特异性较差。因此,目前采用磷酸化丝氨酸/ 苏氨酸的抗体来富集磷酸化蛋白质的研究相对较少。 图片来源:https://www.sodocs.net/doc/e1297213.html,/wiki/Phosphoproteomics

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

盐析法沉淀蛋白质的原理

盐析法沉淀蛋白质的原理 1 中性盐沉淀(盐析法) 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ①成本低,不需要特别昂贵的设备。 ②操作简单、安全。 ③对许多生物活性物质具有稳定作用。 ⑴中性盐沉淀蛋白质的基本原理 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。

⑵中性盐的选择 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍。 3) 不易引起变性,有稳定酶与蛋白质结构的 作用。有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久。 4) 价格便宜,废液不污染环境。 ⑶盐析的操作方法 最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。

蛋白酶的盐析沉淀实验报告

蛋白酶的盐析沉淀实验报告 班级:生工1005 学号:020******* 姓名:朱同辉 实验目的: 1.掌握使蛋白质胶体溶液保持稳定的因素; 2.了解蛋白质沉淀的几种方法及其意义; 3.掌握测定蛋白酶活力的原理和方法; 4.学习酶活力的计算方法。 实验原理: 盐析法 在蛋白质溶液中加入少量中性盐,蛋白质溶解度增加,称为盐溶;而加入大量中性盐达一定浓度,蛋白质就会沉淀,称为盐析。 原理 : ①大量盐加入后,能与蛋白质争夺水分子,去除水膜; ②大量盐能中和蛋白质分子表面电荷,使分子间静电斥力减弱,疏水作用增强,使蛋白质沉淀。 盐析效果: 二价离子 > 一价离子 离子半径小 > 离子半径大 阳离子∶Mg2+>Ca2+>Ba2+>NH4+>Na+>K+>Pb+>Cs+ 阴离子∶PO43->SO42->Cl->Br->NO3->I->SCN- 蛋白质的溶解度与盐离子强度间的关系可以用Cohn 经验式来表示: 式中:S —蛋白质的溶解度 I —离子强度 β—常数,与温度和pH 有关 Ks —盐析常数,与蛋白质和盐的种类有关 其中I 根据下式计算: 式中:ci —i 离子的浓度(mol/L ) zi —i 离子所带的电荷 蛋白酶活力的测定 福林(Folin )试剂在碱性条件下可被酪氨酸还原成兰色化合物,蛋白酶水解酪蛋白产生酪氨酸,将产物中未被水解的酪蛋白除去后与福林试剂作用,根据显兰色的深浅可以计算出酪氨酸的产生量,从而推断酶活力的大小。 蛋白酶液的稀释、酶活测定和计算 K —在酪氨酸标准曲线上O.D 值为l 时酪氨酸的微克数(μg ),K 值为 108.53 680 D .O N K 10 4 ???=酶活力I K S log s -β=2 i i z c 2 1I ∑=

蛋白质介绍

[本次授课内容] 第6章蛋白质 6.4食品加工贮藏中蛋白质的变化与蛋白质的改性 # 6.5食品蛋白质含量的测定 重点:加工对营养及功能特性的影响、改善营养及功能特性的方法 6.4 食品加工贮藏中蛋白质的变化 6.4.1 食品加工贮藏中蛋白质的变化 6.4.1.1 热处理中的变化 热处理是许多食品,尤其是蛋白食品的加工常用的杀菌方法,也是一些食品加工中所必须的工艺步骤。多数食品蛋白质只能在窄狭的温度范围内(60-90℃,1h或更短时间)才具有生物活性或功能性。 ○加热对蛋白质理化性质的直接影响:蛋白质结构变得松散、某些次级键的断裂、变性失活等。而加热的程度(温度、时间)及其它因素的协同作用、蛋白质的种类等又是蛋白质变性程度的决定因素,其中有些变化有利于营养、功能特性的提高,另一些变化则属于劣变。 (1)有利变化始终保持适度热处理,既不会破坏共价键也不至于形成新的共价键,不影响蛋白质的一级结构。从营养学的观点讲,蛋白质对温和热处理所产生的变化一般是有利的。 ①大多数蛋白质在加热后营养价值得到提高。因为适宜的加热使蛋白质变性后,原有的紧密结构变得松散、伸展,进入人体易为消化酶所水解,从而提高消化率,营养价值也相应提高。 ②某些植物蛋白所含的抗营养因子-蛋白酶抑制剂(胰蛋白酶、胰凝乳蛋白酶)、凝集素(致血红细胞凝集)等在加热中被钝化失活。从而提高蛋白质食品的安全性和营养价值,如豆科植物蛋白的热加工处理。 ③热处理是常用的杀菌方法。微生物的机体蛋白因热处理变性失活,达到杀菌目的,可防止微生物引起的食品腐败变质。 33

34 ④ 热处理还可钝化食品中存在的某些可能引起食品的色泽、质地、风味等发生非需宜改变的酶。如,酶促褐变、引起豆腥味的LOX ),从而保持良好的风味及外观品质。 (2)不利变化 A 、过度加热会导致氨基酸特别是必需氨基酸(蛋与胱、赖AA )的损失。因蛋白质因热分解或聚合致使营养价值下降。 ① 脱硫:T-115℃~27h ,某些AA 残基(胱氨酸与蛋氨酸——含硫EAA ),会有一半以上的 胱氨酸发生脱硫化氢反应。既损害营养,也引起功能性质的改变; ② 脱酰胺:T>100℃,蛋白质中Gln ,Asn 残基脱除酰胺基-NH 2。尽管不损害营养,但环境 中-NH 2会导致蛋白质电荷和功能性质的改变; ③ 异构化:T>200℃,色氨酸发生异构化,生成环状衍生物。其中包括致突变物质,某些氨 基酸由L-型转变为D-型而失去营养价值,甚至具有毒性; ④ 交联反应:T>150℃,蛋白质中赖氨酸的ε-NH 2参与形成新的肽键-交联肽键。如Lys 与 Asp 、Glu 反应,失去赖氨酸的营养价值,新生成的肽链可能对人体有毒; NH CH CO (CH 2)4NH CO (CH )22CH CO ε-N (γ-谷氨酰基)-L-赖氨酰基 ⑤ 羰氨反应:当还原糖存在时,在普通条件下即可发生的羰氨反应,因加热可加速进行。色、 精、苏、组等均易发生,Lys 中ε-NH 2更易发生该反应,形成不易为酶消化水解的希夫碱,失去EAA 的营养价值并同时导致外观褐变,遇有蔗糖水解、脂肪氧化产物均可提供羰基发生该反应;当然,同时可对面粉焙烤食品起到需宜性的呈色效果。 ⑥ 热分解:T>200℃以上时(如烧烤食品表面温度),蛋白质发生热分解。可能产生诱变化合CH 3 2NH N N N N CH 3N N CH 3NH 23CH CH 32NH N N N

盐析

盐析 主要内容: 1.盐析原理 2.盐析的优缺点 3.盐析实验步骤 4.分段盐析 5.盐析曲线的制作 6.盐析注意事项 7.盐析的影响因素 8.盐析法应用 9.盐析常见问题分析 盐析原理 一般是指溶液中加入无机盐类而使溶解的物质析出的过程。如:加浓(NH 4)2SO 4使蛋白质凝聚的过程。 蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。当用中性盐加入蛋白质溶液,中性盐对水分子的亲和力大于蛋白质,于是蛋白质分子周围的水化膜层减弱乃至消失。同时,中性盐加入蛋白质溶液后,由于离子强度发生改变,蛋白质表面电荷大量被中和,更加导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。 盐析的优缺点 1. 成本低,不需要特别昂贵的设备。2. 操作简单、安全。3. 不会引起蛋白质变性,经透析去盐后,能得到保持生物活性的纯化蛋白质。4.效果不理想,通常只是作为初步的分离纯化,还需要结合其它的纯化。 盐析实验步骤 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,由下表可以看出:它的优点是温度系数小而溶解度大(20℃时饱和溶液为754克/升;0℃时饱和溶解度为706克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH 常在4.5-5.5之间,当用其他pH 值进行盐析时,需用硫酸或氨水调节。表1几种盐在不同温度下的溶解度(克/100毫升水) 饱和硫酸铵法 1.取x ml 血清加x ml 生理盐水,于搅拌下逐滴加入2xml 饱和硫酸铵,硫酸铵的终饱和度为50%。 ℃ 20℃80℃100℃(NH 4)2SO 470.675.4 95.3103Na 2SO 4 4.918.9 43.342.2NaH 2PO 4 1.67.893.8101

磷酸化蛋白质组学的研究及其应用

磷酸化蛋白质组学的研究及其应用 郝文杰生物化学与分子生物学 201421191526 摘要:蛋白质磷酸化是最常见、最重要的一种蛋白质翻译后修饰方式,蛋白质磷酸化和去磷酸化几乎调节着生命活动的整个过程。近年来蛋白质组学技术的发展和应用为磷酸化蛋白质的定性、定量和功能研究提供了必要的技术,使大规模和系统性进行磷酸化蛋白质研究成为可能。本文综述了检测和鉴定磷酸化蛋白质的蛋白质组学方法及其在生命领域的应用前景。 关键词:蛋白质;磷酸化;翻译;方法;检测 在对疾病发病机制、诊断、生理功能及药物开发研究中,往往需要获取一些高通量、大样本、全局性数据,通过整体化系统性分析,从中寻找线索,推断可能的病因以及诊断靶标,由此诞生了诸如基因组学、蛋白质组学及代谢组学等建立在网络架构式研究思路基础上多种新的研究方法和理论。生物体能迅速对体内环境变化和外界环境刺激产生应答反应,这些反应过程靠复杂的调控机制调节, 其中大多数调控机制是由蛋白质的构象变化所介导的,而蛋白质本身的构象变化常常是通过变构效应和蛋白质一级结构上发生的各种共价修饰来实现的[1]。目前,已发现20多种蛋白质翻译后修饰,以至一种基因产物可呈现磷酸化修饰、糖基化修饰、羧基化修饰、乙酰化修饰以及连接变异体等多种形式[2]。 蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。磷酸化修饰本身所具有的简单、灵活、可逆的特性,以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受成为一种最普遍的调控手段。蛋白质的磷酸化和去磷酸化这一可逆过程,几乎调节着包括细胞的增殖、发育、分化、细胞骨架调控、细胞凋亡、神经活动、肌肉收缩、新陈代谢及肿瘤发生等生命活动的所有过程,并且可逆的蛋白质磷酸化是目前所知道的最主要的信号转导方式[3]。目前已经知道有许多人类疾病是由于异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果[4]。 磷酸化蛋白质组学的研究尚处于初期阶段,鉴于其特殊的研究方法及内容,对揭示生命体尤其是疾病状态下细胞信号传导具有不可替代的优势[5-7]。此外, 磷酸化蛋白质组学的研究为寻找药物新的作用靶点和疾病诊断指标提供全新的 研究思路。本文就磷酸化蛋白质的检测、定量技术及其在生物领域的研究进行综述。 1.蛋白质磷酸化研究概况 蛋白质磷酸化作为真核细胞信号转导中的核心,在生命系统中发挥着重要作用。在真核生物中常见的三种磷酸化形式,丝氨酸磷酸化最多,苏氨酸磷酸化次之,而酪氨酸磷酸化最少,三者的比例是1800∶200∶1[8]。丝氨酸、苏氨酸、酪氨酸残基上的磷酸化是非常重要的蛋白质功能调节器[9],正确解析磷酸化蛋白质的结 构以及为磷酸化的位点是磷酸化蛋白质组的主要任务之一。另外,蛋白质磷酸化在机体内是动态的过程,不同条件下蛋白质磷酸化的定量分析是差异蛋白质组学研究的重要内容。 2.磷酸化蛋白质的主要检测技术 2.1放射性标记法 放射性标记法是研究蛋白质磷酸化的传统方法,是将用放射性同位素P标记的磷酸化蛋白质,经分离、富集后,利用放射自显影技术进行磷酸化蛋白质的检测。若要进一步分析磷酸化位点,则需要通过蛋白酶解消化,再通过Edman降解或质

糖类和蛋白质的特征反应教案解析

《糖类和蛋白质的特征反应》教案解析 《糖类和蛋白质的特征反应》教案解析 一、教材本节属于人教版化学2必修第三章第四节的内容,主要介绍了糖类、油脂和蛋白质等基本营养物质,这些物质与人的生命活动密切相关。在学习了前几节烃类以及烃类衍生物后,再学习本节知识可使学生深刻认识有机物,也可深化对不同有机物特点的理解,为之后的学习做准备。 (过渡:合理把握学情是上好一堂课的基础,因此要切实做好学情分析,理解学生。接下来我将对学情进行分析。) 二、学情由于糖类、油脂和蛋白质结构比较复杂,学生已有知识还不足以从结构角度认识糖类、油脂和蛋白质的性质,因此本节课我注重从生活经验和实验探究出发,认识糖类、油脂和蛋白质的组成特点,了解糖类和蛋白质的特征反应。 (过渡:新课标要求教学目标是多元的,主要包括学会、会学、乐学三个维度,所以我确定了如下教学目标。) 三、教学目标 1.了解糖类、油脂、蛋白质组成的特点。 2.了解糖类和蛋白质的特征反应。 3.通过从实验现象到性质的推理,体会科学探究的方法。 4.通过对糖类和蛋白质特征反应的探究过程,形成严谨求实的科学态度。 (过渡:基于以上对教材、学情以及教学目标的设立,我确定了如下的教学重难点。) 四、教学重难点【重点】糖类、和蛋白质的特征反应。【难点】葡萄糖与弱氧化剂氢氧化铜的反应。 (过渡:现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用如下教学方法:) 五、教学方法讲授法、实验探究法、小组讨论法。 (过渡:合理安排教学程序是最关键的一环,为了使学生学有所获,我将重点来说一下我的教学过程。) 六、教学过程环节一:导入新课通过日常生活中有关食物成分的例子,提出糖类、油脂和蛋白质都是我们重要的营养物质,吸引学生进入糖类和蛋白质特征反应的学习。从学生已有的生活实例出发来激发学生的好奇心,让学生带着求知欲进入本节课的学习。环节二:新课讲授首先用大屏幕展示糖类、油脂和蛋白质代表物的化学组成。让学生尝试分析单糖、双糖、多糖在元素组成和分子式上

蛋白质的盐析

蛋白质的盐析 SANY GROUP system office room 【SANYUA16H-

蛋白质的盐析(验证型) 一、实验目的 了解在工业化生产过程中使用(NH4)2SO4的情况,及(NH4)2SO4使用时的注意事项。 二、实验原理 用高浓度中性盐使蛋白质从溶液中沉淀出来的方法称盐析。常用的中性盐有(NH4)2SO4、NaCl 等。高`浓度中性盐能使蛋白质沉淀是因为它具有脱水性,能脱去蛋白质胶粒水膜,又有中和蛋白质胶粒外双电层电荷的作用。不同蛋白质盐析时所需盐浓度不同,故调节盐浓度,可适当地将蛋白质分开。如球蛋白在半饱和硫酸铵溶液中沉淀,清蛋白在饱和硫酸铵溶液中沉淀,用盐析法沉淀的蛋白质并未变性,用稀释的方法或透析的方法可使之复溶。 三、器材与试剂 1、发酵溶液 2、10%的三氯醋酸溶液 3、饱和(NH4)2SO4溶液 4、(NH4)2SO4粉末 四、实验步骤 (1)取发酵溶液5ml,加饱和(NH4)2SO4溶液1ml2ml3ml4ml5ml,混匀,静止数分钟,即有白色沉淀析出,应为何物?过滤至清,除去沉淀,滤液备用。取少量沉淀,加H2O看是否复溶? (2)取滤液0.5ml,加10%的三氯醋酸数滴,有白色沉淀产生,应为何物?然后在721分光光度计OD600下进行透光率的检测,检测时必须在倒入比色皿以后10秒内读取(为什么?)。(在进行检测时应注意将721分光光度计调整到OD600;在测量前应把机器预热半小时左右。在检测时应注意有效的检测范围是T值15%以上到70%以下)。 (3)另外,取滤液2.5ml于小烧杯中,加(NH4)2SO4粉末,随加随搅拌,直至(NH4)2SO4不能溶解为止,有白色沉淀产生,应为何物?然后过滤至清,除去沉淀,过滤备用。 (4)将(1)-(3)做的滤液中加10%三氯醋酸数滴观察有无沉淀产生。找到没有沉淀的加饱和(NH4)2SO4溶液的点。然后在721分光光度计OD600下进行透光率的检测。并且作出曲线。 (5)对大量的发酵液进行处理,在滤液中加10%三氯醋酸数滴观察有无沉淀产生。 (6)盐析曲线的制作方法:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0℃~5℃,调至该蛋白质稳定的pH值,分6~10次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。 五、盐析注意事项: 1.盐析的成败决定于溶液的pH值与离子强度,溶液pH值越接近蛋白的等电点,蛋白质越容易沉淀。 2.盐析一般用的硫酸铵,容易吸潮,因而在使用前,一般先磨碎,平铺放入烤箱内60℃烘干后再称量,这样更准确。 3.在加入盐时应该缓慢均匀,搅拌也要缓慢,越到后来速度应该更注意缓慢,如果出现一些未溶解的盐,应该等其完全溶解后再加盐,以免引起局部的盐浓度过高,导致酶失活。

生物化学第三章蛋白质化学名词解释

第三章蛋白质化学 1蛋白质:是一类生物大分子,由一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定序列以肽键连接形成。蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。2标准氨基酸:是可以用于合成蛋白质的20种氨基酸。 3、茚三酮反应:是指氨基酸、肽和蛋白质等与水合茚三酮发生反应,生成蓝紫色化合物,该化合物在570mm波长处存在吸收峰。 4、两性电解质:在溶液中既可以给出H+而表现出酸性,又可以结合H+而表现碱性的电解质。 5、兼性离子:即带正电和、又带负电荷的离子。 6、氨基酸的等电点:氨基酸在溶液中的解离程度受PH值影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子形式存在,且净电荷为零,此时溶液的PH值成为氨基酸的等电点。 7、单纯蛋白质:完全由氨基酸构成的蛋白质。 8、缀合蛋白质:含有氨基酸成分的蛋白质。 9、蛋白质的辅基:缀合蛋白质所含有的非氨基酸成分。 10、肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合时形成的化学键。 11、肽平面:在肽单元中,羧基的π键电子对与氮原子的孤电子对存在部分共享,C-N键具有一定程度的双键性质,不能自由旋转。因此,肽单元的六个原子处在同一个平面上,称为肽平面。 12、肽:是指由两个或者多个氨基酸通过肽键连接而成的分子。 13、氨基酸的残基:肽和蛋白质分子中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸的残基。 14、多肽:由10个以上氨基酸通过肽键连接而成的肽。 15、多肽链:多肽的化学结构呈链状,所以又称多肽链。 16、生物活性肽:是指具有特殊生理功能的肽类物质。它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代调节、神经传导。食物蛋白质的消化产物中也有生物活性肽,他们可以被直接吸收。 17、谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的酸性三肽,是一种生物活性肽,是机体重要的抗氧化剂。 18、蛋白质的一级结构:通常叙述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列。蛋白质的一级结构反映蛋白质分子的共价键结构。 19、蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列是连续的,主链构象通常是规则的。 20、蛋白质的超二级结构:又称模体、基序,是指几个二级结构单元进一步聚集和结合形成的特定构象单元,如αα、βαβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等。 21、蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间排布。蛋白质的三级结构的形成是肽链在二级结构基础上进一步折叠的结果。 22、蛋白质的结构域:许多较大(由几百个氨基酸构成)蛋白质的三级结构中存在着一个或多个稳定的球形折叠区,有时与分子的其他部分之间界限分明,可以通过对多肽的适当酶切与其他部分分开,这种结构成为结构域。 23、蛋白质的亚基:许多蛋白质分子可以用物理方法分离成不止一个结构单位,每个结构单位可以由不止一条台联构成,但特定且相对独立的三级结构,且是一个由共价键连接的整体,该结构单位称为蛋白质的亚基。

相关主题