搜档网
当前位置:搜档网 › 使用混合信号示波器调试数字电路的技巧应用指南

使用混合信号示波器调试数字电路的技巧应用指南

使用混合信号示波器调试数字电路的技巧应用指南
使用混合信号示波器调试数字电路的技巧应用指南

使用混合信号示波器调试数字电路的技巧

应用指南

引言

随着电子产品速度越来越快、越来越复杂,其设计、检验和调试的难度也越来越大。设计人员必须全面检验设计,才能保证产品可靠运行。在发生问题时,设计人员必需迅速了解根本原因,以便解决问题。通过同时分析信号的模拟表示方式和数字表示方式,许多数字问题的根本原因都可以迎刃而解,因此,混合信号示波器(MSO)为检验和调试数字电路提供了理想的解决方案。泰克MSO2000、MSO3000和MSO4000系列混合信号示波器不仅提供了泰克示波器的完美性能,还融合了16通道逻辑分析仪的基本功能,包括并行/串行总线协议解码和触发。MSO系列提供了首选工具,可以采用强大的数字触发、高分辨率采集功能和分析工具,迅速调试数字电路。本应用指南重点介绍检验和调试技巧,帮助您使用泰克MSO系列更高效地实现数字设计。

应用指南

图2. MSO系列上的定时采集实例,它使用设备的时钟信号定义和解码4条并行总线。

图1. 同一个MSO4000数字探头适配夹上的混合逻辑家族(TTL & LVPECL)门限设置。上面三条通道是TTL 信号,门限为1.40 V;下面两条通道是LVPECL 信号,门限为2.00 V。

设置数字门限

混合信号示波器的数字通道把数字信号视为逻辑值高或

逻辑值低,与数字电路查看信号的方式一模一样。也就是说,只要振铃、过冲和地电平反弹不导致逻辑跳变,那么这些模拟特点对MSO 就不是问题。与逻辑分析仪一样,MSO 使用门限电压,确定信号是逻辑值高还是逻辑值低。

MSO4000系列可以为每条通道独立设置门限,适合调试带有混合逻辑家族的电路。图1显示了MSO4000在其中一个数字探头适配夹上测量五个逻辑信号,它同时测量三个T T L (晶体管-晶体管逻辑)信号和两个LVPECL (低压正发射器-耦合逻辑)信号。

MSO2000和MSO3000系列则为每个探头适配夹设置门限(一组8条通道),因此TTL 信号将位于第一个适配夹上,而LVPECL 信号则位于第二个适配夹上。

定时采集和状态采集

主要数字采集技术有两种。第一种技术是定时采集,其中MSO 以MSO 采样率确定的距离相等的时间对数字信号采样。在每个样点上,MSO存储信号的逻辑状态,创建信号的时序图。

第二种数字采集技术是状态采集。状态采集规定了数字信号逻辑状态有效稳定的特殊时间,这在同步和时钟输入数字电路中十分常见。时钟信号规定了信号状态有效的时间。例如,对采用上升沿时钟的D 触发装置来说,输入信号稳定时间在时钟上升沿周围。对采用上升沿时钟的D触发装置来说,输出信号稳定时间在时钟下降沿周围。由于同步电路的时钟周期可能并不是固定的,因此状态采集之间的时间可能并不均匀,这一点是它与定时采集的不同点。

逻辑分析仪同时提供了定时采集功能和状态采集功能。混合信号示波器数字通道采集信号的方式与逻辑分析仪在定时采集模式下采集信号的方式类似,如图2所示。泰克MSO系列把定时采集解码成时钟输入总线显示画面(图2)和事件表(图3),其与逻辑分析仪的状态采集显示画面类似,在调试过程中为您提供重要信息。

使用混合信号示波器调试数字电路的技巧

图4. 探头色码与波形色码一致,可以更简便地查看哪些信号与哪个测试点对应。

图3. 在事件表中显示解码的数据,这与逻辑分析仪的状态采集显示画面类似。

带色码的数字波形显示

数字定时波形看上去与模拟波形非常类似,但有一点除外,即它只显示逻辑值高和低。定时采集分析的重点通常是确定具体时点的逻辑值,测量一个或多个波形上边沿跳变之间的时间。为使分析变得更简便,泰克MSO 系列在数字波形上用蓝色显示逻辑值低,用绿色显示逻辑值低,即使看不见跳变时,用户仍能查看逻辑值。波形标记颜色还与探头色码一致,可以更简便地查看哪个信号与哪个测试点对应,如图4所示。

数字定时波形可以分组,建立一条总线。一个数字信号被定义为最低有效位,其它数字信号表示二进制数值的其它位,直到最高有效位。然后MSO 把总线解码成二进制值或十六进制值。泰克MSO 系列还建立一个事件表,把逻辑状态显示为二进制值或十六进制值。每种状态都带有时间标记,简化了时序测量工作。

泰克MSO系列使用时钟输入格式或非时钟输入格式解码并行总线。对时钟输入解码,MSO 确定指定作为时钟的信号的上升沿、下降沿或两个沿上总线的逻辑状

态。这意味着只显示总线上有效的跳变,而不包括数据无效时发生的任何跳变。对非时钟输入解码,MSO在每个样点上解码总线,显示总线上的每个跳变。在MSO使用时钟输入解码时,解码的总线显示画面和事件表与逻辑分析仪的状态显示画面非常类似。由于总线解码是采集后流程,因此您可以在分析过程中灵活地改变解码格式。

泰克MSO 系列同时解码最多两条或四条总线,具体视型号而定。总线定义为并行或串行(I 2C, SPI, USB, CAN,LIN, FlexRay, RS-232/422/485/UART 和I 2S/LJ/RJ/TDM)。并行总线由数字通道D0-D15中的任意一条通道组成。串行总线由模拟通道1 - 4和数字通道D0 -D15中的任意一条通道组成。MSO系列一次显示最多4条模拟通道、4个参考波形、1个数学运算波形、4条总线和16条数字通道,可以最大限度地了解电路行为。

应用指南

图6. 对5 V COMOS信号,把MSO数字门限设置为2.5 V。图5. 使用测量统计功能迅速检验5 V CMOS信号幅度。

准备进行数字采集

在MSO准备进行数字采集时,基本任务有两项。第一,与逻辑分析仪一样,需要为被测的逻辑家族配置MSO 数字通道门限,以保证采集正确的逻辑电平。第二,需要调节模拟通道的偏移,以在模拟通道和数字通道之间实现准确的时间相关。

可以使用MSO的模拟通道,迅速检查数字信号的逻辑摆幅。在图5中,MSO使用多个采集中的测量统计数据,自动测量5 V CMOS信号幅度。对电压摆幅对称的逻辑家族,如CMOS,门限是信号幅度的一半。在图6中,数字通道门限设置为2.5 V,是5 V CMOS信号幅度的一半。但对逻辑摆不对称的逻辑家族,如TTL,一般需要查阅元件产品技术资料,把逻辑设备最大低电平输入电压值(TTL V IL = 0.8V)和最小高电平输入电压值(TTL V IH = 2.0V)的一半(TTL V threshold = 1.4V)作为门限。从图6中可以看到同一信号模拟波形和数字波形上升沿之间的时间偏移。模拟波形位于数字波形前面。为准确地进行测量,必需去掉模拟到数字时间偏移,以在模拟波形和数字波形之间更好地实现时间相关。泰克MSO 系列提供了可以调节的模拟探头偏移校正功能,使模拟通道相对对准,并使模拟通道与数字通道对准。模拟通道偏移校正设置补偿不同模拟探头的传播延迟。

泰克MSO系列中每台示波器都带有一只逻辑探头。为简化数字测量,示波器会补偿逻辑探头的传播延迟,因此没有数字通道探头偏移校正调节功能。例如,MSO4000数字通道的通道间偏移指标典型值是60 ps。

使用混合信号示波器调试数字电路的技巧

未指明突发间

的时间

图7. 模拟通道时间与数字通道对准。图8. TTL突发信号。

图9. TTL突发信号。为把模拟通道与数字通道对准,CMOS模拟波形上的2.5 V位置需要与2.5 V门限上发生的CMOS逻辑跳变在时间上对准。如图7所示,我们使用-1.60 ns偏移校正功能,把模拟通道与数字通道对准。对其它模拟通道,重复这个偏移校正过程。

在模拟探头变化时,应检查模拟通道偏移,在测量不同的逻辑家族时,应检查数字门限。通过配置门限和偏移,MSO可以随时检验和调试数字电路。下面我们讨论使用MSO检验设计的多个实例。

触发非预计事件

第一个实例是检验包含8个脉冲的TTL突发信号,如图8所示。正脉宽指标范围是23.2 ns - 25 ns,脉冲之间的脉宽是26 ns-27 ns。突发之间的时间没有指定。

MSO数字通道连接到TTL突发信号上,为TTL逻辑设置门限。MSO配置成上升沿触发。为加快检验过程,MSO配置成自动测量光标之间的正脉宽和负脉宽。

图9显示了单次采集,其中在第一个脉冲沿上触发MSO。根据按MSO单次采集按钮的时间,MSO可能已经触发采集任何其它上升沿。

采集的信号有八个满足规范的脉冲。第一个正脉冲宽23.88 ns,负脉冲宽26.18 ns,这些数值自动测得,都位于规范范围内。泰克MSO系列示波器的光标是联动的,一个控件会沿着波形移动两个光标,检查每个正脉宽和负脉宽。这一采集中的所有脉冲都满足规范。

应用指南

图11. MSO 触发采集3.636 ns 的正脉宽误差。

图10. MSO系列测量统计,检验TTL突发信号正脉宽和负脉宽。

通过把MSO 采集模式从Single 变成Run,可以更严格地检查正脉宽和负脉宽。它在多个采集中累加正负脉冲统计数据(平均值、最小值、最大值和标准偏差),可以为测量统计选择2 - 1,000次采集。

图10的测量统计数据显示正脉宽平均值为23.87 ns,标准偏差为53.62 ps。正脉宽最小值为23.76 ns,最大值为24.00 ns,位于规范范围内。同样,经检验,负脉宽也位于规范范围内。这时,TTL突发信号检验工作进展顺利。

这种检验技术取决于采集和分析的是连续信号的哪些部分。更有力的检验技术是利用泰克MSO 系列强大的触发功能检查每个脉宽。例如,MSO 可以设置成测量每一个正脉冲,触发<23.2 ns 的不合格的脉宽,来检验TTL 突发信号。可以使用单次采集模式,在触发后停止MSO,来分析不合格的脉冲。

在图11中,MSO 触发<23.2 ns的不合格的正脉冲,在这一采集中捕获了两个错误。第一个错误是第七个脉冲宽3.636 ns,小于23.2 ns 的最小规范。第二个错误是漏掉了第八个脉冲。这是使用MSO 数字触发查看不合

格数字信号的实例。另外,在查找不合格的数字信号时,可以使用MSO 触发,查看>25.6 ns 的脉冲。在本例中,没有找到任何问题。

这个错误的根本原因在于设计问题。控制脉冲选通的信号与脉冲生成不同步,选通时长偶尔会变化。结果,内部选通间歇性地砍掉第后一个脉冲,削去第七个脉冲。可以使用这种触发错误的检验技术,长时间监测信号,如隔夜监测或周末监测,从而提供更加严格的设计检验技术。

使用混合信号示波器调试数字电路的技巧

信号0

信号1

图13. MSO 触发底部LVPECL 信号上的727.3 ps 毛刺。

图12. 周期为50 ns 的LVPECL 信号0及周期为90 ns的信号1。

使用模拟采集和数字采集,全面了解设计情况

在本例中,我们检验两个低压正发射器耦合逻辑(LVPECL)信号。3.3 V LVPECL逻辑值高约为2.4 V,逻辑值低约为1.6 V,因此我们把MSO数字通道门限设置为2.0 V。

信号0是一个周期约为50 ns 的方波,信号1是周期约为90 ns 的方波,如图12所示,两个信号之间没有时间关系。

我们使用上一个TTL突发实例中使用的检验技术,检验这些LVPECL 信号。为检查不合格信号,我们把MSO 配置成触发<22.4 ns 的脉宽。在图13中,MSO 触发底部信号上的727.3 ps毛刺。捕获这个毛刺要求MSO的定时分辨率好于727.3 ps。

MSO 的一个重要的采集指标是捕获数字信号使用的定时分辨率。以更好的定时分辨率采集信号可以更准确地测量信号变化的时间。例如,500 MS/s 采集速率的定时分辨率为2 ns,采集的信号边沿不确定性是2 ns。更低的定时分辨率60.6 ps (16.5 GS/s)会把信号边沿不确定性降低到60.6 ps,可以捕获变化更快的信号。

泰克MSO4000系列同时使用两种采集在内部采集数字信号。第一种采集是对高达10 M 的记录长度,定时分辨率最低为2 ns,第二种采集称为MagniVu TM 高速采集。MagniVu 在以采集点为中心的10,000点记录长度采集中的定时分辨率最低为60.6 ps。MSO3000系列提供了高达121.2 ps 的MagniVu 定时分辨率。MagniVu 采集显示信号跳变细节,如定时分辨率较低的其它仪器看不到的毛刺。

在图13中,在顶部信号上升沿发生时,发生了底部信号毛刺。这可能是一个串扰问题,但在进行这种诊断之前还需要更多的信息。

应用指南

图16. 根据一次采集数据,D 触发装置看上去运行正常。

图14. 导致毛刺的两个LVPECL 信号之间的上升沿串扰。

图15. 74F74 D 触发装置。

D 输入Q 输出时钟

MSO 模拟通道连接到两个LVPECL 信号上,再次启动MSO,查找小的不合格脉冲。这次,MSO 触发采集一个1.091 ns 毛刺,MSO 可以从模拟角度了解两个LVPECL 信号,如图14所示。在另一个信号上发生上升沿时,发生了模拟毛刺。大多数模拟毛刺低于LVPECL 逻辑门限,但有些毛刺越过了逻辑门限,被视为逻辑错误,如显示画面左边顶部波形上的毛刺。

MSO 提供了明显的优势,可以同时捕获信号的数字特点和模拟特点,以时间相关的方式显示这些特点,了解数字信号的信号完整性。这些毛刺的根本原因在于两个LVPECL 信号之间的上升沿串扰。LVPECL 上升沿跳变驱动起来比下降沿更难、更快。结果,上升沿会比下降沿产生明显多得多的串扰。这个采集中没有下降沿串扰迹象。

非单调边沿和建立时间/保持时间违规

在本例中,我们检验TTL 74F74 D 触发装置操作。D触发装置时钟上升沿把D 输入加载到Q 输出上,如图15所示。例如,如果D 输入在时钟上升沿上为高,那么Q 输出为高。

图16显示MSO 触发时钟上升沿,这是底部波形。D 触发装置数据输入是中间波形,Q输出是顶部波形。数字通道标上OUT、DATA和CLK,可以轻松地识别每个波形。

使用混合信号示波器调试数字电路的技巧

图18. 非单调时钟上升沿导致的时钟毛刺。

图17. MSO捕获727.3 ps的时钟毛刺。

乍一看,一切正常,输入数据在时钟上升沿之后出现在输出上。通过MSO4000系列60.6 ps的高分辨率MagniVu定时采集技术,可以明显看到D触发装置的传播延迟。

时钟的正脉宽是7.455 ns,MSO触发功能配置成查找<6.40 ns的不合格的时钟脉冲。图17显示MSO触发正常时钟脉冲前时钟信号上的727.3 ps毛刺。模拟通道连接到时钟信号上,进一步了解这个毛刺,再次启动MSO。图18显示MSO触发时钟毛刺,MSO可以查看导致毛刺的事件的模拟特点。时钟上升沿是不单调的。使用MSO光标,确定毛刺中间的时钟电压是2 V,把光标向右移大约500 ps,时钟电压下降到1.76 V。这个电压下跌导致逻辑状态有很短的一段时间从逻辑值高变成逻辑值低,然后时钟信号的电压持续提高。74F74规范的最大低电平输入电压是0.8 V IL,最小高电平输入电压是2 V IH。上升时间慢的时钟信号或V IL和V IH 之间的非单调操作会导致不确定的D触发装置行为。根据这一采集,非单调时钟边沿似乎没有导致任何问题。检验报告中指明了非单调时钟边沿,下一步是检验Q输出操作。

Q输出只应在输入变化时才变化,变化只应发生在上升沿+D触发装置传播延迟处。时钟的固定周期为20 ns。因此,Q输出的任何脉冲宽度不应<20 ns,因为Q输出只应在相距20 ns的时钟上升沿上变化。MSO配置成触发<19.2 ns的Q输出脉宽。

应用指南

图21. D 触发装置Q 输出在时钟上升沿前4.488 ns 建立时间处正确运行。

图19. D 触发装置Q 输出错误。图20. D 触发装置Q 输出错误,包括模拟特点。

图19显示MSO捕获了一个<19.2 ns的Q输出脉宽。注意,这个Q输出小于时钟周期。波形分析结果显示,在发生时钟上升沿时,D 输入为高。Q 输出从低到高跳变是正确的,但在D触发器操作中,后面的从高到低跳变发生错误,因为跳变与时钟上升沿无关。

模拟通道连接到Q输出上,可以进一步了解问题,如图20所示。Q 输出模拟信号开始提高,但之后不久下降。注意Q 输出模拟信号没有达到正常模拟逻辑值高就回降了。

根据过去的调试经验,这可能是D输入相对于时钟边沿的建立时间/保持时间违规导致的亚稳定毛刺。在图20中,使用光标测得的D输入的建立时间是4.188ns。这个建立时间是74F74的2 ns 最小建立时间指标的两倍。但是,74F74没有正常运行,因为D 输入在时钟边沿前4.188 ns 变化。

把MSO 触发变成捕获建立时间/保持时间违规,以确定这个74F74正确运行需要多少建立时间。图21显示上升的D 输入与时钟上升沿之间的建立时间为4.488ns时,Q输出正常运行。其它采集表明,在建立时间小于等于4.188 ns 时,Q 输出偶尔会有毛刺。

使用混合信号示波器调试数字电路的技巧

图22. MSO触发采集光标‘a’和‘b’之间建立时间/保持时间窗口中的D触发装置数据变化。

然后,我们检查D输入,确定建立时间/保持时间违规。MSO建立时间/保持时间触发配置成建立时间2 ns、保持时间1 ns,以在时钟上升沿周围的数据有效窗口中检查D输入变化。

图22显示了一个严重的D输入建立时间/保持时间违规。光标‘a’位于时钟上升沿前最小2 ns的建立时间处,光标‘b’位于时钟上升沿后最小1 ns的保持时间处。在时钟上升沿周围这3 ns的数据有效窗口中,D输入必须稳定。规范没有规定D输入在数据有效窗口中变化时,D触发装置正确工作。

在检验过程的这个点上,D触发装置操作及其信号有三个问题。第一个问题是时钟上升沿不单调。必需重新设计时钟电路,以获得更好的上升沿。第二个问题是74F74在D输入建立时间为2 ns-4.188 ns时不能正确运行,这可能与时钟上升沿差或74F74不满足规范有关。第三个问题是D输入建立时间/保持时间违规。必需重新设计D输入电路,以便其在时钟边沿建立时间/保持时间窗口中不会变化。图23. 检验传感器数据采集系统输出范围。

测试信号

采集系统

十六进制

值3F

信号调节

十六进

制值00

ADC输入

MSO Ch1

使用Wave Inspector?迅速检验ADC输出

在本例中,我们使用固定的测试斜波信号检验传感器数据采集系统的输出范围。传感器数据采集系统是一条模拟信号调节电路,它把信号输送到一条20 MS/s、6位模拟到数字转换器(ADC)中。ADC 6位数据总线在ADC 时钟下降沿处有效。采集系统输入上的测试斜波信号应生成一个十六进制为00-3F的ADC取值范围。

MSO模拟通道连接到信号调节输出上,信号调节输出也是ADC输入,这可以迅速检查信号调节输出和ADC 输入信号。MSO数字通道0连接到ADC时钟输出上,数字通道1-6连接到ADC 6位数据总线上,如图23所示。MSO设置成触发ADC输入信号的上升沿。

数字总线

MSO D1-D6

总线时钟

MSO D0

应用指南

图24. MSO触发到ADC输入的上升沿,Wave Inspector放大信号,以便可以轻松看到并行总线解码十六进制。测试斜波信号位于通道1上。显示画面底部是数字通道0上的ADC 时钟。ADC数字输出总线信号1-6位于时钟波形上方。ADC 数字信号划分到显示画面中心的时钟输入并行总线内。图25. Wave Inspector搜索功能在测试信号波谷中没有找到任何十六进制00。

图24显示MSO在到ADC输入的上升沿处触发。泰克MSO系列独有的功能Wave Inspector?用来在触发点周围放大20倍,可以轻松看到并行总线解码值。ADC 数据在时钟下降沿处稳定,MSO解码时钟下降沿处的总线值。因此,在ADC数据稳定时,并行总线在时钟下降沿处更新。

MSO强大的触发功能可以找到信号问题,触发并行或串行总线内容,把采集重点放在问题区域上。但是,在采集数据后,将不再应用采集。手动搜索长记录长度可能会非常耗时,而且很麻烦。10 M点的波形记录相当于9,700多屏全部分辨率数据。如果速度是每秒滚动一个全部分辨率屏幕,那么这需要超过2小时40分钟才能滚动完10 M点的波形。而使用Wave Inspector搜索及标记10 M点记录的6位数据总线采集,只需要大约30秒的时间。一旦找到和标出数据,那么只需按前面板上的Previous和Next箭头键,就可以在发生的事件之间转换。另外还可以搜索触发类型,如边沿、脉宽、欠幅脉冲、建立时间/保持时间、逻辑、上升时间/下降时间和总线数据值。

图25显示Wave Inspector搜索ADC并行总线中的十六进制值00,其应该位于每个测试斜波信号的波谷。但显示画面顶部没有白三角形标记,画面底部的搜索事件读数显示为零,这些都表明没有找到十六进制值00。没有十六进制值00意味着ADC没有看到与十六进制00对应的模拟输入电压。采集系统模拟信号调节电路没有正确处理测试斜波信号的最小波峰,与ADC最小输入电压相匹配,以便ADC生成十六进制值输出00。

使用混合信号示波器调试数字电路的技巧

图26. Wave Inspector总线搜索功能在测试信号波峰找到太多的十六进制值3F。图27. Wave Inspector导航功能跳到测试信号波峰标记的十六进制3F上。

图26显示Wave Inspector搜索ADC最大输出十六进值3F。Wave Inspector的总线搜索功能找到18个事件。这些事件分成三组搜索标记,这些标记位于测试斜波信号波峰上。但每个波峰有多个十六进制3F,而每测试信斜波信号波峰上本应只有一个十六进制3F。

图27显示使用Wave Inspector右箭头导航键,从图26的触发位置跳到触发右面标记的第一个3F事件上。注意在MSO显示画面中心,ADC输出总线数据是37、38、39、3A、3B、3C、3D、3E和六个十六进制值3F。正确操作是在测试斜波信号波峰上有一个十六进制3F。ADC输入测试斜波信号削波的顶部可能已经生成多个十六进制3F,但模拟通道ADC输入波看上去很好,其在测试斜波信号波峰上没有削波或失真。相反,测试斜波信号波峰上的多个十六进制3F表明,模拟信号超过了ADC最大输入电压。信号调节处理的测试斜波信号超过了ADC最大输入电压,处理的信号没有达到ADC 最小输入电压。为解决这个问题,需要调节采集系统信号调节偏置和增益。注意在图27的左下角上,ADC输入波形最大值是1.871 V,最小值是854.1 mV。信号调节电路偏置和增益需要同时降低这两个值,才能正确运行。

应用指南

图29. 每个斜波波峰上有一个十六进制00,运行正常。图28. 每个斜波波峰上有一个十六进制3F,运行正常。

图28显示调节采集系统模拟信号调节增益和偏置,为ADC提供正确处理的测试斜波信号。在信号调节后,ADC输入波形的最大值从1.871 V下降到1.838 V。现在,在测试斜波信号的每个波峰只有一个十六进制3F,与预期相符。ADC的最大输入正确运行。

在图28中,可以轻松看到这一采集中的ADC转换时间。ADC转换时间是从模拟输入波峰到十六进制3F出现在ADC输出时的时间周期。

图29显示Wave Inspector搜索十六进制值00,这个值应该位于斜波信号的每个波谷中。共找到三个十六进制00,测试斜波信号的每个波谷上有一个十六进制00,与预期相符。最后,可以使用Wave Inspector左导航箭头键,跳到左面第一个标记的十六进制值00上,检查测试斜波波谷上的ADC总线细节,如图29所示。在数量下降到最小的十六进制值00及在最小值之后数量上升时,采集系统正确运行。总线值保存到.CSV文件中,与Microsoft Excel进行对比,确定是否有值漏掉或重复。

在本例中,MSO数字通道解码成时钟输入总线,使用Wave Inspector迅速找到或没有找到ADC总线最大值和最小值。我们可以迅速确定问题的根源是模拟信号调节电路。

使用混合信号示波器调试数字电路的技巧小结

对检验设计中数字电路、模拟电路和软件复杂的交互特点的设计人员来说,泰克MSO系列示波器具有重要意义,其不仅提供了基本逻辑分析仪功能,还提供了示波器的简便易用性,并拥有完善的工具,包括强大的数字触发功能、高分辨率采集功能和内置分析工具,可以迅速检验和调试数字电路。

MSO系列提供了多种型号,可以满足您的需求和预算:

MSO4000系列MSO3000系列MSO2000系列

带宽 1 GHz, 500 MHz, 350 MHz500 MHz, 350 MHz, 100 MHz200 MHz, 100 MHz

通道数量4条模拟通道,2条或4条模拟通道,2条或4条模拟通道, 16条数字通道16条数字通道16条数字通道

记录长度(所有通道)10 M 5 M 1 M

采样率(模拟) 5 GS/s*, 2.5 GS/s 2.5 GS/s 1 GS/s

采样率(数字)500 MS/s (全部记录长度)500 MS/s (全部记录长度) 1 GS/s (使用任意一条

16.5 GS/s (以触发为中心8.25 GS/s (以触发为中心通道: D7 - D0)

周围10 k点)周围10 k点)500 MS/s (使用任意一条

通道: D15 - D8)

彩色显示器10.4英寸XGA9英寸XGA7英寸WQVGA

并行总线分析是是是

串行总线触发和DPO4EMBD: I2C, SPI DPO3EMBD: I2C, SPI DPO2EMBD: I2C, SPI

分析应用模块DPO4USB: USB DPO3COMP: RS-232/422/DPO2COMP: RS-232/ DPO4COMP: RS-232/422/485/UART422/485/UART

485/UART DPO3AUTO: CAN, LIN DPO2AUTO: CAN, LIN

DPO4AUTO: CAN, LIN DPO3AUDIO: I2S /LJ/RJ/TDM

DPO4AUTOMAX: CAN,

LIN, FlexRay

DPO4AUDIO: I2S/LJ/RJ/TDM

其它应用支持电源分析电源分析-

HDTV和自定义视频HDTV和自定义视频

* 1 GHz带宽型号。

版权? 2009年,泰克公司保留所有权利。泰克产品受已经签发和正在申请的美国和国外专利保护。本文中的信息代替以前出版的所有材料。泰克保留改变本文中的技术数据和价格的权利。TEKTRONIX和TEK是泰克公司的注册商标。本文中提到的所有其它商号均为各自公司的服务标志、商标或注册商标。

10/09 JS/ 3GC-24008-1

了解更多信息

Tektronix 维护一个全面的和不断扩展的应该文章、技术简介和其他资源的集锦,可帮助工程师使用最新的技术。请访问https://www.sodocs.net/doc/d615735414.html,

上海市浦东新区川桥路1227号邮编:201206

电话:(8621)50312000传真:(8621)58993156

泰克上海办事处

上海市静安区延安中路841号东方海外大厦18楼1802-06室邮编:200040

电话:(8621)62896908传真:(8621)62897267

泰克深圳办事处

深圳市福田区南园路68号上步大厦21层G/H/I/J 室邮编:518031

电话:(86755)82460909传真:(86755)82461539

泰克西安办事处

西安市东大街

西安凯悦(阿房宫)饭店345室邮编:710001

电话:(8629)87231794传真:(8629)87218549

泰克成都办事处

成都市人民南路一段86号城市之心23层D-F 座邮编:610016

电话:(8628)86203028传真:(8628)86203038

泰克科技(中国)有限公司

泰克武汉办事处

武汉市汉口建设大道518号招银大厦1611室邮编:430022

电话:(8627)87812760/2831

泰克北京办事处

北京市海淀区花园路4号通恒大厦1楼101室邮编:100088

电话:(8610)62351210/1230传真:(8610)62351236

泰克香港办事处

九龙尖沙咀加连威老道2-6号爱宾大厦15楼6室

电话:(852)25856688传真:(852)25986260

泰克中国客户服务中心全国热线:400-820-5835

示波器的调节和使用

示波器的调节和使用 我们以型号为 YB4300系列的双踪示波器为例说明其一般使用方法。 波器的型号根据频率不同主要有 YB4320G YB4340G YB4360G 一、示波器的调节和使用 示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异。熟练掌握示波 器的使用,首先应该了解示波器面板上各个旋钮的功能。 本书以YB4320G 型示波器为例进行 说明,如图1所示。该示波器的前面板如图 2所示,各部分功能介绍如下: 图1 YB4320G 型示波器外形结构 图2 YB4320G 型示波器操作面板示意图 1、主机电源 (9)电源开关(P0WER )将电源开关按键弹出即为“关”位置,将电源线接入,按电源 开关键,接通电源。 (8)电源指示灯:电源接通时,指示灯亮。 YB4300系列双踪示 ¥4rvd r-0 总已0 O 匚)计t 帥 尢先牛乔亠帀川…诲 CHI KI 44 ■ CC H r 口 A 财 ■ DC oo a *!' 甲o?C ffi ? ④& BL in ” L Z] :- X I Efc ■裁 OI *; :!? ' - r # ^1-- til i :二! E_ < J C J s £ ^ ---^ 7 M 百 “D 二匸巳龄■ 已Fa? g.営 2 J * i 念 ¥B^gQ<3 口 口 □ va.Tsw J I ★ - ------- =1k.. ◎ ⑥磁???? ? 竺 a 'JBLTStW ”" I ! W ?"-'-■ jliii, + (U£9

( 2)辉度控制 (INTENSITY) :顺时针方向旋转旋钮,扫描线辉度增加。 (4) 聚焦控制(FOCUS):用辉度控制钮将亮度调至合适的标准, 然后调节聚焦控制钮直 至光迹达到最清晰的程度。 虽然调节亮度时, 聚焦电路可自动调节, 但聚焦有时也会轻微变 化,如果出现这种情况,需重新调节聚焦旋钮。 (5) 基线旋转 (TRACE ROTATION) 用于调节扫描线使其和水平刻度线平行,以克服外 磁场变化带来的基线倾斜,需要使用螺丝刀调节。 ( 45)显示屏:仪器的测量显示最终端。 (3)延迟扫描辉度控制钮(B INTEN ):顺时针方向旋转此钮, 迹亮度。 ( 1 )校准信号输出端子( CAL ) 2、 垂直方向部分( VERTICAL ) ( 13)通道 1 输入端 [CH1 INPUT (X ) ] :被测信号由此输入 方式时,输入到此端的信号作为 X 轴信号。 ( 17)通道 2 输入端 [CH2 INPUT (X ) ] :被测信号由此输入 方式时,输入到此端的信号作为 丫轴信号。 (11)、(12)、(16)、(18)交流 -直流-接地( AC 、DC 、GND ): 输入信号与放大器连接方式选择开关: 交流(AC ):放大器输入端与信号连接由电容器来耦合; 接地( GND ) 输入信号与放大器断开,放大器的输入端接地。 直流( DC ) 放大器输入与信号输入端直接耦合。 ( 10)、( 15)衰减器开关( VOLTS/DIV ) 用于选择垂直偏转系数,共 12档。如果使用的是10:1的探极,计算时将幅度X - ( 14)、( 19)垂直微调旋钮( VARIBLE ) 垂直微调用于连续改变电压偏转系数, 此旋钮在正常情况下应位于顺时针方向旋到底的 位置。将旋钮逆时针旋转到底,垂直方向的灵敏度下降到 2.5 倍以上。 ( 44)断续工作方式开关 CH1 CH2二个通告按断续方式工作,断续频率为 250kHz ,适用于低扫速。 (43)、(40)垂直移位( POSITION ) 调节光迹在屏幕中的垂直位置。 (42)垂直方式工作开关 (VERTICAL MODE) 用于选择垂直偏转系统的工作方式 通道 1 选择( CH1) 屏幕上仅显示 通道 2 选择( CH2) 屏幕上仅显示 双踪选择( DUAL ) 屏幕上显示双踪, 的信号; 叠加(ADD :显示CH1和CH2输入信号的代数和。 (39) CH2极性开关(INVERT :按此开关时 CH2显示反相信号。 (48) CH1信号输出端(CH1 OUTPU )输出约100mV/div 的通道1信号。当输出端接 50Q 匹配终端时,信号衰减一半,约 50mV/div ,该功能可用于频率计显示等。 3、 水平方向部分( HORIZONTA )L (20)主扫描时间系数选择开关( TIME/DIY ) 用于选择扫描时间因数,从 0.1卩sP.5s/div 范围共20档。 ( 24)扫描微调控制键( VARIBLE ) 此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由 此旋钮以逆时方针方向旋转到底时,扫描减慢 2.5 倍以上。当按键( 21)未按入,按钮 (24)调节无效,即为校准状态。 ( 35)水平移位( POSITION ) 用于调节光迹在水平方向移动。 顺时针方向旋转该旋钮向右移动光迹, 逆时针方向旋转 向左移动光迹。 增加延迟扫描 B 显示光 y1 通道。当示波器在 X-Y y2 通道。当示波器在 X-Y 10。 CH1的信号; CH2的信号; 自动以交替或断续方式,同时显示 CH1和CH2上 Time/div 开关指示。

泰克示波器的使用方法-1

示波器的使用方法 示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。 (一)面板装置 SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。 1.显示部分主要控制件为: (1)电源开关。 (2)电源指示灯。 (3)辉度调整光点亮度。 (4)聚焦调整光点或波形清晰度。 (5)辅助聚焦配合“聚焦”旋钮调节清晰度。 (6)标尺亮度调节坐标片上刻度线亮度。 (7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。 (8)标准信号输出 1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y 轴输入灵敏度和X轴扫描速度。 2.Y轴插件部分 (1)显示方式选择开关用以转换两个Y轴前置放大器Y A与YB 工作状态的控制件,具有五种不同作用的显示方式:

“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通Y A或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电 子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。 “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通Y A和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。 “Y A”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。 “Y A + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,Y A与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。 (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。 (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。 (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。 (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。 (6)“极性、拉Y A” Y A通道的极性转换按拉式开关。拉出时Y A 通道信号倒相显示,即显示方式(Y A+ YB )时,显示图像为YB - Y A。 (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态)扫描触发信号分别

示波器_使用方法_步骤

示波器 摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。 1.实验目的 1.理解示波器的工作原理,掌握虚拟示波器的设计方法。 2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。 3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。 2. 实验要求 1.数据采集 用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。 2.示波器界面设计 (1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。 (2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。 (3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.sodocs.net/doc/d615735414.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正

弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: AMP A/D Display Input DeMUX Acquistion Memory uP Display Memory 图3.数字存储示波器的基本原理框图

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

示波器的初级使用方法教程

示波器的使用方法教程 ST-16示波器的使用 示波器是有着极其广泛用途的测量仪器之一〃借助示波器能形象地观察波形的瞬变过程,还可以测量电压。电流、周期和相位,检查放大器的失真情况等〃示波器的型号很多,它的基本使用方法是差不多的〃下面以通用ST一16型示波器为例,介绍示波器的使用方法。 面板上旋钮或开关的功能 图1是ST一16型示波器的面板图。 示波器是以数字座标为基础来显示波形的〃通常以X轴表示时间,Y轴表示幅度〃因而在图1中,面板下半部以中线为界,左面的旋钮全用于Y轴,右面的旋钮全用于X 轴。面板上半部分为显示屏。显示屏的右边有三个旋钮是调屏幕用的〃所有的旋钮,开关功能见表1。其中8、10,14,16号旋钮不需经常调,做成内藏式。

显示屏读数方法 在显示屏上,水平方向X轴有10格刻度,垂直方向Y轴有8格刻度〃这里的一格刻度读做一标度,用div表示〃根据被测波形垂直方向(或水平方向)所占有的标度数,乘以垂直输入灵敏度开关所在档位的V/div数(或水平方向t/div),得出的积便是测量结果。Y轴使用10:1衰减探头的话还需再乘10。 例如图2中测电压峰—峰值时,V/div档用0〃1V/div,输入端用了10 : l 衰减探头,则Vp-p=0〃1V/div×3〃6div×10=3〃6V,t/div档为2ms/div,则波形的周期:T=2ms/div×4div=8ms。 使用前的准备 示波器用于旋钮与开关比较多,初次使用往往会感到无从着手。初学者可按表2方式进行调节。表2位置对示波器久藏复用或会使用者也适用。

使用前的校准 示波器的测试精度与电源电压有关,当电网电压偏离时,会产生较大的测量误差〃因此在使用前必须对垂直和水平系统进行校准。校准方法步骤如下: 1〃接通电源,指示灯有红光显示,稍等片刻,逆时针调节辉度旋钮,并适当调准聚焦,屏幕上就显示出不同步的校准信号方波。 2〃将触发电平调离“自动”位置,逆时针方向旋转旋钮使方波波形同步为止。并适当调节水平移位(11)和垂直移位(5)。 3〃分别调节垂直输入部分增益校准旋钮(10)和水平扫描部分的扫描校准旋钮(14),使屏幕显示的标准方波的垂直幅度为5div,水平宽度为10div,如图3所示,ST一16示波器便可正常工作了。 示波器演示和测量举例 一,用ST一16示波器演示半波整流工作原理: 首先将垂直输入灵敏度选择开关(以下简写V/div)拨到每格0〃5V档,扫描时间转换开关(s/div)拨至每格5ms档,输入耦合开关拨至AC档,将输入探头的两端与电源变压器次级相接,见图4,这时屏幕显示如图5(a)所示的交流电压波形。 如果将探头移到二极管的负端处,这时屏幕上显示图5(b)所示的半波脉冲电压波形〃接上容量较大的电解电容器C进行滤波,调节一下触发电平旋钮(15),在示波器屏幕上可看到较为平稳的直流电压波形,见图5(c)。电容C的容量越大,脉冲成分越小,电压越平稳。

实验示波器的调节与使用

实验二、示波器的调整与使用 【实验目的】 (1)了解示波器的结构和工作原理。 (2)熟悉示波器各旋钮功能。 (3)掌握示波器的基本调整方法。 (4)掌握用示波器观测信号的波形,学会用示波器测量电压、周期和频率。 【示波器的原理】(注意:有下划线的) 示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。 1. 示波器的结构 示波器由示波管、衰减放大输入系统、扫描信号发生器、触发同步系统和电源供给系统五个基本部分组成。 (1)示波管。示波管主要由电子枪、偏转系统和荧光屏三个部分组成。示波管是一个全密封度真空的玻璃壳管,其结构如图3.9.1所示。(要作图) ① 电子枪。电子枪由灯丝F 、阴极K 、栅极G 、 第一阳极A 1和第二阳极A 2组成。 阴极K 是一个表面涂有氧化物的金属圆筒,被点 燃灯丝F 加热后向外发射电子,产生电子流。 栅极G 是一个顶端有一小孔的金属圆筒,套在阴 极外面,它的电位比阴极低,对阴极射来的电子起控 制作用,只有速度较大的电子才能穿过栅极小孔。因 此,通过调节栅极电位,可以改变通过栅极的电子数目,即控制电子到达荧光屏上的数目,而打在荧光屏的电子数目越多,则荧光屏上的光迹越亮。示波器面板上的“辉度”调节旋钮就是起这—作用的。 阳极A 1与A 2由开有小孔的圆筒组成。阳极电位比阴极电位高得多,电子流通过该区域可获得很高的速度,同时阳极区的不均匀电场还能将由栅极过来散开的电子流聚焦成一窄细的电子束,因此改变阳极电压可以调节电子束的聚焦程度。示波器面板上的“聚焦”旋钮起这一作用。 ② 偏转系统。偏转系统由两对相互垂直的可加电压的金属平板组成,即X 偏转板和Y 偏转板。 在两对偏转板上加上电压,当电子束通过偏转板时,在电场力的作用下发生偏转,即改变光点在荧光屏上的位置。 设计时保证了荧光屏上X 方向和Y 方向光点的位移正比于两对偏转板上所加的电压。 垂直偏转板电路有两条支路:一条用于输入机外电压信号,加在Y 偏转板上;另一条用于校准仪器或观察机内方波信号,机内方波信号直接输入“Y 放大器”,经放大后加到Y 偏转板上。 水平偏转板的电路同样有两条支路:一条用于输入外界电压信号或同步信号,加在X 偏转板上;另一条用来将机内扫描信号经放大后加在X 偏转板上。 ③ 荧光屏。荧光屏位于阴极射线管前端的玻璃屏内表面,涂有发光物质。当高速运动的电子打在上面,其动能被发光物质吸收而发光,在电子轰击停止后, 发光仍维持一段时间,称为余 示波管的结构 图3.9.1 F —灯丝;K —阴极;G —控制栅极;A 1—第一阳极; A 2—第二阳极;Y —竖直偏转板;X —水平偏转板

示波器使用方法步骤

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器的使用方法: 示波器,“人”如其名,就是显示波形的机器,它还被誉为“电子工程师的眼睛”。它的核心功能就是为了把被测信号的实际波形显示在屏幕上,以供工程师查找定位问题或评估系统性能等等。它的发展同样经历了模拟和数字两个时代 数字示波器,更准确的名称是数字存储示波器,即DSO(Digital Storage Oscilloscope)。这个“存储”不是指它可以把波形存储到U盘等介质上,而是针对于模拟示波器的即时显示特性而言的。模拟示波器靠的是阴极射线管(CRT,即俗称的电子枪)发射出电子束,而这束电子在根据被测信号所形成的磁场下发生偏转,从而在荧屏上反映出被测信号的波形,这个过程是即时地,中间没有任何的存储过程的。而数字示波器的原理却是这样的:首先示波器利用前端ADC对被测信号进行快速的采样,这个采样速度通常都可以达到每秒几百M到几G次,是相当快的;而示波器的后端显示部件是液晶屏,液晶屏的刷新速率一般只有几十到一百多Hz;如此,前端采样的数据就不可能实时的反应到屏幕上,于是就诞生了存储这个环节:示波器把前端采样来的数据暂时保存在内部的存储器中,而显示刷新的时候再来这个存储器中读取数据,用这级存储环节解决前端采样和后端显示之间的速度差异。

很多人在第一次见到示波器的时候,可能会被他面板上众多的按钮唬住,再加上示波器一般身价都比较高,所以对使用它就产生了一种畏惧情绪。这是不必要的,因为示波器虽然看起来很复杂,但实际上要使用它的核心功能——显示波形,并不复杂,只要三四个步骤就能搞定了,而现在示波器的复杂都是因为附加了很多辅助功能造成的,这些辅助功能自然都有它们的价值,熟练灵活的应用它们可以起到事半功倍的效果。作为初学者,我们先不管这些,我们只把它最核心的、最基本的功能应用起来即可。

示波器的调整和使用

示波器的调整和使用 【实验目的】 (1)了解示波器的结构和工作原理。 (2)熟悉示波器各旋钮功能。 (3)掌握示波器的基本调整方法。 (4)掌握用示波器观测信号的波形,学会用示波器测量电压、频率和相位。 【示波器的原理】 示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。 1. 示波器的结构 示波器由示波管、衰减放大输入系统、扫描信号发生器、触发同步系统和电源供给系统五个基本部分组成。双踪示波器的结构方框图如图3.9.1所示。 示波器方框图 图3.9.1 (1)示波管。示波管主要由电子枪、偏转系统和荧光屏三个部分组成。示波管是一个全密封度真空的玻璃壳管,其结构如图3.9.2所示。 ① 电子枪。电子枪由灯丝F 、阴极K 、栅极G 、 第一阳极A 1和第二阳极A 2组成。 阴极K 是一个表面涂有氧化物的金属圆筒,被点 燃灯丝F 加热后向外发射电子。 栅极G 是一个顶端有一小孔的金属圆筒,套在阴 极外面,它的电位比阴极低,对阴极射来的电子起控 制作用,只有速度较大的电子才能穿过栅极小孔。因 此,通过调节栅极电位,可以改变通过栅极的电子数 目,即控制电子到达荧光屏上的数目,而打在荧光屏 的电子数目越多,则荧光屏上的光迹越亮。示波器面 板上的“辉度”调节旋钮就是起这—作用的。 阳极A 1与A 2由开有小孔的圆筒组成。阳极电位比阴极电位高得多,电子流通过该区域可获得很高的速度,同时阳极区的不均匀电场还能将由栅极过来散开的电子流聚焦成一窄细的电子束,因此改变阳极电压可以调节电子束的聚焦程度。示波器面板上的“聚焦”旋钮起这一作用。 ② 偏转系统。偏转系统由两对相互垂直的可加电压的金属平板组成,即X 偏转板和Y 偏 示波管的结构 图3.9.2 F —灯丝;K —阴极;G —控制栅极;A 1—第一阳极; A 2—第二阳极;Y —竖直偏转板;X —水平偏转板

示波器的使用方法

示波器的使用 【实验目的】 1.了解示波器的结构和示波器的示波原理; 2.掌握示波器的使用方法,学会用示波器观察各种信号的波形; 3.学会用示波器测量直流、正弦交流信号电压; 4.观察利萨如图,学会测量正弦信号频率的方法。 【实验仪器】 YB4320/20A/40双踪示波器,函数信号发生器,电池、万用电表。 图1实验仪器实物图 【实验原理】 示波器是一种能观察各种电信号波形并可测量其电压、频率等的电子测量仪器。示波器还能对一些能转化成电信号的非电量进行观测,因而它还是一种应用非常广泛的、通用的电子显示器。 1.示波器的基本结构 示波器的型号很多,但其基本结构类似。示波器主要是由示波管、X轴与Y轴衰减器和放大器、锯齿波发生器、整步电路、和电源等几步分组成。其框图如图2所示。

图2示波器原理框图 (1)示波管 示波管由电子枪、偏转板、显示屏组成。 电子枪:由灯丝H、阴极K、控制栅极G、第一阳极A1、第二阳极A2组成。灯丝通电发热,使阴极受热后发射大量电子并经栅极孔出射。这束发散的电子经圆筒状的第一阳极A1和第二阳极A2所产生的电场加速后会聚于荧光屏上一点,称为聚焦。A1与K之间的电压通常为几百伏特,可用电位器W2调节,A1与K 之间的电压除有加速电子的作用外,主要是达到聚焦电子的目的,所以A1称为聚焦阳极。W2即为示波器面板上的聚焦旋钮。A2与K之间的电压为1千多伏以上,可通过电位器W3调节,A2与K之间的电压除了有聚焦电子的作用外,主要是达到加速电子的作用,因其对电子的加速作用比A1大得多,故称A2为加速阳极。在有的示波器面板上设有W3,并称其为辅助聚焦旋钮。 在栅极G与阳极K之间加了一负电压即U K﹥U G,调节电位器W1可改变它们之间的电势差。如果G、K间的负电压的绝对值越小,通过G的电子就越多,电子束打到荧光屏上的光点就越亮,调节W1可调节光点的亮度。W1在示波器面板上为“辉度”旋钮。 偏转板:水平(X轴)偏转板由D1、D2组成,垂直(Y轴)偏转板由D3、、D4组成。偏转板加上电压后可改变电子束的运动方向,从而可改变电子束在荧光屏上产生的亮点的位置。电子束偏转的距离与偏转板两极板间的电势差成正比。 显示屏:显示屏是在示波器底部玻璃内涂上一层荧光物质,高速电子打在上面就会发荧光,单位时间打在上面的电子越多,电子的速度越大光点的辉度就越大。荧光屏上的发光能持续一段时间称为余辉时间。按余辉的长短,示波器分为长、中、短余辉三种。 (2)X轴与Y轴衰减器和放大器 示波管偏转板的灵敏度较低(约为0.1~1mm/V)当输入信号电压不大时,荧光屏上的光点偏移很小而无法观测。因而要对信号电压放大后再加到偏转板上,为此在示波器中设置了X轴与Y轴放大器。当输入信号电压很大时,放大器无法正常工作,使输入信号发生畸变,甚至使仪器损坏,因此在放大器前级设置有衰减器。X轴与Y轴衰减器和放大器配合使用,以满足对各种信号观测的要求。

示波器的调节和使用

示波器得调节与使用 我们以型号为YB4300系列得双踪示波器为例说明其一般使用方法。YB4300系列双踪示波器得型号根据频率不同主要有YB4320G、YB4340G、YB4360G。 一、示波器得调节与使用 示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异。熟练掌握示波器得使用,首先应该了解示波器面板上各个旋钮得功能。本书以YB4320G型示波器为例进行说明,如图1所示。该示波器得前面板如图2所示,各部分功能介绍如下: 1、主机电源 (9)电源开关(POWER):将电源开关按键弹出即为“关”位置,将电源线接入,按电源开关键,接通电源。 (8)电源指示灯:电源接通时,指示灯亮。 (2)辉度控制(INTENSITY):顺时针方向旋转旋钮,扫描线辉度增加。 (4)聚焦控制(FOCUS):用辉度控制钮将亮度调至合适得标准,然后调节聚焦控制钮直至 图1 YB4320G型示波器外形结构 图2 YB4320G型示波器操作面板示意图

光迹达到最清晰得程度。虽然调节亮度时,聚焦电路可自动调节,但聚焦有时也会轻微变化,如果出现这种情况,需重新调节聚焦旋钮。 (5)基线旋转(TRACE ROTATION):用于调节扫描线使其与水平刻度线平行,以克服外磁场变化带来得基线倾斜,需要使用螺丝刀调节。 (45)显示屏:仪器得测量显示最终端。 (3)延迟扫描辉度控制钮(B INTEN):顺时针方向旋转此钮,增加延迟扫描B显示光迹亮度。 (1)校准信号输出端子(CAL) 2、垂直方向部分(VERTICAL) (13)通道1输入端[CH1 INPUT(X)]:被测信号由此输入y1通道。当示波器在X-Y方式时,输入到此端得信号作为X轴信号。 (17)通道2输入端[CH2 INPUT(X)]:被测信号由此输入y2通道。当示波器在X-Y方式时,输入到此端得信号作为Y轴信号。 (11)、(12)、(16)、(18)交流-直流-接地(AC、DC、GND): 输入信号与放大器连接方式选择开关: 交流(AC):放大器输入端与信号连接由电容器来耦合; 接地(GND):输入信号与放大器断开,放大器得输入端接地。 直流(DC):放大器输入与信号输入端直接耦合。 (10)、(15)衰减器开关(VOLTS/DIV) 用于选择垂直偏转系数,共12档。如果使用得就是10:1得探极,计算时将幅度×10。 (14)、(19)垂直微调旋钮(VARIBLE) 垂直微调用于连续改变电压偏转系数,此旋钮在正常情况下应位于顺时针方向旋到底得位置。将旋钮逆时针旋转到底,垂直方向得灵敏度下降到2、5倍以上。 (44)断续工作方式开关 CH1 CH2二个通告按断续方式工作,断续频率为250kHz,适用于低扫速。 (43)、(40)垂直移位(POSITION) 调节光迹在屏幕中得垂直位置。 (42)垂直方式工作开关(VERTICAL MODE) 用于选择垂直偏转系统得工作方式 通道1选择(CH1):屏幕上仅显示CH1得信号; 通道2选择(CH2):屏幕上仅显示CH2得信号; 双踪选择(DUAL):屏幕上显示双踪,自动以交替或断续方式,同时显示CH1与CH2上得信号; 叠加(ADD):显示CH1与CH2输入信号得代数与。 (39)CH2极性开关(INVERT):按此开关时CH2显示反相信号。 (48)CH1信号输出端(CH1 OUTPUT):输出约100mV/div得通道1信号。当输出端接50Ω匹配终端时,信号衰减一半,约50mV/div,该功能可用于频率计显示等。 3、水平方向部分(HORIZONTAL) (20)主扫描时间系数选择开关(TIME/DIY) 用于选择扫描时间因数,从0、1μs~0、5s/div范围共20档。 (24)扫描微调控制键(VARIBLE) 此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由Time/div开关指示。 此旋钮以逆时方针方向旋转到底时,扫描减慢2、5倍以上。当按键(21)未按入,按钮(24)调节无效,即为校准状态。

示波器的调节和使用

示波器的调节和使用 我们以型号为YB4300系列的双踪示波器为例说明其一般使用方法。YB4300系列双踪示 波器的型号根据频率不同主要有YB4320G 、YB4340G 、YB4360G 。 一、示波器的调节和使用 示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异。熟练掌握示波 器的使用,首先应该了解示波器面板上各个旋钮的功能。本书以YB4320G 型示波器为例进行 说明,如图1所示。该示波器的前面板如图2所示,各部分功能介绍如下: 1、主机电源 (9)电源开关(POWER):将电源开关按键弹出即为“关”位置,将电源线接入,按电源 开关键,接通电源。 (8)电源指示灯:电源接通时,指示灯亮。 图1 YB4320G 型示波器外形结构 图2 YB4320G 型示波器操作面板示意图

(2)辉度控制(INTENSITY):顺时针方向旋转旋钮,扫描线辉度增加。 (4)聚焦控制(FOCUS):用辉度控制钮将亮度调至合适的标准,然后调节聚焦控制钮直至光迹达到最清晰的程度。虽然调节亮度时,聚焦电路可自动调节,但聚焦有时也会轻微变化,如果出现这种情况,需重新调节聚焦旋钮。 (5)基线旋转(TRACE ROTATION):用于调节扫描线使其和水平刻度线平行,以克服外磁场变化带来的基线倾斜,需要使用螺丝刀调节。 (45)显示屏:仪器的测量显示最终端。 (3)延迟扫描辉度控制钮(B INTEN):顺时针方向旋转此钮,增加延迟扫描B显示光迹亮度。 (1)校准信号输出端子(CAL) 2、垂直方向部分(VERTICAL) (13)通道1输入端[CH1 INPUT(X)]:被测信号由此输入y1通道。当示波器在X-Y 方式时,输入到此端的信号作为X轴信号。 (17)通道2输入端[CH2 INPUT(X)]:被测信号由此输入y2通道。当示波器在X-Y 方式时,输入到此端的信号作为Y轴信号。 (11)、(12)、(16)、(18)交流-直流-接地(AC、DC、GND): 输入信号与放大器连接方式选择开关: 交流(AC):放大器输入端与信号连接由电容器来耦合; 接地(GND):输入信号与放大器断开,放大器的输入端接地。 直流(DC):放大器输入与信号输入端直接耦合。 (10)、(15)衰减器开关(VOLTS/DIV) 用于选择垂直偏转系数,共12档。如果使用的是10:1的探极,计算时将幅度×10。 (14)、(19)垂直微调旋钮(VARIBLE) 垂直微调用于连续改变电压偏转系数,此旋钮在正常情况下应位于顺时针方向旋到底的位置。将旋钮逆时针旋转到底,垂直方向的灵敏度下降到2.5倍以上。 (44)断续工作方式开关 CH1 CH2二个通告按断续方式工作,断续频率为250kHz,适用于低扫速。 (43)、(40)垂直移位(POSITION) 调节光迹在屏幕中的垂直位置。 (42)垂直方式工作开关(VERTICAL MODE) 用于选择垂直偏转系统的工作方式 通道1选择(CH1):屏幕上仅显示CH1的信号; 通道2选择(CH2):屏幕上仅显示CH2的信号; 双踪选择(DUAL):屏幕上显示双踪,自动以交替或断续方式,同时显示CH1和CH2上的信号; 叠加(ADD):显示CH1和CH2输入信号的代数和。 (39)CH2极性开关(INVERT):按此开关时CH2显示反相信号。 (48)CH1信号输出端(CH1 OUTPUT):输出约100mV/div的通道1信号。当输出端接50Ω匹配终端时,信号衰减一半,约50mV/div,该功能可用于频率计显示等。 3、水平方向部分(HORIZONTAL) (20)主扫描时间系数选择开关(TIME/DIY) 用于选择扫描时间因数,从0.1μs~0.5s/div范围共20档。 (24)扫描微调控制键(VARIBLE) 此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由Time/div开关指示。

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

实验二十六示波器的原理和使用

实验十示波器的原理和使用 示波器是电工、电子、计算机等设备设计、调试和维修中使用得最广泛、功能最强大的电子测量仪器之一,它可以把原来肉眼看不见的变化电压变换成可见的图像,使人们可以直接观察电信号波形高速变化的情况,研究它们的瞬间变化过程。在科学研究和工农业生产中,示波器被广泛地用来测定电信号的幅度、周期、频率和位相等各种参数。通过各种传感器,示波器还可用来观察各种物理量、化学量、生物量等高速变化的过程,成为科学研究和生产活动中强有力的检测工具。 【实验目的】 (1)了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。 (2)学会使用示波器观测电信号波形和电压幅值以及频率。 (3)学会使用示波器观察李萨如图并测频率。 【实验原理】 不论何种型号和规格的示波器都包括了如图1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 Y X轴输入 图1 示波器基本组成框图 1. 示波管的基本结构 示波管的基本结构如图2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。

(1)电子枪由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下射向荧光屏。示波器面板上的“辉度”调整就是通过调节栅极电位以控制射向荧光屏的电子流密度,从而改变了荧光屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以,第一阳极也称聚焦阳极。第二阳极电位更高,又称加速阳极。面板上的“聚焦”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:荧光屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。 图2 示波管结构图 H-灯丝K-阴极G1,G2- 控制栅极A1-第一阳极A2-第二阳极Y-竖直偏转板X-水平偏转板 2. 波形显示原理 (1)仅在垂直偏转板(Y偏转板)加一正弦交变电压:如果仅在Y偏转板加一正弦交变电压,则电子束所产生的亮点随电压的变化在y方向来回运动,如果电压频率较高,由于人眼的视觉暂留现象,则看到的是一条竖直亮线,其长度与正弦信号电压的峰-峰值成正比,如图3所示。 (2)仅在水平偏转板加一扫描(锯齿)电压:为了能使y方向所加的随时间t变化的信号电压U y(t)在空间展开,需在水平方向形成一时间轴。这一t轴可通过在水平偏转板加一如图4所示的锯齿电压U x(t),由于该电压在0~1时间内电压随时间成线性关系达到最大值,使电子束在荧光屏上产生的亮点随时间线性水平移动,最后到达荧光屏的最右端。在1~2时间内(最理想情况是该时间为零)U x(t)突然回到起点(即亮点回到荧光屏的最左端)。如此重复变化,若频率足够高的话,则在荧光屏上形成了一条如图4所示的水平亮线,即t轴。 常规显示波形:如果在Y偏转板加一正电压(实际上任何所想观察的波形均可)同时在X偏转板加一锯齿电压,电子束受竖直、水平两个方向的力的作用下,电子的运动是两相互垂直运动的合成。当两电压周期具有合适的关系时,在荧光屏上将能显示出所加正弦电压完整周期的波形图。如图5所示。

示波器使用简易说明

实验1.2常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法 二、实验仪器 1、函数信号发生器EE1641C 2、DS1062E-EDU数字示波器 3、高级电路实验箱 三、实验原理 初步了解示波器面板和用户界面 1. 前面板:DS1000E-EDU系列数字示波器向用户提供简单而功能明晰的前面板, 以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

电压参数的自动测量 DS1000E-EDU, DS1000D-EDU 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。 电压参数示意图 峰峰值(Vpp):波形最高点至最低点的电压值。 ?最大值(Vmax):波形最高点至GND(地)的电压值。

最小值(Vmin):波形最低点至GND(地)的电压值。 幅值(Vamp):波形顶端至底端的电压值。? 顶端值(Vtop):波形平顶至GND(地)的电压值。 底端值(Vbase):波形平底至GND(地)的电压值。 过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。 预冲(Preshoot):波形最小值与底端值之差与幅值的比值。 平均值(Average):单位时间内信号的平均幅值。 均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应于产生等值能量的直流电压,即均方根值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP-P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。 例一:测量简单信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1. 欲迅速显示该信号,请按如下步骤操作: (1) 将探头菜单衰减系数设定为1X,并将探头上的开关设定为1X。 (2) 将通道1的探头连接到电路被测点。 (3) 按下AUTO(自动设置)按键。 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作:

相关主题