搜档网
当前位置:搜档网 › 剪应力、剪力流理论和剪切中心

剪应力、剪力流理论和剪切中心

剪应力、剪力流理论和剪切中心
剪应力、剪力流理论和剪切中心

剪应力、剪力流理论和剪切中心

一、梁的剪应力计算公式 由梁的剪应力计算公式Ib

VS =τ,可求得梁竖向受弯时截面的竖向剪应力(图6-7)。这在实体式截面(例如矩形截面)时为正确,但对薄壁构件则存在一些不合理现象。

例如在工形截面梁(图6-7c )中,按式(6-7)所得腹板剪应力顺着腹板中轴线方向,是合理的;而翼线剪应力则有不合理处,主要是在翼缘与腹板的交接处发生翼线剪应力很小而腹板剪应力大的剧烈突变。这是由于计算翼缘剪应力时假定为沿翼缘全宽b 均匀分布,实际上翼缘内表面cd 和ef 段为自由表面,不存在水平剪应力,因而也不会有成对相等产生的垂直于表面方向的翼缘竖向剪应力,亦即剪应力不会在翼缘全宽内均匀分布。

另外.取梁翼线的dz 微段a a ''11(图 6-13a )考察其平衡,仿式(6-7)的推导,可知在翼缘内主要将有水平剪应力,其计算公式为:

It VS =

τ (6-20) 公式形式与式(6-7)相同,但?1A ydA 取计算剪应力处(l 点)以外翼缘部分1A (图6-

13b )对中和轴的面积矩, t 取计算剪应力处的冀缘厚度。

这样,整个工形截面梁在竖向受弯时的剪应力分布将如图6-13b ,具体公式为: 翼缘水平剪应力(s 自0=τ的翼缘自由端即角点算起,对c 、d 点为s =0,b /2):

x

x x x I Vhs t I sth V t I VS 22===τ (6-20)

0=c τ , x

d I Bbh 4=τ 腹板竖向剪应力(s 自腹板端点即腹板与翼缘中线交点算起,对d 、O 点为s =0,h /2): [][])(t tbh 2I V I 2)(2bth V I VS w x x x x s h s t t s h st t w

w w -+=-+==τ (6-20) w x B t I Vbht q 2= , )4

(2h t bt I Vh q w x D += 注意所有剪应力都在顺着薄壁截面的中轴线S 方向,并为同一流向(图6-13b )。容易证明:截面全部剪应力的总合力等于竖向剪力V ,水平合力则互相抵消平衡。

二、薄壁构件的剪刀流理论

根据上面的推论,可得到薄壁构件受弯时的剪应力分布规律:无论是竖向、水平或双向受弯,截面各点剪应力均为顺着薄壁截面的中轴线S 方向(图6-13b 、6-14,示竖向弯曲情况),在与之垂直即壁厚方向的剪应力则很小而可忽略不计;且由于壁薄可假定剪应力τ沿厚度t 为均匀分布,其大小为:

It VS =τ , I

VS =?=t q τ (6-23)

上面左式τ即式(6-20)的剪应力,右式t q ?=τ则是沿薄壁截面s 轴单位长度上的剪力(N /mm )。除了需要验算剪应力的情况外,用t q ?=τ一般更为方便实用。 竖向弯曲时上式用x x x I S V =?t τ,水平弯曲时则用y

y y I S V =?t τ。因二者τ的方向均为沿S 铀,故双向弯曲时二者可直接叠加(考虑正负号)。

将t q ?=τ按其方向用箭头线画在薄壁截面中轴线S 轴上时,将成为自下向上或自上向下的连续射线(图6-13b 、6-14);t q ?=τ称为薄壁构件竖向(或水平)弯曲产生的剪力流。这种剪力流在任意截面上都是连续的,在板件交点处流入的与流出的剪力流相等;并且在截面端点处为零,中和轴处最大。

三、剪切中心

由对称关系可以知道,对于双轴对称截面的梁(例如图6-13的工形截面梁),当横向荷载作用在形心轴上时,梁只产生弯曲,不产生扭转。这时,截面上三角形分布弯曲应力的合力等于弯矩 M ,截面上剪力流的合力是通过形心轴的剪力V ,正好平衡。

对于槽形、T 形、L 形等非双轴对称截面,当横向荷载作用在非对称轴的形心轴上时,梁除产生弯曲外,还伴随有扭转。现以图6-15糟形截面梁为例来说明。

如图6-15所示,当横向荷载 F 不通过截面的某一特定点S 时,梁将产生弯曲并同时有扭转变形,其外扭矩为Fe 。若荷载逐渐平行地向腹板一侧移动,外扭矩和扭转变形就逐渐减小;直到荷载移到通过S 点时,梁将只产生平面弯曲而不产生扭转,亦即S 点正是梁弯曲产生的剪力流的合力作用线通过点(下段再详述)。因此,S 点称为截面的剪切中心。荷载通过S 点时梁只受弯曲而无扭转,故也称为弯曲中心。根据位移互等定理,既然荷载通过S 点时截面不发生扭转即扭转角为零,则构件承受扭矩作用而扭转时,S 点将无线位移,亦即截面将绕S 点发生扭转变形,同时扭转荷载的扭矩也是以S 点为中心取矩计算(图 6-15C );故 S 点也称为扭转中心。

现根据截面内力的平衡来求剪切中心S 的位置:

——当梁承受通过S 的横向荷载时,梁只产生三角形分布的弯曲应力和按剪力流理论的剪应力。截面弯曲应力的合力正好等于弯矩M ;截面剪力流的合力正好等于剪力V ,而且合力作用线必然通过S 才能正好与横向荷载平衡。因此,求出剪力流合力的作用线位置也就是确定了剪切中心S 的位置。

槽形截面剪力流的计算公式与工形截面的式(6-21、6-22)相同,即(图6-15a ): 翼缘剪力流(S 自中线自由端算起,对A 、B 点为S =0,b ):

x x x x 2I Vht I 2)sth V(I VS ===

?=t q τ (6-24)

0=A q ,x

B I Vbht q 2= 腹板剪力流(S 自腹板与翼缘中线交点算起,对B 、D 点为S =0,h /2): [][])(t tbh 2I V I 2)sth (2)(2bth V I VS w x

x x x s h s s h st t q w w -+=-+==?=τ (6-25) x B I Vbht q 2=, x

w x D I t Vh I Vbht q 822+= 槽形截面惯性矩为:

2

1223t bh t h I w w += (概算公式) 上翼缘或下翼缘剪力流的合力P (图6-15b )可按式(6-24)取S =0~b 积分,或按图6-15a 该部分剪力流图的面积:

x

B I ht Vb b q P 422== (6-26)

腹板剪力流的合力可按式(6-25)取S =0~h 积分,或按图6-15a 腹板部分剪力流图(抛物线形)的面积;应正好等于竖向剪力V (图6-15b ),现于复核如下:

V I t Vh I t Vbh h q q h q V x

w x B D B =+=-+=122)(3232 上、下翼缘和腹板部分剪力流合力P 、P 、V 的总会力仍是V ,但其作用线位置偏离腹板轴线一个距离a (图6-15b ):

bt

ht b ht bt t b I t h b V Ph a w w x 6112634222+=+=== (6-27) 剪切中心S 的纵坐标位置可同样按水平弯曲时剪力流的合力点位置来确定;但利用槽形截面的对称关系可知剪切中心S 必在对称轴上(图6-15C )。

梁的横向荷载通过S 点时,梁只受弯曲而无扭转;当不通过S 点时,梁除弯曲外还承受扭矩Fe (图 6-15C )。

关于剪切中心 S 位置的一些简单规律如下:(a )有对称轴的截面,S 在对称轴上; (b )双轴对称截面和点对称截面(如Z 形截面),S 与截面形。肝重合;(c )由矩形薄板相交于一点组成的截面,S 在交点处(图6-16),这是由于该种截面受弯时的全部剪力流都通过此交点,故总合力也必通过此交点。

一些常用开口薄壁截面的剪切中心位置见表6-2,

第6讲 剪切与挤压的实用计算

第6讲教学方案——剪切与挤压的实用计算

§2-13剪切和挤压的实用计算 1.工程上的剪切件 通过如图3-1所示的钢杆受剪和图3-2所示的联接轴与轮的键的受剪情况,可以看出,工程上的剪切件有以下特点: 1)受力特点 杆件两侧作用大小相等,方向相反,作用线相距很近的外力。 2)变形特点 两外力作用线间截面发生错动,由矩形变为平行四边形。(见动画:受剪切作用的轴栓)。 因此剪切定义为相距很近的两个平行平面内,分别作用着大小相等、方向相 对(相反)的两个力,当这两个力相互平行错动并保持间距不变地作用在构件上时,构件在这两个平行面间的任一(平行)横截面将只有剪力作用,并产生剪切变形。 2.剪应力及剪切实用计算 剪切实用计算中,假定受剪面上各点处与剪力Q 相平行的剪应力相等,于是受剪面上的剪应力为 A Q =τ (3-1) 式中:Q —剪力;A —剪切面积 τ—名义剪切力 剪切强度条件可表示为: []ττ≤=A Q (3-2) 式中:[]τ—构件许用剪切应力。

剪切面为圆形时,其剪切面积为: 4 2 d A π = 对于如图3-3所示的平键,键的尺寸为l h b? ?,其剪切面积为:l b A? =。 例2-14电瓶车挂钩由插销联接,如图3-4a。插销材料为20#钢,[]MPa 30 = τ,直径mm 20 = d。挂钩及被联接的板件的厚度分别为mm 8 = t和mm 12 5.1= t。牵引力kN 15 = P。试校核插销的剪切强度。 解:插销受力如图3-4b所示。根据受力情况,插销中段相对于上、下两段,沿m—m和n —n两个面向左错动。所以有两个剪切面,称为双剪切。由平衡方程容易求出 2 P Q= 插销横截面上的剪应力为 () []τ π τ< = ? ? ? = = - MPa 9. 23 10 20 4 2 10 15 2 3 3 A Q 故插销满足剪切强度要求。 例2-15 如图3-8所示冲床,400 max = P kN,冲头 []400 = σMPa,冲剪钢板360 = b τMPa,设计冲头 的最小直径值及钢板厚度最大值。 解:(1)按冲头压缩强度计算d []σ π σ≤ = = 4 2 d P A P 所以

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 [] s F A ττ =≤ (5-6) 这里[τ]为许用剪应力,单价为Pa或MPa。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n,得许用剪应力[τ]。 [] n τ τ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[] τσ = 对脆性材料: []0.8 1.0[] τσ = (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa,直径d=20mm。挂钩及被连接板件的厚度分别为t=8mm和t1=12mm。牵引力F=15kN。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m和n-n两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2 s F F= 销钉横截面上的剪应力为: 3 32 1510 23.9MPa<[] 2(2010) 4 s F A ττ π - ? === ?? 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb=360 MPa。试设计冲头的最小直径及钢板最大厚度。

剪切计算和常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[]τσ= 对脆性材料: []0.8 1.0[]τσ= (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2s F F = 销钉横截面上的剪应力为:

3 32 1510 23.9MPa<[] 2(2010) 4 s F A ττ π - ? === ?? 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb=360 MPa。试设计冲头的最小直径及钢板最大厚度。 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d max max 2 =[] 4 F F d A σσ π =≤ 所以 3 max 6 4440010 0.034 3.4 []40010 F d m cm πσπ ?? ≥=== ?? (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d高为t的柱表面。 max s b F F A dt ττ π ==≥ 所以 3 max 26 40010 0.0104 1.04 3.41036010 b F t m cm d πτπ- ? ≤=== ???? 例5-3 如图5-14所示螺钉受轴向拉力F作用,已知[τ]=0.6[σ],求其d:h的合理比值。 图5-14 螺钉受轴向拉力示意图 解:螺杆承受的拉应力小于等于许用应力值:

剪切应力计算

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ= N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ= ≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E E A σε?= =N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第二章应力状态

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负早规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正.反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均为正。应力及其分量的单位为Pa 。 图2.1 应力矢量

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[]τσ= 对脆性材料: []0.8 1.0[]τσ= (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2s F F = 销钉横截面上的剪应力为: 332151023.9MPa<[] 2(2010)4s F A ττπ-?===?? 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。

剪切应力计算精编版

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压 的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ=N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ=≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E EA σε?==N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

剪切计算及常用材料强度

2、剪切强度计算 (1) 剪切强度条件 剪切强度条件就就是使构件得实际剪应力不超过材料得许用剪应力。 ????(5—6)这里[τ]为许用剪应力,单价为Pa或MPa. 由于剪应力并非均匀分布,式(5—2)、(5-6)算出得只就是剪切面上得平均剪应力,所以在使用实验得方式建立强度条件时,应使试件受力尽可能地接近实际联接件得情况,以确定试样失效时得极限载荷τ0,再除以安全系数n,得许用剪应力[τ]。 ?????(5—7) 各种材料得剪切许用应力应尽量从相关规范中查取。 一般来说,材料得剪切许用应力[τ]与材料得许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切与双剪切。下面通过几个简单得例题来说明.例5—1图5—12(a)所示电瓶车挂钩中得销钉材料为20号钢,[τ]=30MPa,直径d=20mm。挂钩及被连接板件得厚度分别为t=8mm与t1=12mm。牵引力F=15kN。试校核销钉得剪切强度. 图5-12电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m与n—n两个面向左错动。所以有两个剪切面,就是一个双剪切问题。由平衡方程容易求出: 销钉横截面上得剪应力为: 故销钉满足剪切强度要求. 例5—2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板得极限剪应力τb=360 MPa。试设计冲头得最小直径及钢板最大厚度。 图5-13冲床冲剪钢板及冲剪部分受力示意图 解:(1)按冲头压缩强度计算d

剪切计算及常用材料强度

剪切计算及常用材料强 度 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 [] s F A ττ=≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 销钉横截面上的剪应力为: 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d 所以 (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d 高为t 的柱表面。 所以 例5-3 如图5-14所示螺钉受轴向拉力F 作用,已知[τ]=[σ],求其d :h 的合理比值。 图5-14 螺钉受轴向拉力示意图 解:螺杆承受的拉应力小于等于许用应力值: 螺帽承受的剪应力小于等于许用剪应力值: 当σ、τ同时分别达到[σ]、[τ]时.材料的利用最合理,既 所以可得

第3章剪切和挤压的实用计算

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形

比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2

剪切及挤压强度计算实例

剪切及挤压强度计算实例 三、强度计算实例: 例1、图所示结构采用键联接,键长度l=35mm ,宽度b=5mm ,高度h=5mm ,其余尺寸如图所示,键材料许用剪应力[τ]=100Mpa ,许用挤压应力[σbs ]=220Mpa ,键与所联构件材料相同,确定手柄上最大压力P 的值。 解:本题中键的变形为剪切与挤压变形,与键相联的另二个构件(轴与手柄)受挤压作用,因三者材料相同,仅对键进行强度计算。 1、受力分析: 由图a 可知M=600P 由图b 可知M=10Q ,即Q=60P 2、进行强度计算: 键剪切面积A=lb=5x35mm ,挤压面积A=2.5x35mm 。 由剪切强度条件: MPa P lb Q A Q 100][53560=≤?===ττ 得P ≤292N 由挤压强度条件: MPa P h l P A P bs bs bs bs 220][5.235602/60=≤?=?==σσ 得P ≤321N 故取P ≤292N 。 例2、图所示钢板冲孔,冲床最大冲力P=400KN ,冲头材料的许用应力[σ]=440Mpa ,钢板剪切强度极限τ=360Mpa ,试确定:

1、该冲床能冲剪切的最小孔径。 2、该冲床能冲剪切的钢板的最大厚度δ。 解:1、冲头直径过大,则冲头压缩产生的正应力过大,不能保证正常工作。由其强度条件: MPa d A N 440][4104002 3 =≤?==σπσ 得d ≥34mm ,此为冲头最小直径。 2、冲头冲孔时,钢板受剪切,剪切面为圆柱面,如图所示,剪切面积A=πd δ,剪力Q=P ,由冲孔强度条件: MPa A Q b 36034104003 =≥??==τδπτ δ≤10.4mm 如δ超过此值,则冲孔的剪切应力小于钢板强度极限,达不到冲孔条件。

剪切应力计算

剪切应力计算 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

拉伸、压缩与剪切 1基本概念及知识要点 1.1基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2轴向拉压的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴 ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件力F N 轴力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa、Pa。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。4.胡克定律 、杆的长度l成正比,与截面线弹性范围内,杆的变形量与杆截面上的轴力F N 尺寸A成反比;或描述为线弹性范围内,应力应变成正比,即 式中的E称为材料的弹性模量,EA称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3材料在拉压时的力学性能

材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。 详见教材,应理解本部分知识。 1.4 简单拉压静不定问题 1. 未知力的个数超过静力平衡方程个数的问题为静不定问题,其中未知力可以是结构的约束反力或 构件的内力。 2. 解决静不定问题,除列出静力平衡方程外,还需列出一定数量的补充方程,这些补充方程可由结 构各部分变形之间的几何关系以及变形和力之间的物理关系求得,将补充方程和静力平衡方程联立求解,即可得出全部未知力。 3. 静不定结构还有一个特性,即由于杆件在制造中的误差,将引起装配应力;由于温度变化会引起 温度应力。 1.5 应力集中的概念 工程实际中,由于结构上和使用上的需要,有些零件必须有切口、切槽和螺纹等。在构件尺寸的突变处,发生局部应力急剧增加的现象,称为应力集中现象。 剪切和挤压的实用计算 1. 工程中经常使用到联接件,如铆钉、销钉、键或螺栓等。联接件一般受剪切作用, 并伴随有挤压作用,因而联接件应同时满足剪切强度和挤压强度。有时还要考虑被联接部分的拉伸强度问题。 2. 两作用外力之间发生相互错动的面称为剪切面。剪切面上的切应力为F A τ= s ,其中F s 为剪力,A 为剪切面的面积,即假设切应力在剪切面上均匀分布。剪切强度条件 []F A ττ= ≤s 3. 产生相互挤压的表面称为挤压面。挤压面上的挤压应力为bs bs F A σ= ,式中F 为挤压力,A bs 为挤压面积,即假设挤压应力在挤压面上均匀分布。挤压强度条件为 []bs bs bs F A σσ= ≤

剪切计算及常用材料强度

2.剪切强度计算 (1)剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 这里3为许用剪应力,单价为 Pa 或MPa 。 由于剪应力并非均匀分布,式 (5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度 条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷 70,再除以安全系数 许用剪应力[密] []1 n 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力 [t 与材料的许用拉应力[盅间,存在如下关系: 对塑性材料: []=0.6U 0.8[二] 对脆性材料: []2.8LJ 1.0[二] (2)剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计 算中要正确判断剪切面积,在钏钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1图5-12(a)所示电瓶车挂钩中的销钉材料为 20号钢,[30MPa ,直径d=20mm 。挂钩及被连接板件的 厚度分别为t = 8mm 和t 〔= 12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 (5-6) n,得 (5-7) 图5-12电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿 m-nS n-n 两个面向左错动。 所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: F s 销钉横截面上的剪应力为: F s _ 15 103 3 2 A 2 -(20 10 )2 = 23.9MPa<[] 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床, 的 最小直径及钢板最大厚度。 F max =400KN ,冲头[b ]=400MPa 冲剪钢板的极限剪应力 护360 MPa 。试设计冲头

剪切力的计算方法.docx

第3章剪切和挤压的实用计算 3.1剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴 线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(m - n面)发生相对错动(图3- 1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面m-n假想地截开,保留一 部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F Q (图3-1c)的作用。F Q称为剪力,根据平衡方程VY=O ,可求得FQ=F。剪切破坏时,构件将沿剪切面(如图3-la所示的m-n面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2剪切和挤压的强度计算3.2.1剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图 试验装置的简图,试件的受力情况如图3-2b所示,这是模拟某种销钉联接的工作情 形。当载荷F增大至破坏载荷F b时,试件在剪切面m - m及n - n处被剪断。这种具 有两个剪切面的情况,称为双剪切。由图3-2c可求得剪切面上的剪力为 F Q 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法 确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中, 假设应力在剪切面内是均匀分布的。若以A表示销钉横截面面积,则应力为 F Q A ?与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F达到F b时的切应力称剪切极限应力,记为-b。对于上述剪切试验,剪切极限 应力为 _ F k ■b - 2A 3-2a为一种剪切 (3-1) bj

相关主题