搜档网
当前位置:搜档网 › The Autonomous Tour-Guide Robot Jinny

The Autonomous Tour-Guide Robot Jinny

The Autonomous Tour-Guide Robot Jinny

Gunhee Kim, Woojin Chung, Kyung-Rock Kim,

Munsang Kim

Intelligent Robotics Research Center,

Korea Institute of Science and Technology,

39-1 Hawolgok-dong, Sungbuk-ku, Seoul, 136-791, Korea {knir38, wjchung, rock, munsang}@kist.re.kr

Sangmok Han and Richard H. Shinn

Intelligent Robotics Laboratory

Bonavision, Inc.

1543-8 Seocho-dong, Seocho-ku, Seoul, 137-070, Korea {sangmok, shinn}@https://www.sodocs.net/doc/d98393422.html,

Abstract—This paper explains a new tour-guide robot Jinny. The Jinny is developed by focusing on human robot interaction and autonomous navigation. In order to achieve reliable and safe navigation performance, an integrated navigation strategy is established based on the analysis of a robot’s states and the decision making process of robot behaviors. According to the condition of environments, the robot can select its motion algorithm among four types of navigation strategy. Also, we emphasized the manageability of a robot’s knowledge base for human friendly interactions. The robot’s knowledge base can be extended or modified intuitively enough to be managed by non-experts. In order to show the feasibility and effectiveness of our system, we also present experimental results of the navigation system and some experiences on practical installations.

Keywords-component; guide robots, navigation, human robot interaction

I.I NTRODUCTION

In recent years, there have been various trials to extend robotics technology to service applications in public spaces. Especially, many researchers have an interest in the guide robot since it is closely related to two critical issues in current robotic research, which are interaction with human and navigation in dynamic environments.

So far, there have been many related research activities about the guide robots in human coexisting environment. Minerva [1] [2], one of the most famous tour-guide robots, was installed in the Smithsonian’s National Museum of American History during two weeks in 1998. It showed the feasibility and reliability of its navigation system in densely populated and unmodified environments. The navigation system adopts Markov localization, ceiling mosaics, and model based dynamic window approach. Also, it developed the spontaneous short-term interaction suitable in tour-guide applications. It is implemented by using facial expressions, the emotional state machine, and the adaptation method.

The evolutionary Mobot Museum Robot Series [3] [4] are permanently installed robots which have operated in public spaces for many years. They focused on robust and reliable operation, and thus, they had relatively simple world modeling and navigation strategy. They defined two requirements of public robots, which are autonomy and human robot interaction. They adopted autonomy schemes like self-diagnosis and interaction techniques such as an awareness of human presence and displays of robot’s emotional states.

The entertainment robots at the “Museum fur Kommunikation” in Berlin [5] is another example of permanently installed guide robots. Three robots were created, and each of them had a specific character expressed through its appearance. Their tasks were welcoming visitors, leading a guide tour though the museum, and plying with a ball. The localization algorithm is Kalman filter based map-matching method using encoders, a gyroscope, and a laser scanner. The developed motion planning included simple ball tracking and preplanned path tracking based on a static map.

RoboX [6] is one of the latest tour-guide robots. Ten RoboX systems had been applied at the Swiss National Exhibition Expo 02 during five months. It had several human interaction skills like face tracking using a color camera, a motion tracking using the laser range finders, speech recognition/synthesis, and facial expressions. It adopted probabilistic feature-based localization and the navigation system that integrates navigation function, elastic band, dynamic window approach [7].

At the KIST (Korea Institute of Science and Technology), a guide robot Jinny is under development toward permanent installation at National Science Museum of Korea in September 2004. The Jinny has been tested in various actual environments like an office building in KIST and the exhibit hall of Hyundai heavy industries. It has been also displayed in the exhibitions and appeared on television several times.

Through several experiences in actual environments, we can summarize some major issues and design requirements of the Jinny as follows.

1)Adaptive navigation in dynamic and unmodified environment: As a guide agent, moving to desired exhibits and avoiding collisions with obstacles are basic capabilities. For robustness and reliability, we concluded that it is desirable that robot adaptively selects its motion according to the conditions of environments. For example, if the robot is in a broad area, the robot use a map based navigation. Else if it is in the narrow region between exhibits, the sensor based navigation, like a wall-following technique, is much dependable since it is less affected by localization accuracy and uncertainties of environments.

2) Interaction which attracts and engages people’s interest : Since our target environment is a museum, a robot doesn’t have a long-term relationship to users. The objective of our interaction system is spontaneous short-term interaction which can attract people around a robot and engages people’s interests for no more than 20 minutes at best.

3) Manageability of robot’s knoledge base: For permanent installation, the extension or modification of a robot’s knowledge base should be easy and straightforward enough to be managed by non-experts like the staffs of a museum. For example, the changes of exhibits, special events of anniversaries, and the visits of important figures happen very often in the museum. Therefore, our HRI (Human Robot Interface) system is developed by natural language based approach. It also has a graphically friendly user interface by applying widely used web technologies.

4) Reliability and safety: It is desirable that the robot mostly fulfill its assigned tasks. Also, it should operate safely both for people and for the robot itself. No mater what kinds of faults occur, for example, the robot looses its way, they do no critical harm to visitors and a robot. The scope of this paper is to introduce our tour-guide robot Jinny by focusing on the navigation and human robot interaction systems. They are developed in order to meet the above described requirements. In order to show the feasibility and effectiveness of our system, we also present experimental results of the navigation system and some experiences about actual installations.

II.

S YSTEM O VERVIEW

A. Hardware platform

Figure 1. Hardware elements of the Jinny .

The Fig.1 shows the hardware elements of the Jinny . Its diameter is 0.6m, and the height is 1.5 m. Two differentially driven wheels are located at the center of the robot, and two casters are used for stability. The robot is able to move at a speed of up to 1.0 m/s with 0.5 m/s 2 of maximum acceleration. It has long lasting batteries for up to eight hour in order to recharge overnight and operate in the daytime without interruption.

There are three PCs in the Jinny system. Two 3 GHz Pentium-IV PCs on Windows 2000 are used for navigation and human robot interaction respectively. Both computers communicate with each other over a 10Mbit/s wireless Ethernet. One 400MHz Pentium-III DOS PC in which motion boards are installed is used for control of mobile base, two arms, and the neck system. This computer is connected to the other computers through serial ports.

The Jinny has several types of sensors for autonomous navigation and safety. Our approach is based on the range-sensors. Two laser range finders are set up on front and rear sides, and two infrared scanners are installed with different height. Also, an optical fiber gyroscope is used for better localization performance. The robot is equipped with rubber bumpers all around for an immediate stop.

Table I summarizes the interaction elements in the Jinny system. The Jinny can recognize the speech of a registered user through wireless microphones. It can also receive a user’s command via a tough screen installed in the height where an average grown-up can easily use. Twelve LED buttons are distributed on the lower part of LCD display and on the body as shown in Fig.1. They are set up for robot’s short-term interesting reactions. The Jinny can recognize and synthesize voice sounds in Korean by using commercial packages manufactured by Voicetech [8]. Also, the Jinny can express its emotional states in the form of icons in the LED matrix and gestures using a mobile base, a 2-DOF neck system, and two 1-DOF arm systems.

TABLE I. T HE I NERACTION E LEMENTS IN J INNY S YSTEM - Voice recognizer and microphones - Touch screen Receptive elements - 12 LED buttons

- Voice synthesizer and speakers

- LED matrix for expression of emotion - LCD display

Expressive elements

- Gestures (using mobile base, 2-DOF neck system, and two 1-DOF arm systems)

B. Software Architecture

In our previous work [9][10], we proposed the Tripodal schematic control architecture as the solution to several architecture and system integration issues, which include information connectivity between a variety of components, scheduling of information processing, and the combination of reactivity and deliberation. It is developed for the PSR (Public Service Robot) systems, PSR-1, PSR-2, and the Jinny , which are multi-functional service robots in large scale indoor environments. Through the proposed architecture, we

2-DOF neck system LED matrix for

expression of emotion Two 1-DOF arms

LCD display

Two IR scanners

Battery indicator

Two laser range finders Bumpers

12 LED buttons

Two-wheel differential mobile base

Speakers

successfully implemented four target service tasks, a delivery, a patrol, a guide and a floor cleaning task.

Our strategy has two major advantages over pervious researches. First, the proposed architecture supports Petri net based formal description of tasks and error/fault handling schemes. Second, it provides three types of diagrams as easy-to-use and straightforward guidelines of system integration issues. The integration process is intuitively completed by just following the proposed procedures.

In [10], we described how to develop a new guide robot Jinny using Tripodal schematic approach. Most of modules developed for previous platforms, PSR-1 and PSR-2, are reused directly, although the hardware configuration of the Jinny is quite different. Only some hardware-related modules are different each other and is changed one to one.

III.N AVIGATION S YSTEM

A.Overview of developed navigation system

The detailed description of whole navigation system of the Jinny is introduced in [11]. It includes the development of crucial navigation algorithms like map, path planning, and localization, and planning scheme such as error/fault handling. Experimental results are also given to show the feasibility of proposed navigation system. Major advantages of developed navigation system are as follows:

1) A range sensor based generalized scheme of navigation without modification of the environment: Range sensors are implemented for map construction, path planning, and localization. There is no fundamental limitation of using any type of range sensors. Multiple roles of the map were successfully implemented for environmental representations and a reference database of a localization as well as optimal path generation to the goal. Also, navigation is carried out without any artificial landmarks.

2)Intelligent navigation-related components: In our navigation system, each navigation-related module has its own intelligence. It means each component has not only its own function but also the ability to analyze internal states and environmental information. For example, the path planner generates a reference trajectory, and provides important information like a goal occupation by an object in forms of events. These events have an influence on the selection of a robot behavior.

3)Framework supporting the selection of multiple behaviors and error/fault handling schemes: As the event-generating modules and the concerned events increase, it becomes troublesome to manage these situations. Thus, we developed general framework, which is the Petri net based configuration. By using a proposed scheme, several significant issues can be solved, for example, task decomposition, error/fault detection and recovery, and handling many events received from several modules. Basically, we consider the events from the localizer, the path planner, and behaviors. B.Localization

Our localization method is a probabilistic map-matching scheme based on Monte Carlo localization [12]. It can use any kinds of range sensors, and handle both local tracking and global position estimation. The details of the reliable position estimation method of the PSR are introduced in [13] [14]. The advantages of the proposed localization scheme as follows.

1)Two measure functions, Range Image Similarity Measure Function (RISF) and Angular Similarity Measure Function (ASF), are developed for both polygonal and non-polygonal environments. ASF provides fast sample convergence and high accuracy in polygonal environments. RISF makes it possible to estimate the position in non-polygonal surroundings.

2)Our smart localization considers not only position estimation but also extraction of state information by analyzing environmental uncertainties. It helps a robot take appropriate action like human beings by introducing discrete event control concept.

C.Robot motion

We implemented four types of motions into the Jinny. The Jinny selects its motion algorithm according to the conditions of environments. We learned by experience that this approach, in uncertain and dynamic surroundings, is more robust and reliable than the method using one navigation strategy. As mention before, it is easily implemented and managed in virtue of our Petri net based formal architecture.

1)AutoMove: The AutoMove is our fundamental navigation strategy.Our path planning algorithm is developed by modifying Konolige’s gradient method [15]. It deals with two exceptional cases, path blocking and goal occupation unlike original Konolige’s gradient method. Such situations happen very often in a real environment. The detailed description of our path planning algorithms is introduced in [11]. The advantages of the AutoMove is generality and optimality. It is applicable in any situations, and it also make it possible for the robot to move the desired position with shortest collsition-free trajectory. The Automove is mostly used when the robot is in a broad area in our application.

2)AutoMove without path updating: During AutoMove, the optimal path is continuously updated in run-time according to the dynamic change of an environment. However, the path updating for obstacle avoidance is not desirable in some cases. The typical example is when the robot travels with a group of visitors from one exhibit to the next during the course of a tour.

A stop-and-wait motion with voice notification is safer and more human-friendly than an avoidance motion when many peoples are around the robot.

3)Virtual balloon wall following: Our wall following technique was based on the full-coverage algorithm designed for a cleaning task [9]. It generates velocity commands by using on raw sensing data in every sampling time. Thus, it is more dependable with respect to localization errors and

uncertainties of environments than the other navigation methods. This motion is selected when the robot is in a narrow region between exhibits, one of the typical cases critical to localization accuracy.

4)Remote controlled motion: The robot may lose its way or fail to find out the path to the goal in some tough cases. A central computer over wireless network is allowed to monitor the state of a robot and control directly by using a keyboard or a joystick.

IV.H UMAN R OBOT I NTERACTION

A.Basic Function

The Jinny can autonomously navigate the environment and explain assigned exhibits to visitors. It can express its basic emotional states through LED matrix and gestures generated by a mobile base, a 2-DOF neck, and two 1-DOF arms. It can also perform several interesting services in response to user’s requests. The Jinny plays a simple game with visitors, and dances to the music. It can dialogue with registered users about limited class of topics. Also, it provides the information about today’s coverage and weather gathered from the web sites.

B.Human Robot Interface(HRI) system

The Jinny’s HRI system is developed by natural language based approach which provides an effective way to communicate with untrained users. The voice input was converted to a text string by commercialized speech recognizer. Then, the strings are decomposed into several keyword patterns since we assume that most conversation between a guide robot and visitors are very short and keyword-oriented. Thus, we built a specialized simple matching algorithm to find the most probable response to an input. For example, two questions like ‘Where is a toilet?’ and ‘Where can I find a toilet’ are equally interpreted since the keyword pattern of ‘where’ and ‘toilet’ would be extracted from both cases. The weighted vector space model, which was introduced in [14] and [15], is used to calculate the similarity among keyword patterns. In the case of a touch screen and LED buttons, this process is rather simple. Each touch input is directly mapped to the pre-defined keyword pattern. For example, if a user push button 11, this input may convert to the keyword pattern of ‘go to exhibit A’ straightly without complex recognition process. Then, the keyword patterns are scored against the possible responses in knowledge base and the most appropriate one is selected.

Additional constraints called ‘context’ were used to restrict the search space during the pattern matching process. Each response in knowledge base was tagged with a ‘context’ value, which tells when this response can be a valid one. For example, all response about the dinosaurs is tagged with ‘at the dinosaurs section’, because the response is valid when the robot is located near the exhibit of dinosaurs. As a result, the Jinny could make fewer mistakes in voice recognition, and could search the response in a shorter time.

When the HRI planner processes a response selected in knowledge base, it decides which components should be activated. For example, if the response is a simple question such as “How’s weather today?” or “Introduce yourself,” only speech synthesizer would run to react a user’s request. Otherwise, if the request is a long tour-guide, the robot should activate navigation related modules like a path planner and a localizer.

Figure 2. The robot knowledge management system.

The manageability of knowledge base is one of the most important requirements for the HRI system. The knowledge base is required to be not only reused in several places and but also customized for a specific environment. And, the administration tool should help non-technical staffs to handle with the frequent updates of knowledge base. The Jinny provides the web-based administration tool called Robot Knowledge Management System (RKMS), which enables users to manipulate knowledge base with an intuitive interface. Fig.2 shows the graphical user interface of the system. Even non-technical users can specify the expected robot actions using a text string containing pre-defined action tags by following XML standard. Any changes made to knowledge base are applied immediately without compiling or downloading processes. Moreover, the system supports monitoring and administration from a remote place since it is implemented as a web server for a secure access control.

As shown Fig.3, The HRI software was built using Java, ActiveX, and JavaScript technologies not only to reuse the pre-built components but also to improve the portability of the system. The keyword pattern matching component and knowledge base component were developed in a Java language, and other HRI components were wrapped as ActiveX components. JavaScript was used to integrate Java Applets and ActiveX components. The knowledge base component stores its data using MySQL database system, since it has a reliable

performance for handling a large amount of knowledge data

is Jinny.”/>

param=”bow”/>

param=”I will show you HRI features.

This is my favorite movies.”/>

type=”play” param=”robot.avi”/>

[17]. Finally, the web-based interface of RKMS was developed with Java Server Page technologies and was deployed in a web application server, Tomcat [18].

Figure 3. The deployment of the HRI software components.

V.E XPERIMENTS AND R ESULTS

A.Navigation experiments

Experiments are conducted to show the feasibility of the navigation system of the Jinny. Fig.4 shows experimental environment, a conventional office building in KIST. The mission is to guide a visitor from a hallway to the front of the room. The start point is node0, and goal is node2 as shown in Fig.4.

Figure 4. An experimental environment.

Fig.5.(a) presents a planned path and an actual trajectory

during the navigation. The AutoMove without path updating is

applied in this experiment since the environment is a narrow

hallway. Thus, the robot doesn’t change a reference path.

When the robot meets a person, it stops moving and say “Step

aside, please.” As shown in Fig.5.(a), the robot’s actual

trajectory has the discontinuity which mainly results from

position updates by the localizer. The robot can move smoothly

since the behavior also contains several schemes for stable

tracking such as an acceleration filter. The results of the

AutoMove with run-time path update were shown in [11].

(a) The results of path planning.

(a) The results of localization.

Figure 5. Experiment of navigation.

Fig.5.(b) shows the results of localization. It represents the

local map, laser scan data, reference data, sample distributions,

and estimated position. The data for path planning and

localization is gathered simultaneously with a single

experiment. The reference measurements of an estimated robot

location are mostly consistent with the scanned measurements

of an actual robot position. It means that the accurate position

estimation is accomplished. Although the environment is

slightly changed and a user disturbs the Jinny’s way, the

proposed localization algorithms work successfully.

B.Experience in actual environments

The Jinny was demonstrated at the 2003 Korea Science

Festival from August 13th to 21st. Also, it was tested in the

exhibit hall of Hyundai Heavy Industries as shown in Fig.6.

The Jinny autonomously navigated the crowded environment

and explained 25 exhibits to visitors. Fig.7 shows the

information map in HRI of the Jinny. A user can select the

scenario by selecting the sequence of exhibits to be explained.

Scan data

Reference

data

Estimated

position

Planned

Node 0

Node 2

Actual

Trajectory

Node 1

Node0 (36.0, 11.3)

Node1 (27.3, 14.8)

Node2 (19.2, 15.8)

Figure 6. The guide robot Jinny in the exhibit hall of Hyundai Heavy

Industries

.

Figure 7. Information map in HRI.

VI. C ONCLUSION

This paper introduces a new tour-guide robot Jinny . We described a system overview, a navigation approach, and a human robot interface. Our experiments clearly show that the developed system is feasible and useful as a tour-guide agent. Major advantages of the proposed system can be summarized as follows;

1) Adaptive navigation in dynamic and unmodified environment: According to the conditions of environments, the robot can select its motion algorithm among four types of navigation strategy. Also, navigation is carried out without any artificial landmarks .

2) Manageability of robot’s knoledge base: The robot’s knowledge base is extended or modified intuitively enough to be managed by non-experts since we adopted natural language based approach and widely used web technologies.

A CKNOWLEDGMENT

The authors gratefully acknowledge Hyundai Heavy Industries Co., Ltd and JoyMecha Co., Ltd for prototyping the Jinny systems. R EFERENCES

[1] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, and D.

Fox, “MINERVA: A Second-Generation Museum Tour-Guide Robot,” in Proceeding of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, USA, pp. 1999-2005, 1999.

[2] J. Schulte, C. Rosenberg, and S. Turun, “Spontaneous, Short-term

Interaction with Mobile Robots,” in Proceeding of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, USA, pp. 1999-2005, 1999.

[3] T. Willeke, C.Kunz, and I. Nourbakhsh, “The History of the Mobot

Museum Robot series: An Evolutionary Study,” in Proceeding of FLAIRS 2001 Conference, 2001.

[4] I. Nourbakhsh, J. Bobenage, S. Grange, R. Lutz, R. Meyer, and A.Soto,

“An affective mobile robot educator with a full-time job,” Artificial Intelligence, vol. 114, pp. 95-124, 1999.

[5] B. Graf, and O. Barth, "Entertainment Robotics: Examples, Key

Technologies and Perspectives," in proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems - Workshop "Robots in Exhibitions," 2002.

[6] B.Jensen, G.Froidevaux, X.Greppin, A.Lorotte, L.Mayor, M.Meisser,

G.Ramel, R.Siegwart, “The Interactive Autonomous Mobile System RoboX,” in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 1221-1227, 2002.

[7] K. Arras, R. Philippsen, N. Tomatis, M. Battista, M. Schilt, and R.

Siegwart, “A Navigation Framework for Multiple Mobile Robots and its Application at the Expo.02 Exhibition,” in Proceeding of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1992-1999, 2003.

[8] http://www.voicetech.co.kr/

[9] Gunhee Kim, Woojin Chung, Munsang Kim, and Chongwon Lee,

“Tripodal Schematic Design of the Control Architecture for the Service Robot PSR,” in Proceeding of the IEEE Conference on Robotics and Automation, Taipei, Taiwan, pp.2792-2797, 2003.

[10] Gunhee Kim, Woojin Chung, Munsang Kim, and Chongwon Lee, "

Implementation of Multi-Functional Service Robots Using Tripodal Schematic Control Architecture," Proceedings of the 2004 International Conference on Robotics and Automation, New Orleans, LA, 2004.

[11] Woojin Chung, Gunhee Kim, Munsang Kim, and Chongwon Lee,

"Integrated Navigation System for Indoor Service Robots in Large-scale Environments," Proceedings of the 2004 International Conference on Robotics and Automation, New Orleans, LA, 2004.

[12] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo

Localization: Efficient Position Estimation for Mobile Robots”, in Proceeding of the National Conference on Artificial Intelligence (AAAI'99), Orlando, Florida, 1999.

[13] Dongheui Lee, Woojin Chung, Munsang Kim, “Autonomous Map

Building and Smart Localization of the Service Robot PSR,” in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003.

[14] Dongheui Lee, Woojin Chung, Munsang Kim, “A Reliable Position

Estimation Method of the Service Robot by Map Matching,” in Proceeding of the IEEE Conference on Robotics and Automation, Taipei, Taiwan, 2003.

[15] Kurt Konolige, “A Gradient Method for Realtime Robot Control,” in

Proceeding of the IEEE/RSJ Conference on Intelligent Robots and Systems, Takamatsu, Japan, pp.639-646, 2000.

[16] Gerard Salton, Chris Buckley, “Term Weighting Approaches in

Automatic Text Retrieval,” in Technical Report TR87-881, Department of Computer Science, Cornell University, 1987.

[17] Salton, G. and McGill. “Introduction to Modern Information Retrieval,”

McGill-Hill:1983.

[18] https://www.sodocs.net/doc/d98393422.html,/

[19] https://www.sodocs.net/doc/d98393422.html,/tomcat/index.html

带拖车的轮式移动机器人系统的建模与仿真

系统仿真学报 JOURNAL OF SYSTEM SIMULATION 2000 Vol.12 No.1 P.43-46 带拖车的轮式移动机器人系统的建模与仿真 杨凯 黄亚楼 徐国华 摘 要: 带拖车的轮式移动机器人系统是一种典型的非完整、欠驱动系统。本文建立了带多个拖车的移动机器人系统的运动学模型,对系统的运动特性进行了分析,并在此基础上对系统的运动进行了数值仿真和图形仿真,验证了理论分析的正确性。 关键词: 移动机器人系统; 运动学模型; 龙格-库塔法; 计算机仿真 中图分类号: TP242.3 文献标识码:A 文章编号:1004-731X (2000) 01-0043-4 Modeling and Simulation of Tractor-trailor Robot Systems' Kinematics YANG Kai, HUANG Ya-lou (Department of Computer and System Science, Nankai University, Tianjin 300071) XU Guo-hua (Institute of Automation, Chinese Academy of Sciences, Beijing 100080,China) Abstract: A mobile robot with multi-trailers is a typical nonholonomic, underactuated system. This paper establishes a kinematic model for such system. Based on the kinematic model, the motion of the system is analytically studied, and the simulation of the motion for this system is conducted with the means of Runge-Kutta method and computer graphics. It proves that the theoretical analysis is right. Keywords: mobile robot; underactuated system; Runge-Kutta; computer simulation 1 引言 移动机器人是机器人学中的一个重要分支,本文所讨论的是一种特殊类型的移动机器人系统——带拖车的轮式移动机器人(Tractor-trailer robot),它由一系列相互铰链在一起的多个二轮式刚体小车组成,运行在一个平面上。带拖车的轮式移动机器人系统的一种情形是由一个卡车型的牵引车拖动着一个或多个被动的拖车组成,牵引车可以执行类似于汽车那样的运动:驱动轮向前或向后运动,转向轮向左或向右转向,拖车跟踪牵引车的运动路径。 作为典型的欠驱动、非完整系统,带拖车的移动机器人系统的运动学、规划、控制等方面的研究明显不同于其它机器人系统,由于系统运动规律、控制特性上的理论结果亟待验证,因此,带拖车的移动机器人系统的仿真是极有价值的。 本文针对一般结构形式的带拖车的移动机器人系统建立系统的运动学模型,研究模型的递推形式以解决拖车节数变化带来的模型重构问题,同时就一些问题开展理论分析与仿真验证。 2 系统的运动学模型 2.1 基本假设与变量说明 为了使所建立的数学模型对各种车体链接形式均成立,这里以非标准型带拖车的轮式移动机器人系统为研究对象,所谓非标准型就是相邻两车体的链接点不在前一车体的轮轴上而是在链接轴的某点上(如图1所示),且假设:整个系统是在平面上运动;车轮是无滑动的;车体关于其纵向轴线对称;车轮与地面是点接触,且是纯滚动运动;车体是刚体; 用于车体连接的关节之间是无摩擦

草莓采摘机毕业设计说明书

加QQ1638290842 毕业设计说明书 题目:草莓采摘机设计 专业:机械设计制造及其自动化 学号: 姓名: 指导教师: 完成日期:

目录 摘要 (1) Abstract (2) 第一章绪论 (3) 1.1. 引言 (3) 1.2. 草莓采摘机国内外研究现状 (3) 1.2.1. 国外研究现状 (3) 1.2.2. 国内研究现状 (4) 1.3. 研究的目标和内容 (5) 1.3.1. 研究目标 (5) 1.3.2. 采摘机采摘原理简介 (5) 第二章草莓采摘机总体方案设计 (7) 2.1. 草莓采摘机结构设计及其计算 (7) 2.2. 草莓采摘机设计及其材料选择 (8) 第三章采摘装置的设计 (9) 3.1. 采摘挡板的设计 (9) 3.2. 弹簧的设计 (9) 3.3. 滚轮的设计 (11) 第四章电动机的选择 (12) 4.1. 传动比的分配 (13) 第五章V带传动的设计 (15) 5.1. V带参数计算 (15) 第六章齿轮的设计 (17) 6.1. 齿轮相关参数初步确定 (17) 6.2. 按齿面接触强度设计 (17) 6.3. 按齿根弯曲疲劳强度设计 (19) 6.4. 几何尺寸的计算 (20) 第七章轴的设计 (22) 7.1. 轴的材料 (22) 7.2. 轴的参数设计 (22) 7.3. 轴承的强度校核 (27) 第八章传送装置的设计 (29) 8.1. 传送带的宽度设计 (29)

8.2. 传送带的选型 (29) 8.3. 滚筒的选择 (29) 结论 (31) 参考文献 (32) 致谢 (33) 附录 (34)

草莓采摘机设计 摘要:现在国内的农业采摘虽然对于大部分水果都有专业的采摘设备,但是对于草莓采摘还是一大难点,所设计的采摘设备针对特殊地形和栽种方式还有保持果实的完整度都有一定的难度。本设计对现阶段我国草莓种植环境进行相关了解,再结合实际采摘情况,针对草莓采摘需要注意的一些细节进行分析,设计出合理的采摘机构,实现对草莓的大批量采摘。 所设计的草莓采摘机以人力推动或机器牵引,通过拖拽,实现了草莓采摘机的行驶功能。针对不同草莓田垄形状,采摘装置加入了收紧滚轮的结构,以便适应多变的地形。 设计过程包含了草莓采摘机的电机选择,传动部分零件的材料选择及设计,及采摘部分和传送部分的设计和分析。 关键词:草莓采摘机;结构设计;理论计算

工业机器人常用坐标系介绍

工业机器人常用坐标系介绍 坐标系:为确定机器人的位置和姿态而在机器人或空间上进行的位置指标 系统。 坐标系包含:1、基坐标系(Base Coordinate System) 2、大地坐标系(World Coordinate System) 3、工具坐标系(Tool Coordinate System) 4、工件坐标系(Work Object Coordinate System) 1、工具坐标系机器人工具座标系是由工具中心点TCP 与座标方位组成。 机器人联动运行时,TCP 是必需的。 1) Reorient 重定位运动(姿态运动)机器人TCP 位置不变,机器人工具沿座标轴转动,改变姿态。 2) Linear 线性运动机器人工具姿态不变,机器人TCP 沿座标轴线性移动。机器人程序支持多个TCP,可以根据当前工作状态进行变换。 机器人工具被更换,重新定义TCP 后,可以不更改程序,直接运行。 1.1.定义工具坐标系的方法:1、N(N=4)点法/TCP 法-机器人TCP 通过N 种不同姿态同某定点相碰,得出多组解,通过计算得出当前TCP 与机器人手腕中心点( tool0 ) 相应位置,座标系方向与tool0 一致。 2、TCPZ 法-在N 点法基础上,Z 点与定点连线为座标系Z 方向。 3、TCPX,Z 法-在N 点法基础上,X 点与定点连线为座标系X 方向,Z 点与定点连线为座标系Z 方向。 2. 工件坐标系机器人工件座标系是由工件原点与座标方位组成。 机器人程序支持多个Wobj,可以根据当前工作状态进行变换。 外部夹具被更换,重新定义Wobj 后,可以不更改程序,直接运行。

果蔬采摘机器人研究进展

果蔬采摘机器人研究进展 刘长林,张铁中,杨丽 (中国农业大学,北京100083) 摘要 综述了果蔬采摘机器人的国内外研究现状,介绍了目前大部分典型的果蔬采摘机器人的研究成果。通过分析大部分采摘机器人的工作情况、功能、存在问题,指出了目前采摘机器人的应用与研究过程中的主要难点与制约因素,提出了研究开发的方向与关键技术。关键词 果蔬采摘;机器人;研究进展;关键技术中图分类号 S225 文献标识码 A 文章编号 0517-6611(2008)13-05394-04R esearch P rogress on Picking R obot for F ruits and V egetables LIU Ch ang 2lin et al (Chinese Agricultural University ,Beijing 100083) Abstract T he current situation of research on fruit and vegetable picking rob ot at h om e and broad was summ arized ,the particularly focus were on the re 2search results of m ost ty pical picking rob ots ,including rob ot principle and structure.T hrough analyzing the w orking condition ,function and problems of m ost of picking rob ot ,the present difficulties and restricted factors of picking rob ot in its research and application were point out and the research direction and key techn ology in future were provided.K ey w ords Fruit and vegetable picking ;R ob ot ;Research progress ;K ey techn ology 果蔬采摘作业是果蔬生产中最耗时、最费力的一个环节。果蔬收获期间需投入的劳力约占整个种植过程的50%~70%。随着社会经济的发展和人口的老龄化,很多国家农业劳动力严重短缺,导致果蔬生产劳动力成本增加。为降低成本,提高劳动效率,果实采摘的自动化成为亟待解决的问题。收获作业自动化和机器人的研究开始于20世纪60年代的美国,采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获[1]。20世纪80年代中期以来,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和 人工智能技术的日益成熟,以日本为代表的发达国家,包括荷兰、美国、法国、英国、以色列、西班牙等国家,在收获采摘机器人的研究上做了大量的工作。 1 国外研究进展 1.1  西红柿采摘机器人 日本近藤(K ONT O )等研制的番茄 采摘机器人,由机械手、末端执行器、视觉传感器、移动机构组成(图1)。该采摘机器人采用了7个自由度机械手。用彩色摄像机作为视觉传感器,寻找和识别成熟果实,并采用双目视觉方法对果实进行定位,利用机械手的腕关节把果实拧下。移动系统采用4轮机构,可在垄间自动行走。该番茄采 图1 日本的番茄采摘机器人 Fig.1 T om ato picking 2robot m ade in Jap an 摘机器人采摘速度大约是15s/个,成功率在70%左右。主要存在的问题是当成熟番茄的位置处于叶茎相对茂密的地方时,机械手无法避开叶茎障碍物完成采摘[2-3]。 在2004年2月10日美国加利福尼亚州图莱里开幕的世界农业博览会上,美国加利福尼亚西红柿机械公司展出2台全自动西红柿采摘机(图2)。如果西红柿单位面积产量有保证的话,那么这种长12.5m 、宽4.3m 的西红柿采摘机每分钟可采摘1t 多西红柿,1h 可采摘70t 西红柿。这种西红柿采摘机首先将西红柿连枝带叶割倒后卷入分选仓,仓内能识别红色的光谱分选设备挑选出红色的西红柿,并将其通过输送 基金项目 国家自然科学基金资助项目(60375036)。作者简介 刘长林(1979-),男,吉林榆树人,博士研究生,研究方向:农 业机器人和生物生产自动化。 收稿日期 2008203228 图2 美国的番茄采摘机器人 Fig.2 T om ato picking 2robot m ade in Am erica 带送入随行卡车的货舱内,然后将未成熟的西红柿连同枝叶 安徽农业科学,Journal of Anhui Agri.S ci.2008,36(13):5394-5397 责任编辑 刘月娟 责任校对 马君叶

果树采摘机器人发展概况及特点

果树采摘机器人发展概况及特点 机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现f3l。机器人集成了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科的发展成果,代表高技术的发展前沿,是当前科技研究的热点方向14J。21世纪是农业机械化向智能化方向发展的重要历史时期。我国是一个农业大国,要实现农业现代化,农业装备的机械化、智能化是发展的必然趋势。随着计算机和自动控制技术的迅速发展,机器人已逐步进入农、lp生产领域。目前,国内浆果采摘作业基本上都是靠人工完成的,采摘效率低,费用占成本的比例约为50%.70%。采摘机器人作为农业机器人的重要类型,其作用在于能够降低工人劳动强度和尘产费用、提高劳动生产率和产品质量、保证果实适时采收,冈而具有很大的发展潜力lM。1.2.1国外研究成果及现状自从20世纪60年代(1968年)美国人Schertz 和Brown提出,}J机器人采摘果实之后,对采摘机器人的研究便受到广泛重视。随蓿科学技术的发展,农业机器人在国外迅速发展起来。最早的机械采摘方法是机械振摇式和7 e动振摇式两种方法,但这两种方法不仅容易损伤果实,采摘效率也不高,同时容易摘到未成熟果实I61。1983年,第一台采摘机器人在美固诞生,在以后20多年的时M晕,同、韩及欧美国家相继研究了采摘番茄、黄瓜、苹果、蘑菇、柑橘、番茄和甜瓜等的智能机器人。l、日本的番茄采摘机器人:日本的果蔬采摘机器人研究始于1 984年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。该机器人有5个自由度,对果实实行三维定位。由于不是全自由度的机械手,操作空间受到了限制,而且孥硬的机械手爪容易损伤果实。日本冈山大学的Kondo等人研制的番茄采摘机器人,山机械手、末端执行器、行走装置、视觉系统和控制部分组成,如图1-1所示。·—●T—争Sl7777一图1.1番茄采摘机器人结构简图S1一前后延伸棱柱关节;S2一上下延伸棱柱关节:3、4、5、6、7一旋转关节该机器人采用由彩色摄像头和图像处理卡组成的视觉系统来寻找和识别成熟果实。考虑到番茄的果实经常被叶茎遮挡,为了能灵活避开障碍物,采用具有冗余度的7自由度机械手。为了不损伤果实,其末端执行器配带2个带有橡胶的手指和1个气动吸嘴,把果实吸住抓紧后,利用机械手的腕关节把果实拧下。行走机构有4个车轮,能在!tl问自动行走,利用机器人上的光传感器和设置在地头土埂的反射板,可检测是否到达土埂,到达后自动停止,转向后再继续前进。该番茄采摘机器人从识别到采摘完成的速度大约是15s/个,成功率在70%左右。有些成熟番茄未被采摘的主要原因是其位置处于叶茎相对茂密的地方,机器手无法避开叶茎障碍物。因此需要在机器手的结构、采摘工作方式和避障规划方面加以改进,以提高采摘速度和采摘成功率,降低机器人自动化收获的成本,才可能达到实用化17,81。2、荷兰的黄瓜采摘机器人:1996年,荷兰农业环境工程研究所(1MAG)研制出一种多功能黄瓜收获机器人。该机器人利用近红外视觉系统辨识黄瓜果实,并探测它的位置;末端执行器由手爪和切割器构成,用来完成采摘作业。机械手安装在行走车上,机械手的操作和采摘系统初步定位通过移动行走车来实现,机械手只收获成熟黄瓜,不损伤其他未成熟的黄瓜。该机械手有7个自山度,采用三菱公司(Mitsubishi)RV.E2的6自由度机械手,另外在底座增加了一个线性滑动自由度。收获后黄瓜的运输由一个装有可卸集装箱的自动行走的运输车来完成。整个系统无人工干预就能在温室工作,工作速度为54s/根,采摘率为80%。试验结果表明:该机器人在实验室中的采摘效果良好,但由于制造成本和适应性的制约,还不能满足商用的要求l引。3、韩国的苹果收获机器人:韩国庆北大学的科研人员研制出节果采摘机器人,它具有4个自由度,包括3个旋转关节和1个移动关节。采用三指夹持器作为末端执行器,其手心装有压力传感器,可以起到避免苹果损伤的作用。它利用CCD摄像机和光电传感器识别果实,从树冠外部识别苹果的识别率达85%,速度达5个/s。该机器人末端执行器下方安装有果实收集袋,缩短了从采摘到放置的时问,提高了采摘速度。该机器人无法绕过障碍物摘取苹果;对于叶茎完全遮盖的苹果,也没有给出识别和采摘的解决方法【lol。4、英国的蘑菇采摘机器人:英国Silsoe研究院研制了蘑菇采摘机器人,它可以自动测量蘑菇的位置、大小,并选择性地采摘和修剪。它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬挚的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。采摘成功率在7s%左右,采摘速度为6.7s/个,生长倾斜是采摘失败的主要原因。如何根据图像信息调整机器手姿态动作来提高成功率和采用多个未端执行器提高生产率是亟待解决的问趔¨1。5、西班牙的柑橘采摘机器人:西班爿:科技人员发明的这种柑橘采摘机器人主体装在拖拉机上,由摘果手、彩色视觉系统和超声传感定位器3部分组成。它能依据柑桔的颜色、大小、形状束判断柑桔是否成熟?决定是否采摘。采下的桔子还可按色泽、大小分级装箱。这种采桔机器人采摘速度为1个/s,比人工提高效率6倍多‘121。6、以色列和美国联合研制的甜瓜收获机器人:以色列和美国科技人员联合开发研制了一台甜瓜采摘机器人。该机器人丰体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理的方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。在两个季节和两个品种的}H问试验证明,甜瓜采摘机器人可以完成85%以上的}H问甜瓜的识别和采摘.1=作‘"1。表1.1给出了国外部分国家果蔬收获机器人同期研究进展统计。1.2.2国内研究成果及现状国内在农业机器人方面的研究始于20世纪90年代中期,与发达国家相比,虽然起步较晚,但不少大专院校、研究所都在迸行采摘机器人和智能农业机械方面的研究,已有很多研究成果披露,简介如下:l、林木球果采摘机器人:东北林业大学的陆怀民研制了林木球果采摘机器人,主要由5自由度机械手、行走机构、液压驱动系统和单片机控制系统组成,如图1.2所示。采摘时,机器人停在距离母树3.5m处,操纵机械手回转马达对准母树。然后,单片机控制系统控制机械手大、小臂同时柔性升起达到~定高度,采摘爪张开并摆动,对准要采集的树枝,大小臂同时运动,使采摘爪沿着树枝生长方向趋近I 5-2m,然后采摘爪的梳齿夹拢果技,大小臂带动采集爪按原路向后返回,梳下枝上的球果-完成一次采摘。这种机器人效率是500k∥天,是人工的30一50倍。而且,采摘时对母树的破坏较小,采净率矧川。2、蘑菇采摘机器人:吉林工qk大学的周云山等人研究了蘑菇_={壬摘机器人。该系统主要由蘑菇传送带、摄像机、采摘机器手、二自由度气动伺服机构、机器手抓取控制系统和计算机等组成。汁算机视觉系统为蘑菇采摘机器提供分类所需的尺寸、面积信息,并且引导机器手准确抵达待采摘蘑菇的中心位置,防止因对不准造成抓取失败或损伤蘑菇il”。3、草莓采摘机器人:中国农业大学的张铁中等人针对我国常见的温室罩垄作栽培的草莓设计了3 种采摘机器人。分别采用桥架式、4自由度』毛门式和3自由度直角坐标形式的机械手进行跨行收获,通过彩色CCD传感系统获取彩色图像,经过图像处理进行目标草莓的识别和定位,进而控制末端执行器进行收获。同时,对草莓的生物特性、成熟度、多个草莓遮挡等实际问题进行了研究,为草莓采摘提供设计依据和理论基础{161。4、番茄采摘机器人:南京农业大学的张瑞合、姬长英等人在番茄采摘中运用双目立体视觉技术对红色番茄进行定位,将图像进行灰度变换,而后对图像的二维直方图进彳亍腐蚀、膨胀以去除小团块,提取背景区边缘,然后用拟合曲线实现彩色图像的分割,将番茄从背景中分离出来。对目标进行标定后,用面积匹配实现共轭图像中目标的配准。运用体视成像原理,从两幅二维图像中恢复目标的三维坐标。通过分析实验数据得出的结论为.当目标与摄像机的距离为300mm-400mm 时,深度误差可控制在3%4%t”I。5、黄瓜采摘机器人:中国农业大学汤修映等人研制了6自由度黄瓜采摘机器人,采用基于RGB三基色模型的G分量来进行图像分割,在特征提取后确定出黄瓜果实的采摘点,未端执行器的活动刃口平移接近固定刃口,通过简单的开合动作剪切掉黄瓜。同时,提出了新的适合机器人自动化采摘的斜栅网架式黄瓜栽培模式。6、节果采摘机器人:中国农业大学的孙明等人为苹果采摘机器人开发了一套果实识别机器视觉系统,并成功研究了一种使二值图像的像素分割J下确率大于80%的彩色图像处王甲技术。通过对果实、叶、茎等的色泽信号浓度频率谱图的分析,求}l{闽值,然后运用此值对彩色图像进行二值化处理l。引。1.2.3果树采摘机器人的特点1、采摘对象的非结构性和不确定性果实的生长是随着时fHJ和空问而变化的。生长的环境是变化的,直接受土地、季节和天气等自然条件的影响。这就要求果树采摘机器人不但要具有与生物体柔性相对应的处理功能,而且还要能够顺应多变的自然环境,在视觉、知识推理和判断等方面具有很高的智能性。2、采摘对象的娇嫩性和复杂性果实具有软弱易伤的特性,必须细心轻柔地对待和处理;并且其形状复杂,生长发育程度不一,导致相互差异很大。果蔬采摘机器人一般是采摘、移动协调进行,行走轨迹不是连接出发点和终点的最短距离,而是具有狭窄的范围、较长的距离以及遍及整个果园表面等特点。3、具备良好的通用性和可编程性因为果树采摘机器人的操作对象具有多样性和可变性,这就要求采摘机器人具有良好的通用性和可编程性。只要改变部分软、硬件,就能进行多种作业。4、操作对象的特殊性和价格的实惠性农民是果树采摘机器人的主要操作者,他们不具有相关的机电理论知识,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

一种欠驱动移动机器人运动模式分析

天津比利科技发展有限公司 李艳杰 ’马岩1,钟华2,吴镇炜2 ' 隋春平2 (1.沈阳理工大学机械工程学院,沈阳110168;2.中国科学院沈阳自动化研究所,沈阳110016) 摘要:介绍了一种欠驱动移动机器人的机械结构。分析了该欠驱动移动机器人在平地行进 模式的特点,提出一种越障控制模式。在该越障控制模式中加入了障碍物高度计算算法, 使得移动机器人在越障过程中的智能控制更加高效。利用VB编写控制程序人机界面,在移 动机器人实物平台上进行了实验,实验结果证明了控制方法的有效性。 关键词:AVR单片机;欠驱动移动机器人;越障模式 中图分类号:TP242文献标志码:A Analysis of a Underactuated Mobile Robot Moving Mode LI Yan-jie',MA Yan',ZHONG Hua2,WU2hen-wej2,SUI Chun-ping2 (l.School of Mechanical Engineering,Shenyang Ligong University,Shenyang110168,China;2.Robotics Lab,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang110016,China) Abstract:The mechanical structure of a kind of underactuated mobile robot was described in this paper.The charac- teristics of the underactuated mobile robot in the plains traveling mode was analyzed and a kind of obstacle-negotia- tion control mode was proposed.Due to calculate algorithm of obstacle's height was added to the the obstacle-nego- tiation control mode,the intelligent control of obstacle-negotiation becomes more efficient.The control procedure HMI was programmed by VB and the experiment was performed on the mobile robot platform.Experiment results show the control method was effective. Key words:AVR SCM;underactuated mobile robot;obstacle-negotiation mode 欠驱动机械系统是一类特殊的非线性系统,该容错控制的作用。因此,欠驱动机器人被广泛应用系统的独立控制变量个数小于系统的自由度个数【l】o于空间机器人、水下机器人、移动机器人、并联机器 欠驱动系统结构简单,便于进行整体的动力学分析人、伺服机器人和柔性机器人等行业。 和试验。有时在设计时有意减少驱动装置以此来增本文以四驱动、八自由度的欠驱动移动机器人加整个系统的灵活性。同时,由于控制变量受限等为实验对象,通过切换驱动器的工作模式来克服系原因,欠驱动系统又足够复杂,便于研究和验证各统不完全可控造成反馈控制失效【2】的缺点。以工控 种算法的有效性。当驱动器故障时,可能使完全驱机作为上位机,通过工控机的RS232串口与AVR 葫系统成为欠驱动系统,欠驱动控制算法可以起到单片机进行无线通讯。通过对驱动器反馈数据的分 收稿日期:2013-01-22:修订日期:2013-02-19 基金项目:国家科技支撑计划项目(2013BAK03801,2013BAK03802) 作者筒介:李艳杰(1969-),女,博士,教授,研究方向为智能机器人控制及机器人学;马岩(1988-),男,硕士研究生,研究方向为嵌入式控制;钟华(1977-),男,博士,副研究员,研究方向为机器人控制及系统集成。 Automation&Instrumentation2013(9) 一种欠驱动移动机器人运动模式分析

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

圆柱坐标型工业机器人设计

圆柱坐标型工业机器人设计 第一章绪论 1.1工业机器人研究的目的和意义 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统( FMS) 、自动化工厂( FA) 、计算机集成制造系统(CIMS)的自动化工具。广泛采用工业机器人,不仅可提高产品的质量与数量,而且保障人身安全、改善劳动环境、减轻劳动强度、提高劳动生产率、节约材料消耗以及降低生产成本有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 20世纪80年代以来,工业机器人技术逐渐成熟,并很快得到推广,目前已经在工业生产的许多领域得到应用。在工业机器人逐渐得到推广和普及的过程中,下面三个方面的技术进步起着非常重要的作用。 1. 驱动方式的改变20世纪70年代后期,日本安川电动机公司研制开发出了第一台全电动的工业机器人,而此前的工业机器人基本上采用液压驱动方式。与采用液压驱动的机器人相比,采用伺服电动机驱动的机器人在响应速度、精度、灵活性等方面都有很大提高,因此,也逐步代替了采用液压驱动的机器人,成为工业机器人驱动方式的主流。在此过程中,谐波减速器、R V减速器等高性能减速机构的发展也功不可没。近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。 2. 信息处理速度的提高 机器人的动作通常是通过机器人各个关节的驱动电动机的运动而实现

1 楼渊:四自由度圆柱坐标机器人设计 的。为了使机器人完成各种复杂动作,机器人控制器需要进行大量计算,并在此基础上向机器人的各个关节的驱动电动机发出必要的控制指令。随着信息技术的不断发展,C P U的计算能力有了很大提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。机器人控制器性能的提高也进一步促进了工业机器人本身性能的提高,并扩大了工业机器人的应用范围。近年来,随着信息技术和网络技术的发展,已经出现了多台机器人通过网络共享信息,并在此基础上进行协调控制的技术趋势。 3. 传感器技术的发展 机器人技术发展初期,工业机器人只具备检测自身位置、角度和速度的内部传感器。近年来,随着信息处理技术和传感器技术的迅速发展,触觉、力觉、视觉等外部传感器已经在工业机器人中得到广泛应用。各种新型传感器的使用不但提高了工业机器人的智能程度,也进一步拓宽了工业机器人的应用范围。 1.2工业机器人在国内外的发展现状与趋势 目前,工业机器人有很大一部分应用于制造业的物流搬运中。极大的促进物流自动化,随着生产的发展,搬运机器人的各方面的性能都得到了很大的改善和提高。气动机械手大量的应用到物流搬运机器人领域。在手爪的机械结构方面根据所应用场合的不同以及对工件夹持的特殊要求,采取了多种形式的机械结构来完成对工件的夹紧和防止工件脱落的锁紧措施。在针对同样的目标任务,采取多种运动方式相结合的方式来达到预定的目的。驱动方面采用了一台工业机器人多种驱动方式的情况,有液压驱动,气压驱动,步进电机驱动,伺服电机驱动等等。愈来愈多的搬运机器人是采用混合驱动系统的,这样能够更好的发挥各驱动方式的优点,避免

【CN209994911U】一种机器人视觉的草莓采摘机【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920343235.9 (22)申请日 2019.03.19 (73)专利权人 长春格瑞科技有限公司 地址 130000 吉林省长春市高新区锦河街 155号实验楼201、202室 (72)发明人 左茗羽 赵阳  (74)专利代理机构 长春众邦菁华知识产权代理 有限公司 22214 代理人 王丹阳 (51)Int.Cl. A01D 46/30(2006.01) (54)实用新型名称 一种机器人视觉的草莓采摘机 (57)摘要 一种机器人视觉的草莓采摘机涉及农业设 备技术领域,解决了现有采摘机易损伤草莓且效 率较低的问题,包括支架、动力传输机构、机械 手、上下移动机构、图像采集组件和总收集箱;机 械手包括机械手主板、致动件、刀片滑块和刀片; 刀片形状为直角三角形,一个直角边为刃边、另 一直角边位于机械手主板上、斜边包覆柔性材 料;机械手主板连接支撑架和检测装置,小收集 盒放置于支撑架内且位于刀片正下方,小收集盒 内设有海绵,检测装置检测小收集盒是否装满草 莓,若是则提示装置提示;总收集箱能收纳多个 小收集盒。本实用新型通过直角三角形刀片的设 置提高了对草莓和草莓植株的保护,方便刀片在 草莓植株中穿梭;通过小收集盒提高草莓的质量 和存放时间。权利要求书1页 说明书4页 附图2页CN 209994911 U 2020.01.31 C N 209994911 U

权 利 要 求 书1/1页CN 209994911 U 1.一种机器人视觉的草莓采摘机,包括支架、动力传输机构、机械手、上下移动机构、图像采集组件和总收集箱;所述机械手、上下移动机构、图像采集组件、动力传输机构和总收集箱均设于支架上;所述图像采集组件与具有成熟草莓识别程序的计算机连接;所述机械手通过动力传输机构实现前后左右移动,通过上下移动机构实现上下移动,所述机械手包括机械手主板(1)、致动件(2)、刀片滑块(3)和刀片(4);其特征在于,所述刀片(4)形状为直角三角形,一个直角边为刃边、另一直角边位于机械手主板(1)上、斜边包覆柔性材料;所述草莓采摘机还包括支撑架(5)、小收集盒(6)、检测装置和提示装置,支撑架(5)和检测装置均连接机械手主板(1),小收集盒(6)放置于支撑架(5)内且位于刀片(4)正下方,小收集盒(6)内设有海绵,检测装置检测小收集盒(6)是否装满草莓,若检测结果为是则提示装置进行提示;所述总收集箱能收纳多个小收集盒(6)。 2.如权利要求1所述的一种机器人视觉的草莓采摘机,其特征在于,所述小收集盒(6)的盒底面包括斜坡面。 3.如权利要求1所述的一种机器人视觉的草莓采摘机,其特征在于,所述检测装置为计数器,检测装置通过微控芯片连接提示装置。 4.如权利要求1所述的一种机器人视觉的草莓采摘机,其特征在于,所述支架上设有用于支架移动的滑轮。 2

跳跃机器人研究现状和趋势

跳跃机器人研究现状和趋势 测控一班3012202006胡凌皓 摘要:跳跃运动其着地点的离散性和发力的突发性和爆发性使跳跃运动模式的仿生机器人具备很强的越障和环境适应能力。本文结合国内外跳跃机器人的研究现状和成果,将跳跃机器人研究分为伸缩式、关节腿式、轮滚式和弹性变形式4 类,并分析各类机器人特征.结合本课题组对跳跃机器人的研究,总结了跳跃机器人研究的关键技术,最后展望了未来跳跃机器人研究发展趋势。 关键词:跳跃运动;跳跃机器人;仿生机器人 Research Status and Development Trend of Hopping Robots Abstract: Hopping locomotion has characteristics of isolated footholds, and powerful and explosive hopping force, which makes bio-inspired robots with hopping locomotion have the ability of jumping over obstacles and the environmental adaptability. IN this paper, hopping robots are divided into four categories on the basis of research results in China and overseas: telescopic robots, articulated robots, wheeled & rolling robots and flexible robots. Combining with the current research about hopping robots, the characteristics of each categories are analyzed. The related key technologies are proposed. Finally, the development trends of hopping robots in future are predicted. Keywords: hopping locomotion; hopping robot; bio-inspired robot. 1 引言 目前,移动机器人采用的主要运动模式是轮式驱动。轮式驱动是人类改造自然界、路面出现后的产物,不能适应复杂地形,越障能力差。随着机器人应用范围的日益广泛,机器人将逐步应用于人类所无法深入到的条件恶劣、地形复杂的未知非结构环境中探索和改造自然界,为人类服务.未知非结构环境要求机器人必须具有较强的地形适应能力、高效的运动模式和自主运动能力。 由于跳跃运动其着地点的离散性和发力的突发性和爆发性,自然界中的许多动物将跳跃运动作为克服大自然环境、逃避敌害和高效捕食的一种运动模式。跳跃机器人的应用需求及动物跳跃仿生灵感,给近年跳跃机器人的研究注入新的活力,无论是仿生跳跃理论研究方面还是跳跃机器人实际应用方面都取得大量的成果。 本文从仿生跳跃理论研究方面和跳跃机器人实际应用方面分析国内外有关跳跃机器人的研究成果,并从实现方式的角度进行分类和综述;在此基础上,结合本课题组对跳跃机器人的研究,分析跳跃机器人的关键技术,并对未来跳跃机

相关主题