搜档网
当前位置:搜档网 › STC单片机最小系统原理图

STC单片机最小系统原理图

AD教案实验6单片机最小系统原理图设计

实验六单片机最小系统原理图设计 1 实验目的及要求 ?熟悉Altium designer的操作 ?能够画库原件中没有的库以及封装,并能加载到库,在原理图中熟练调用 ?能够设计较为复杂的电路原理图,并输出元件清单表 2 实验设备 装有Altium designer的电脑一台 3 实验步骤 新建设计工作区:文件-新建-设计工作区 新建PCB工程:文件-新建-工程-PCB工程 新建原理图,PCB图,原理图库以及PCB图库:文件-新建-原理图/PCB/库-原理图库/PCB图库 保存PCB工程文件到以自己名字新建的文件夹里面,保存文件名为51DPJ,文件类型为默认。(实验五已经新建完的可以直接打开,不用再新建一遍了。) 然后在新建完的原理图的里面把本次实验的原理图设计出来。本次实验注重在原理图的编辑以及PCB的制作,以51单片机最小系统为例,大家做的时候可以不完全按照所给原理图画,然后很多元器件可以在网上找到PDF的文档资料,资料中会比较详细介绍元器件的信息,封装,电路图,实物图,以及检测的效果图,电路中的封装基本按照上面来做。

图3 实验原理图 输出元件清单表BOM BOM表对一个项目来说非常重要,因为这张表不仅包含了原理图上的所有元件,同事也是生成部分和采购部门的重要参考文件,因为生成部要利用BOM知道元件的位置及型号,二采购部要知道元件完整型号以及精度等级等参数从而去进行选购,因此,工程师一定要保证BOM单不能出错,否则造成的麻烦可能影响你的产品设计周期。 完整BOM单输出: ?进入BOM单输出对话框:单机菜单Reports---bill of Materials进入BOM单输出对 话框 ?设置BOM单格式并输出:All columns 表格内用于选择 BOM单要添加的栏;从 all columns 栏选中某关键字拖拽到 Grouped Columns 栏用于设置以前关键字进行整行合并;Export 区域内用于设置 BOM 单输出格式;最后单击 EXPORT 按钮导出BOM 单。 ?变量BOM单输出:按照第二部设置好BOM格式后,如果要以变量形式输出 BOM单,课单机Menu按钮,从中选择Change Variant 变量,再到处BOM单既可以变量形式输出。

STC89C52RC单片机用户手册

STC89C52RC单片机介绍 STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。 主要特性如下: 1.增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意 选择,指令代码完全兼容传统8051. 2.工作电压:5.5V~ 3.3V(5V单片机)/3.8V~2.0V(3V单片机) 3.工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作 频率可达48MHz 4.用户应用程序空间为8K字节 5.片上集成512字节RAM 6.通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉, P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O口用时,需加上拉电阻。 7.ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无 需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程 序,数秒即可完成一片 8.具有EEPROM功能 9.具有看门狗功能 10.共3个16位定时器/计数器。即定时器T0、T1、T2 11.外部中断4路,下降沿中断或低电平触发电路,Power Down模式可 由外部中断低电平触发中断方式唤醒 12.通用异步串行口(UART),还可用定时器软件实现多个UART 13.工作温度范围:-40~+85℃(工业级)/0~75℃(商业级) 14.PDIP封装 STC89C52RC单片机的工作模式 掉电模式:典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序

stc系列单片机μCOSⅡ在C8051F系列单片机上的移植及其应用系统开发

stc系列单片机μCOSⅡ在C8051F系列单片机上的移植及其 应用系统开发 随着微处理器技术的飞速发展和嵌入式系统实时性要求的不断提高,应用实时多任务操作系统(RTOS)作为嵌入式设计的开发平台已逐步成为嵌入式应用设计的主流。本研究讨论将μC/OS-Ⅱ移植到C8051F系列高性能8位单片机中,并以C8051F060为例阐述了其应用系统的开发过程。 一、μC/OS-Ⅱ的基本工作原理 1.任务管理 ?C/OS-II中的任务可以是一个无限的循环,也可以在一次执行完毕后被“删除”掉,即该任务可以认为CPU完全属于该任务本身,实时应用程序的设计过程包括将问题分割为多个任务。?C/OS-II可以管理64个任务,每个任务有一定的优先级,且优先级不重复。 2.任务调度机制的实现 ?C/OS-II是可剥夺型内核,优先级高的任务一旦就绪就能剥夺优先级较低任务的CPU使用权,这提高了系统的实时响应能力。在没

有中断情况下,任务间的切换一般会调用OSSched()函数。?C/OS-II 的中断服务子程序和一般前/后台的操作有所不同。 3.任务之间的通信 在?C/OS-II中,可以通过信号量、消息邮箱和消息队列等机制,实现数据共享和任务通信。消息邮箱用一个指针型变量,一个任务或一个中断服务子程序通过内核服务,将一则消息放入邮箱,一个或多个任务通过内核服务接受这则消息。每个邮箱有相应的等待消息任务表,等待消息的任务在无消息时被置挂起态,并记入邮箱等待消息任务表中。消息放入邮箱,内核将运行等待消息任务表中优先级最高的任务。 二、移植及应用 C8051F060系列单片机特别适用于任务繁重的小型化测控系统。当芯片具有的功能被较多地使用时,系统要处理的任务就较多,编程头绪也多。为了简化应用程序实现程序模块化,提高应用程序的实时性和可靠性,将μCOS2Ⅱ移植到C8051F060中就成为一件很有意义的事。 1.?C/OS-II的移植

单片机最小系统原理图

单片机最小系统 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的 系统. 对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路. 下面给出一个51单片机的最小系统电路图. 说明

复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让R C组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍. 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 单片机:一片AT89S51/52或其他51系列兼容单片机 特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的. 复位电路: 一、复位电路的用途 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 单片机复位电路如下图:

二、复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢? 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充

51单片机最小系统电路介绍

51单片机最小系统电路介绍 单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。 单片机最小系统晶振Y1也可以采用6MHz或者,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好 口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。其他接口内部有上拉电阻,作为输出口时不需外加上拉电阻。 设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N乘以机器周期Tcy就是定时时间t。 " 设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。 标识符号地址寄存器名称 P3 0B0H I/O口3寄存器 PCON 87H 电源控制及波特率选择寄存器 SCON 98H 串行口控制寄存器 SBUF 99H 串行数据缓冲寄存器 TCON 88H 定时控制寄存器 TMOD 89H 定时器方式选择寄存器 TL0 8AH 定时器0低8位 - TH0 8CH 定时器0高8位 TL1 8BH 定时器1低8位 TH1 8DH 定时器1高8位

STC51单片机IO口模式快速设置

STC51单片机IO口模式的快速设置新型51单片机STC系列,较传统51单片机在性能和速度上有根本性的提高。速度提高8—12倍;片上RAM大量增加;片上外围模块大量增加,等等。 其中IO口的模式增加为4种(传统51只有1中),以P0口为例:这里,每个端口新增两个寄存器PxM0, PxM1(x=0,1,2,3)。在设置每一个IO端的模式时都需要对这两个寄存器进行操作。 比如:要将设为推挽输出, 设为准双向口, 设为高阻输入; 设为开路模式, 都设为准双向口, 那么需要如下的代码: IO_Init() { P0M0=0x30;//0011 0000 P0M1=0x90;//1001 0000 } 这样的设置不便于记忆,很容易写错,且写好的代码可读性差,为此,我们可以通过一个宏定义来解决,具体如下: #define PORT0 0 #define PORT1 1 #define PORT2 2 #define PORT3 3 #define BIT0 0 #define BIT1 1 #define BIT2 2

#define BIT3 3 #define BIT4 4 #define BIT5 5 #define BIT6 6 #define BIT7 7 #define STANDARD 0 #define PP_OUT 1 #define Z_IN 2 #define OD 3 #define IOMODE(Port,bit_n,mode) { \ switch(Port)\ {\ case 0:\ switch(mode) { \ case STANDARD: P0M0&=~(1<

单片机最小系统设计

单片机最小系统设计 时间:2011-05-01 22:47:54 来源:作者: 单片机最小系统设计 该单片机最小系统具有的功能: (1)具有2位LED数码管显示功能。 (2)具有八路发光二极管显示各种流水灯。 (3)可以完成各种奏乐,报警等发声音类实验。 (4)具有复位功能。 功能分析 (1)两位LED数码管显示功能,我们可以利用单片机的P0口接两个数码管来现这个功能;(2)八路发光二极管显示可以利用P1口接八个发光二极管实现这个功能; (3)各种奏乐、报警等发声功能可以采用P2.0这个引脚接一蜂鸣器来实现。 (4)利用单片机的第9脚可以设计成复位系统,我们采用按键复位;利用单片机的18、19脚可以设计成时钟电路,我们利用单片机的内部振荡方式设计的。 设计框图 硬件电路设计 根据本系统的功能,和单片机的工作条件,我们设计出下面的电路图。

元件清单的确定: 数码管:共阴极2只(分立) 电解电容:10UF的一只 30PF的电容2只 220欧的电阻9只 4.7K的电阻一只 1.2K的电阻一只 4.7K的排阻一只, 12MHZ的晶振一只 有源5V蜂名器一只 AT89S51单片机一片 常开按钮开关1只 紧锁座一只(方便芯取下来的,绿色的) 发光二极管(5MM红色)8只 万能板电路版15*17CM S8550三极管一只 4.5V电池盒一只,导线若干。七、硬件电路的焊接 按照原理图把上面的元件焊接好,详细步骤省略。 相关程序编写 针对上面的电路原理图,设计出本单片机最小系统的详细功能:(1)、第一个发光二极管点亮,同时数码管显示“1”。 (2)、第二个发光二极管点亮,同时数码管显示“2”。 (3)、依次类推到第八个发光二极管点亮,同时数码管显示“8”。以上出现的是流水灯的效果 (4)、所有的发光二极管灭了,同时数码管现实“0”。

单片机最小系统的设计及制作

单片机最小系统的设计与制作 江西冶金职业技术学院刘昆山刘星慧 【摘要】本文通过讲解单片机的工作条件,设计并制作单片机最小系统,编写单片机C语言程序,调试单片机产品,掌握单片机产品开发的基本过程。 【关键字】单片机C语言,单片机入门,单片机最小系统 一、单片机最小系统功能介绍 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的以单片机为核心元件的可以正常工作的具有特定功能的单片机系统,是单片机产品开发的核心电路。

图1单片机最小系统成品图 本制作采用单片机C语言编程,主要能完成单灯闪烁的任务,通过AT89S51单片机控制一个LED的亮与灭,实现闪烁现象。同时应具有上电复位和手动复位,并且使用单片机片内程序存储器存放用户程序。 二、知识点讲解 1、AT89S51单片机简介 AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K 的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储器技术生产,兼容标准8051指令系统及引脚。它集成的Flash程序存储器既可在线编程(ISP),也可用传统方法进行编程。 单片机的应用可以理解为是单片机芯片通过其引脚控制各种不同的外围电路,实现各种具体功能,所以要学好单片机技术,必须先了解单片机的引脚功能。AT89S51采用了40引脚的双列直插DIP封装形式,实物图如图2所示,引脚配置图如图3图4所示。

图2 AT89S51实物图图3 AT89S51引脚图 图4 AT89S52引脚图 2、引脚功能介绍 IO口灌(流进)电流大,拉(流出)电流小。

P0:漏极开路的双向IO口,使用时,当电流流出需外加上拉电阻 外部地址数据总线,可带八个TTL负载 P1:准双向口(当作输入口用时,须将IO口置1(P1=0XFF;i=P1;)),可带四个TTL负载 P1.0:T2定时计数器2的外部脉冲输入及时钟输出 P1.1:T2EX定时计数器2的捕捉、自动重装的触发输入及减法计数控制 P1.5:MOSI,主动输出从动输入引脚,用于flash(闪存)编程 P1.6:MISO, 主动输入从动输出引脚,用于flash编程 P1.7:SCK, 同步时钟,用于flash编程 ISP编程时用 P2:准双向口,可带四个TTL负载 外部地址总线高八位 P3:准双向口,可带四个TTL负载 P3.0:RXD,串行输入 P3.1:TXD,串行输出 P3.2:INT0,外部中断0输入 P3.3:INT1,外部中断1输入 P3.4:T0,定时计数器0的外部脉冲输入

STC系列单片机内部AD的应用

STC系列单片机内部AD的应用 作者:郭天祥来源:原创更新时间:2008-11-27 22:16:38 浏览次数:7668 STC89LE52AD、54AD、58AD、516AD这几款89系列的STC单片机内部自带有8路8位的AD转换器,分布在P1口的8位上,当时钟在40MHz以下时,每17个机器周期可完成一次AD转换。 与AD相关的几个寄存器如表1所示。 表1 STC89系列单片机AD相关寄存器 P1_ADC_EN:P1.X口的AD使能寄存器。 相应位设置为“1”时,对应的P1. X口作为AD转换使用,内部上拉电阻自动断开。 ADC_CONTR:AD 转换控制寄存器。 ADC_START:AD转换启动控制位,设置为“1”时,AD开始转换。

ADC_FLAG:AD转换结束标志位,当AD转换完成后,ADC_FLAG=1。 CHS2、CHS1、CHS0:为模拟输入通道选择,如表2所示。 表2 STC89系列单片机AD模拟通道选择设置 ADC_DATA:AD 转换结果寄存器。模拟/数字转换结果计算公式如下: 结果=256×Vin / Vcc Vin为模拟输入通道输入电压,Vcc为单片机实际工作电压,用单片机工作电压作为模拟参考电压。 下面一个例程演示STC89LE516AD/X2系列单片机的A/D转换功能。时钟11.0592MHz,转换结果以16进制形式输出到串行口,可以用串行口调试程序观察输出结果。(本代码摘自宏晶科技芯片手册,经作者调试可正常运行)。 新建文件part3.4.5.c,程序代码如下: #include #include // 定义与ADC 有关的特殊功能寄存器 sfr P1_ADC_EN = 0x97; //A/D转换功能允许寄存器 sfr ADC_CONTR = 0xC5; //A/D转换控制寄存器 sfr ADC_DATA = 0xC6; //A/D转换结果寄存器 typedef unsigned char INT8U; typedef unsigned int INT16U; void delay(INT8U delay_time) // 延时函数 { INT8U n; INT16U m; for (n=0;n

单片机最小系统设计

一、内容及要求 内容:设计制作一个51最小系统,用最小系统控制8个发光2极管。 要求:全部点亮,依次点亮,交换点亮;用最小系统控制蜂鸣器;用最小系统控制电机。 二、设计思路 使用AT89C51单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。 八个发光二极管D1-D8分别接在单片机的P2.0-P2.7接口上,当给P2.0口输出“0”时,发光二极管点亮,当输出“1”时,发光二极管熄灭。可以运用输出端口指令MOV P0,A或MOV P0,#DATA,只要给累加器值或常数值,同理,接在P2.1~P2.7口的其他7个LED的点亮和熄灭的方法同LED1。因此,要实现 图2-1 主程序流程图 流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的成流水灯了。在此我们还应注意一点,由于人眼的视觉暂留效应

以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到闪烁效果。 程序启动时跳转到键盘判断模块程序中,此程序里面包含Key1~Key5的按键情况判断,循环检测直到有按键按下的时候,程序转去相对应按键的彩灯显示的花型模块,与此同时,当按键Key6有闭合时,程序中调用延时程序程序时,给延时参数赋值上另一个值,是延时程序延时时间发生改变,以达到不同快慢节奏闪烁的彩灯。具体程序流程图2-1所示。 三、硬件设计 3.1 直流稳压电源电路 对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源电路的稳定可靠是系统平稳运行的前提和基础。电子设备除用电池供电外,还采用市电(交流电网)供电。通过变压、整流、滤波和稳压后,得到稳定的直流电。直流稳压电源是电子设备的重要组成部分!本项目直流稳压电源为+5V。如下图所示: 直流稳压电源的制作一般有3种制作形式,分别是分立元件构成的稳压电源、线性集成稳压电源和开关稳压电源。下图稳压电源采用的是三端集成稳压器7805构成的正5V直流电源。 图3-1 三端固定式集成稳压电源电路图 AT89C51单片机的工作电压范围:4.0V—5.5V,所以通常给单片机外接5V 直流电源。由于时间关系,此处用3节1.5V的干电池供电,在此不在赘述此稳压电源电路图原理。 3.2单片机最小系统 要使单片机工作起来,最基本的电路的构成由单片机、时钟电路、复位电路等组成。单片机最小系统如下图3-2所示。

单片机最小系统电路图

单片机最小系统电路图

————————————————————————————————作者:————————————————————————————————日期: 2

单片机基础实践 D0D1D2D3D4D5D6D7EA ALE PSEN P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78RST 9P3.0(RXD)10P3.1(TXD)11P3.2(INT0)12P3.3(INT1)13P3.4(T0)14P3.5(T1)15P3.6(WR)16P3.7(RD)17XTAL218XTAL119GND 20 P2.0 21 P2.122P2.223P2.324P2.425P2.526P2.627P2.728PSEN 29ALE 30EA 31P0.732P0.633P0.534P0.435P0.336P0.237P0.138P0.039Vcc 40U1 STC89C52 P10P11P12P13P14P15P16P17P20 P21P22P23P24P25P26P27P30P31P32P33P34P35P36P37X2X1 RST Vcc 图1 单片机STC89C52电路图

4 3 2 Vcc R11k D LED 4 3 123456789J1 CON9 D0D1D2D3D4D5D6D7 Vcc 5 43+ C8 1 234 B1 R2 Vcc RST 图2 电源指示灯 图3 单片机P0口上拉电阻 图4 复位电路 Y C1 C2 X1 X2 2 1 D 123 4 56K1 1234USB USB VCC 图5 晶振电路 图6 USB 供电电路

基于STC系列单片机的串联型开关电源设计与实现

单片机及模数综合系统设计 课题名称:基于STC12系列单片机的串联型开关电源设计与实现 --单片机控制部分

一、实验目的:本模拟电路课程设计要求制作开关电源的模拟电路部分,在掌 握原理的基础上将其与单片机相结合,完成开关电源的设计。本报告旨在详述开关电源的原理分析、计算、仿真波形、相关控制方法以及程序展示。 二、总体设计思路 本设计由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。开关电源采用PWM 控制方式,通过给定量与反馈量的比较得到偏差,通过调节器控制PWM 输出,从而控制开关电源的输出。当键盘输入预置电压后,单片机通过PWM输出一个固定频率的脉冲信号,作用于串联开关电源的二极管和三极管,使三极管以一定的频率导通与断开,然后输出进行AD转化,转化后的结果再给单片机进行输出,进行数码管显示。 系统的基本框图及控制部分如下: 控制过程原理分析:单片机所采用的芯片为STC12C5A60S2,该芯片在拥有8051内核的基础上加入了10为AD和PWM发生器。通过程序,即可控制单片机产生一定占空比的PWM 脉冲,将此脉冲输入到模拟电路部分,在模拟电路的输出端即可产生一定的输出电压,可比较容易的通过程序来实现对输出电压的控制。但上述的开环控制是无法达到精确的调节电压,因此需要采用闭环控制来精确调制。即,对输出电压进行AD采样,将其输入回单片机中进行数据处理。单片机根据处理的结果来对输出电压做出修正,经过这样的逐步调节即可达到闭

环的精密输出。由此原理,可以将整个过程分成一下模块:PWM波形输出模块,模拟电路模块,AD转换模块,数码管显示模块,键盘输入模块。 控制过程基本思路为:首先从键盘输入一个电压值,并把该电压值在数码管上面显示出来,再由A/D转换模块对串联开关电源电路的输出端进行电压采集,将采集到的电压值与键盘输入的电压值进行比较,通过闭环算法,控制PWM的脉宽输出,由此控制串联开关电压电源电路,改变输出的电压值,使得输出值与设定的电压值相等。 三、系统各单元模块电路设计 1、键盘输入数据部分 分别接到单片机的P2.4,P2.5,P2.6,P2.7。每路通过电阻进行上拉,可以编程实现控制单片机运行不同程序。为了判断键盘上面的按键是否有按下的,可以事先对P2.4,P2.5,P2.6,P2.7端口赋值,便可以知道具体是哪个按键被按下了。例如:P2.4=0,便可知道P2.4对应的按键已经按下了。 键盘输入模块程序如下: void key( ) //键盘扫描函数 { if(P2_6== 0) { delay(10);//延时去抖动 if(P2_6== 0) { while(P2_6== 0)

单片机最小系统设计

单片机最小系统设计 ?单片机最小系统部分 ●AT89C52的结构特点及引脚特 ●硬件框图 ?键盘部分 ?电源部分 ●固定电源 ●可调电源(5—12V) ?软件编程 ?单片机最小系统部分 ●AT89C52的结构特点及引脚特性: 为40 脚双列直插封装的8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通

信等。 各引脚特性: 1.P0 口 P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的 2.P1 口 P1 是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑 3.P2 口 P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑 4.P3 口 P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻 5.RST 复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。 6.ALE/PROG 当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。 7.PSEN 程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。 8.EA/VPP 外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),E A 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。

51单片机_最小系统免费下载

单片机是一门实践性较强的技术,很多初学者在学习单片机技术开发的时候往往一头雾水,不知何从下手。为此,笔者结合自己使用单片机多年的经验,特意设计了单片机开发所需的Study-c 整机和硬件套件,并结合套件精心编写了单片机从入门到精通系列教程。通过讲述单片机原理、电路设计、应用开发软件工具、编写实验实例让读者全面接触单片机技术。教程编排上由浅入深,循序渐进,内容力求完整、实用、趣味并存,使读者在轻松愉快的学习过程中逐步提高单片机软硬件综合设计水平。 一、内容提要 本讲主要向大家介绍51 系列单片机的最小系统的实现并通过编写程序来实现对单片机IO 口的输出控制。以点亮外部连接的LED(发光二极管)为例,简要的介绍单片机的原理、最小系统的组成,并通过简单的C51 程序设计来讲述编译软件Keil的使用并下载Hex 文件烧写单片机。 二、原理简介 在了解原理之前,首先让我们思考一个问题,什么是单片机,单片机有什么用?这是一个有意思的问题,因为任何人都不能给出一个被大家都认可的概念,那到底什么是单片机呢?普遍来说,单片机又称单片微控制器,是在一块芯片中集成了CPU(中央处理器)、RAM(数据存储器)、ROM(程序存储器)、定时器/ 计数器和多种功能的I/O(输入/ 输出)接口等一台计算机所需要的基本功能部件,从而可以完成复杂的运算、逻辑控制、通信等功能。在这里,我们没必要去找到明确的概念来解析什么是单片机,特别在使用C 语言编写程序的时,不用太多的去了解单片机的内部结构以及运行原理等。从应用的角度来说,通过从简单的程序入手,慢慢的熟悉然后逐步深入精通单片机。 在简单了解了什么是单片机之后,然后我们来构建单片机的最小系统,单片机的最小系统就是让单片机能正常工作并发挥其功能时所必须的组成部分,也可理解为是用最少的元件组成的单片机可以工作的系统。对51 系列单片机来说,最小系统一般应该包括:单片机、时钟电路、复位电路、输入/ 输出设备等(见图1)。 图1 单片机最小系统框图 三、电路详解 依据上文的内容,设计51 系列单片机最小系统见图2。

单片机最小系统电路

单片机最小系统的相关知识 复位电路: 一、复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。单片机复位电路如下图: 二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?

在单片机系统中,系统上电启动的时候复位 一次,当按键按下的时候系统再次复位,如果释 放后再按下,系统还会复位。所以可以通过按键 的断开和闭合在运行的系统中控制其复位。 开机的时候为什么会复位:在电路图中,电 容的的大小是10uF,电阻的大小是10k。所以根 据公式,可以算出电容充电到电源电压的0.7倍 (单片机的电源是5V,所以充电到0.7倍即为 3.5V),需要的时间是10K*10UF=0.1S。也就是 说在单片机启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V 的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位:在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 晶振电路: 晶振电路:晶振是晶体振荡器的简称在 电气上它可以等效成一个电容和一个电阻并 联再串联一个电容的二端网络电工学上这个 网络有两个谐振点以频率的高低分其中较低 的频率是串联谐振较高的频率是并联谐振由于晶体自身的特性致使这两个频率的距离相当的接近在这个极窄的频率范围内晶振等效为一个电感所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路由于晶振等效为电感的频率范围很窄所以即使其他元件的参数变化很大这个振荡器的频率也不会有很大的变化 晶振有一个重要的参数那就是负载电容值选择与负载电容值相等的并联电容就可以得到晶振标称的谐振频率

单片机-最小系统原理解析

单片机-最小系统原理解析

单 片 机 最 小 系 统原 理

一、题目:单片机最小系统 二、引言: 由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。 单片机最小系统是在以MCS-51单片机为

基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时范围,扩展键盘显示接口。适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。因此,研究单片机最小系统有很大的实用意义。 三、关键字: DevKit MCS51 Lite 、AT89S51、AD/DA、RS232串口、串行EEPROM存储器、蜂鸣 器、独立按键、LED、8段数码管。 四、目的要求 4.1 目的: 通过对单片机最小系统的研究,掌握单片机各引脚功能,理解单片机工作过程及原理,以及与各种外部扩展器件的连接,能够自己运

基于STC12C5A60S2系列单片机万年历时钟

/**************************************************/ /*基于STC12C5A60S2系列单片机+595驱动五个数码管+165按键输入 +1302实时时钟+18B20温度传感器的万年历时钟 功能键:0xfe:实现温度,时间,年月日,周的转换显示 0xdf:实现每按一次可以一次更改小时,分,年,月,日,周的闪烁,而 实现加减按键对其改变数值 0xfb:加功能键,在0xdf有效的情况下才能生效 0xfd:减功能键,在0xdf有效的情况下才能生效 数码管亮度有点不一致,还希望高手能帮忙解决,其他功能都是正常的,也可以给各位爱好单片机的新人们一个互相交流的一段小程序,后面付有图片 */ #include < 12C5A60S2.h > //头文件 #include < intrins.h > #define uchar unsigned char //宏定义 #define uint unsigned int uchar time_tuf[]={0x14,0x04,0x10,0x12,0x30,0x00,0x5}; //年月日时分秒周 uchar code weima[]={0x20,0x10,0x08,0x04,0x02,0x01}; //数码管位选 uchar code duan_ma[]={0xee,0x88,0xd6,0xdc,0xb8,0x7c,0x7e,0xc8,0xfe,0xfc}; //数码管段选信号 uchar sec,min,hour,day,month,year,week,num,flag,flag1,flag2,flag3,Flicker,di,x,h; //时间变量及标志位变量 uint tt,tvalue; //变量 void yueri_work(void); //月日显示程序 void nian_work(void); //年显示程序 void Show_pass(uchar dss); //不显示程序 void zhou_work(void); //周显示程序 void delay_18B20(uint i); //温度延时显示程序 void wendu_work(void); //温度显示程序 void show_work(void); //显示程序 void KEY(void); //按键显示程序 sbit RCLK=P0^2; //595输出存储器锁存时钟线/165装载移位控制锁存信号 sbit SRCLK=P0^0; //595数据输入时钟线 sbit SER=P0^3; //595数据线 sbit SO=P0^4; //165数据输出数据线 sbit CLK=P0^1; //165时钟信号 sbit RST=P0^5; //1302复位引脚,高电平有效 sbit IO=P0^6; //1302数据输入输出引脚 sbit SCL=P0^7; //1302串行时钟输入,控制数据线的输入输出 sbit DQ=P1^0; //18B20数字温度传感器,输入输出口

51最小系统原理图

51系列单片机最小系统 2009年03月18日星期三上午10:48 51系列单片机最小系统 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统. 对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路. 下面给出一个51单片机的最小系统电路图. 说明 复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的 时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周

期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般 教科书推荐C 取10u,R取.当然也有其他取法的,原则就是要让RC组合可以在RST 脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可 以参考电路分析相关书籍. 晶振电路:典型的晶振取(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定 时操作) 单片机:一片AT89S51/52或其他51系列兼容单片机 特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行. 这一点是初学者容易忽略的. 因此可以看出,其实要熟悉51单片机的40个引脚功能也很容易: 总共40个脚,电源用2个(Vcc和GND),晶振用2个,复位1个,EA/Vpp用1个,剩下还有34个.29脚PSEN,30脚ALE为外扩数据/程序存储器时才有特定用处, 一般情况下不用考虑,这样,就只剩下32个引脚,对于初学者,这32个引脚就是要经常跟它们打交道的了.它们是: P0端口~共8个 P1端口~共8个 P2端口~共8个 P3端口~共8个

单片机最小系统讲解

晶振:一般选用11.0592M,因为可以准确地得到9600波特率和19200波特率 晶振电路:单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振和瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。 复位电路:给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利

用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,这时如果手按着一直不放,系统将一直复位,不能正常工作,在这里我们需要注意用的电容是电解电容,是有正负的,如果接反了,他就会爆炸,我们可以用并口或者串口把程序下到单片机中,这样我们就可以省去了买烧录器, 3、电源,说了半天还没有说到电源,要不单片机怎么工作呀,图中没有给出,第20管脚是地GND,第40管脚是电源VCC,一般我们在电源vcc处。加一个0.1uf的瓷片电容,滤掉电源中的高频雑波,使系统更安全。注意51单片机使用的是5付直流电源。 89c51内部有一个用于构成振荡器的高增益反向放大器,该放大器的输入输出引脚为XTAL1和XTAL2,它们跨接在晶体振荡器和用于微调的电容,便构成了一个自激励振荡器 电路中的C1、C2的选择在30PF左右,但电容太小会影响振荡的频率、稳定性和快速性。晶振频率为在1.2MHZ~12MHZ之间,频率越高单片机的速度就越快,但对存储器速度要求就高。为了提高稳定性我们采用温度稳定性好的NPO电容,采用的晶振频率为12MHZ。 重点介绍: C1、C2作用:震荡补偿电容,可以放宽起震频率,让时钟电路容易起震。 C3的作用:为极性电容,上电瞬间,电容导通,可以通交流阻直流。给RST连续两个机器周期的高电平,即可完成上电复位,复位

相关主题