搜档网
当前位置:搜档网 › Cement concrete and concrete polymer composites

Cement concrete and concrete polymer composites

Cement concrete and concrete polymer composites
Cement concrete and concrete polymer composites

Cement concrete and concrete–polymer composites:Two

merging worlds.A report from 11th ICPIC Congress in Berlin,2004

Dionys Van Gemert a,*,Lech Czarnecki b ,Matthias Maultzsch c ,Harald Schorn d ,

Anne Beeldens e ,Pawe??ukowski b ,Elke Knapen a

a

Department of Civil Engineering,K.U.Leuven,Kasteelpark Arenberg 40,3001Heverlee,Belgium

b

Institute of Construction Engineering and Management,Warsaw University of Technology,Al.Armii Ludowej 16,00-637Warsaw,Poland

c

Federal Institute for Materials Research and Testing BAM,Unter den Eichen 87,12205Berlin,Germany d

Faculty of Civil Engineering,Dresden University of Technology,Helmholtzstra?e 10,01062Dresden,Germany

e

Belgian Road Research Centre,Boulevard de la Woluwe 42,1200Brussels,Belgium

Received 25October 2004;accepted 25May 2005

Abstract

The search for durable and sustainable construction materials inspires the developments in the world of cement concrete,as well as in the world of concrete–polymer composites.Both worlds recognize,strive for and accept each other ?s contribution to the syn-ergetic e?ects that are realized by the combination of classical building materials and polymers.A better knowledge of materials behaviour,especially in the ?eld of admixtures,and a better understanding of curing processes allowed the development of highly performing mineral or modi?ed mineral concretes,mortars and grouts.CPC-science becomes an invaluable element in the develop-ment of sustainable construction materials.ICPIC brings together practitioners and scientists,dealing with concrete–polymer composites in all industrial ?elds,but with emphasis on construction industry.The 11th International ICPIC Congress took place in Berlin,2–4th June 2004.New trends and evolutions have been presented and discussed.The highlights of the Congress,and the synergies for the construction world that emerge from this congress on polymers in concrete in combination with cement concrete,are presented.

ó2005Elsevier Ltd.All rights reserved.

Keywords:Concrete;Polymer;Cement;Composites;Synergy

1.Introduction

The International Congresses on Polymers in Con-crete (ICPIC)aim to create a synergy between research-ers and practitioners all over the world,dealing with the spectacular possibilities of concrete–polymer compos-ites.During the three decades from the ?rst congress

in London in 1975to the 11th congress in Berlin in 2004[1],there have been dramatic changes in the way of thinking about industrial processes and the approach and evaluation of new and innovative materials.

In the industrialised world,the sixties and seventies of last century were characterised by an unlimited belief in new and modern materials and techniques.The use of polymers was considered to be a sign of progress and modern attitude in construction and in industry.Glass ?bre reinforced polyester panels,polyester resin and polyester mortar were known as inexpensive plastics.Epoxy glues were used as highly performing adhesives in concrete prefabricated applications,epoxy resins were

0958-9465/$-see front matter ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconcomp.2005.05.004

*

Corresponding author.Tel.:+3216321654;fax:+3216321976.E-mail address:dionys.vangemert@bwk.kuleuven.be (D.Van

Gemert).

Cement &Concrete Composites 27(2005)926–933

https://www.sodocs.net/doc/d68196909.html,/locate/cemconcomp

used as binders in chemically resistant coatings and ?ooring systems as well as in electrical insulation applications,acrylic resins were used in machine frame construction.Research aimed at developing new,im-proved polymers was continuously done,and new appli-cations for polymers and concrete–polymer composites (CPC)were constantly developed.In building industry the use of polymers gradually extended from concrete crack injection to repair mortars for concrete and stone, consolidation of masonry,repair of timber structures, not to forget all?nishing,piping and waterproo?ng materials.At that time,building materials science was an underdeveloped?eld of construction industry and science.Therefore,the extended use of pure polymers led to inherent chemical and physical incompatibility problems,mechanical malfunctioning and durability problems.

In the early seventies the oil crises learned that min-eral oil as a cheap basis for polymer production was not longer available.It was also found that oil reserves were limited.As a consequence all uses of fossil re-sources were questioned.First of all the waste of fossil oil for energy production,and secondly the massive use of polymers as alternative for classical building materials such as concrete,masonry,timber and metals. The use of polymers became part of a search for durable and sustainable construction materials.Polymers should only be used in these areas were their speci?c properties are needed.The synergetic action between polymers and classical construction materials o?ers great opportuni-ties for improvement and a wide range of new and inno-vative properties and applications of e.g.,polymer modi?ed repair mortars for concrete,stone and ma-sonry.Pure polymer concrete building components can be partly replaced by CPC,as in?ag-stones and building panels.A better knowledge of materials behaviour,espe-cially in the?eld of admixtures,and a better understand-ing of curing processes allowed the development of highly performing mineral or modi?ed mineral con-cretes,mortars and grouts.CPC-science is now an invaluable element in the development of sustainable construction materials.

The topics of the11th ICPIC Congress re?ect new approaches and?ndings in CPC-research.The micro-structural models are subject to changes,polymers in solution are subject of research and might become valu-able alternatives for polymer emulsions and polymer dispersions,biological e?ects are taken into account in degradation processes but might also be turned into po-sitive performance contributions.Sustainability,and reversibility and recycling as subtopics of it,dominate the developers?minds.The scienti?c program of the con-gress was managed by BAM,the Federal Institute for Materials Research and Testing(Germany),in collabo-ration with Warsaw University of Technology(Poland) and Katholieke Universiteit Leuven(Belgium).2.Importance of polymers in European construction industry

During the European Colloquium Orgagec?02orga-nised by Laboratoire Central des Ponts et Chausse′es in Poitiers,France,in March2003,M.de Longcamp presented?gures of consumption of polymers in the European Union(15members;330million inhabitants) in2000[2].Some data for the largest components in polymer consumption are listed in Table1.

On average about8%of polymer consumption con-cerns thermosets,the rest being thermoplasts[3].In 2003,7350000tons or18.5%of the total market of polymers in Western Europe(European Union,Norway and Switzerland)were used in building and construction industry[4].The relation to other industries is shown in Table2.However,if the consumption of polymers is compared to the consumption of other construction materials,its relative share is only about1%,Table3. The share in weight is only about1%,but in?nancial turnover polymers represent more than10%of con-struction industry.It is expected that in about10–15 years polymers in construction will be the prime part of the polymer market.The amount of polymers used Table1

European consumption of polymers in construction

Application?eld Type Consumption

Textiles in

architecture

Polyester/glass28000tons

PVC/polyester100000tons

Carbon/Kevlar Not signi?cant Highway

noise barriers

System

concrete–timber

±30%

Recycled plastics±2%

Transparent

plastics

±5%

Concrete±10%

Timber±15%

Metal±10%

Vegetation

screens

±10%Total1970000m2,

15%increase/year Impermeable

membranes

PVC200000tons

PE(HD+LD)250000tons

EP,PU,UP resins50000tons

SBS,APP

bitumen modif.

88000tons

Road paintings Liquid,

hot melt,strips

280000tons

Tubing for

optical?bres

PEHD200000tons(2001)

600000tons(exp.2010) Tubes for

sewers,gas,

water...

PVC,PE,PP,UP2761000tons

Concrete

modi?cation

486000tons

D.Van Gemert et al./Cement&Concrete Composites27(2005)926–933927

in concrete–polymer composites,is only a minor part in polymers for modi?cation of concrete,which also include water reducing agents (121500tons of super-plasticizer in EU in 1998).However,due to the syner-getic action between polymers and the cementitious matrices,the impact on performance of building materi-als largely overpasses the weight ratio.

The Construction Products Directive 89/106/EEC (CPD)de?nes the essential requirements for construc-tion products as follows:

1.Mechanical resistance and stability.

2.Safety in case of ?re.

3.Hygiene,health and the environment:–dangerous substances,

–global environment impact.4.Safety in use.

5.Protection against noise.

6.Energy economy and heat retention.

The European Legislation assumes that a producer is responsible for knowing and complying with all applica-ble legislation.This is a di?cult area,because up to now only national regulations exist,and chemicals and dan-gerous substances are also dealt with by several DGs (Directorate General),e.g.,DG Enterprise,DG Envi-ronment,DG Agriculture,DG Health,DG Consumer Protection,etc.The European Commission for Stan-dardisation CEN is now harmonising the regulations

and a database on dangerous substances regulations is available [5].

With respect to global environmental impact,the European Union is striving at an integrated product pol-icy,to reduce the environmental impact of the whole life cycle of products.The Union will use market forces e?-ciently to reach environmental policy objectives,in a way that prices should re?ect also the environmental costs,demand should be more oriented towards ecolog-ical products,and supply should adapt and even promote ecological products.

All developments in using concrete–polymer compos-ites should take into account this policy of the European Union.As engineers,we tend to stress on most of the 6essential requirements of the construction products directive,but we have to admit that our interest in the 3rd one for hygiene and health is rather limited,presum-ably because of lack of knowledge in the ?eld.Producers and construction engineers will have to collaborate with the medical world,to meet also those essential requirements.

3.Concrete–polymer composites

Polymer modi?ed concrete or mortar is a composite material consisting of two solid phases:the aggregates which are discontinuously dispersed through the mate-rial and the binder which itself consists of a cementitious phase and a polymer phase.According to the volume fraction of the polymer in the binder phase the material shifts from PCC,i.e.,polymer cement concrete,to PC,i.e.,polymer concrete.

In the case of PCC,the binder consists of a polymer–cement co-matrix.The polymer is added to the fresh mixture as dispersion or as redispersible polymer pow-ders.During hardening and curing cement hydration and polymer ?lm formation take place resulting in a co-matrix in which polymer ?lm is intermingled with cement hydrates.

A special group of materials in which polymers are used in combination with concrete is PIC,polymer impregnated concrete.Here,low-viscosity monomers are injected in the pores of the hardened concrete and subsequently polymerized.The resultant polymers form a second matrix if the pores are interconnected through-out the material.The hardened concrete may be a cement concrete,a PCC or a PC.The properties of the composite material derive not only from its constituents,but there is also a synergetic e?ect.

Applications of concrete–polymer composites cover a wide range of applications in di?erent industries:con-crete and stone repair materials;polymer modi?ed cement adhesives;prefabricated building components like ?ag stones,tubes,panels;porous and eco-concrete;machine base elements;insulators for electrical and

Table 3

Relative share of building materials in EU-construction industry (year 2000)

Construction material Consumption (tons)Ratio (%)Concrete and cement based 50300000071Tiles and bricks 7300000010Timber

540000007Iron and steel 240000003Stone,quarry

160000002Asphalt and bitumen 160000002Polymers 68500000.97Flat glass 52000000.73Mineral wool 20000000.3Copper 13000000.2Aluminium

900000

0.1

Table 2

Polymer consumption by industry sector in Western Europe (2003)[4]Industry

Polymer consumption (%)Packaging 37.2Construction 18.5Large industry

5.8Electrical/electronic

8.5Other household/domestic 20.1Automotive 8Agriculture

1.9

928 D.Van Gemert et al./Cement &Concrete Composites 27(2005)926–933

chemical industry;?bre reinforced materials;chemi-cally resistant materials;industrial?oors;recycling of polymer wastes;liquid applied waterproo?ng materials,...

4.Integrated model for microstructure building in polymer cement concrete[6]

Cement hydration in polymer modi?ed material is in?uenced by the presence of polymer particles and poly-mer?lm in the fresh state,during hydration as well as in the hardened state.The properties of the fresh mixture are in?uenced to a large extent by the surfactants,present at the surface of the polymer particles.The cement parti-cles are better dispersed in the mixture and a more homo-geneous material is formed.The hydration of the cement is re?ected in the strength evolution of the material.

The in?uence of the polymer modi?cation is twofold. Due to the presence of the polymers and the surfactants, a retardation of the cement hydration can be noticed. This is especially visible in the compressive strength of the mortar beams.On the other hand,due to the?lm formation or due to the interaction between the cement hydrates and the polymer particles,the tensile strength of the binder matrix as well as the adhesion strength be-tween the aggregate and the binder increase.This is especially seen in the?exural strength of the mortar beams.The results are presented in[7–9].

From the results of the compressive strength and?ex-ural strength tests,conclusions towards?lm formation mechanism and especially towards the time at which?lm formation takes place may be drawn.After7-day dry curing,the?exural strength is increased in relation to the strength of the unmodi?ed mortar.Nevertheless, the cement hydration is retarded when the polymer–cement ratio is increased,illustrated by a decrease of compressive strength.This points at the existence, already at an early stage of curing,of a polymer?lm or at least at the interaction between polymer particles and cement particles.However,the incapacity of the modi?ed‘‘porous’’mortar specimens to overcome the large shrinkage stresses after7-day or28-day moist cur-ing indicates that the continuous polymer?lm is not yet formed in the case of water saturated conditions. No in?uence of the polymer modi?cation on the?exural strength is noticed in the case of standard cured and water cured samples as long as no dry curing period is applied.

Accordingly,one may conclude that at high relative humidity,the in?uence of polymer modi?cation on the ?exural strength at short term is limited.From the mo-ment a dry curing period is introduced,a polymer?lm starts to build up through the binder phase and an in-crease in?exural strength is observed with increasing polymer–cement ratio.The in?uence on the?exural strength of the retardation of the cement hydration is compensated by the presence of the polymer?lm.When long-term behaviour is considered,a maximum of?ex-ural strength is established around a polymer–cement ratio of15%.

The mutual in?uences between the cement hydrates and the polymer particles and?lm are incorporated in an integrated model of structure formation.The model is based on the three-step model as proposed by Ohama [10],but stresses the positioning of the mechanisms on the time scale and the interaction between the di?erent components.The?ndings are supported by images taken with an environmental scanning electron micro-scope at the University of Dresden[11].

The formation of the polymer?lm can take place from the moment two polymer droplets have su?cient energy to overcome the repulsion forces originating from the surfactants.In other words,if the temperature is high enough to cause su?cient Brownian motion,or if additional forces are working on the liquid layer around the polymer droplets,such as capillary forces or water withdrawal by further cement hydration,two droplets can come close to each other and can coalesce into each other and a polymer?lm is formed.This process simul-taneously can take place with the cement hydration mechanism,especially in the case of dry curing condi-tions.Therefore,partial or full encapsulation of the cement hydrates is possible,which retards the hydration process.The di?erent steps of the conclusive model are presented in Figs.1–4

.

Fig.1.Step1,immediately after mixing,aggregates,cement particles,polymer particles and mixing water—small ettringite needles are formed.

D.Van Gemert et al./Cement&Concrete Composites27(2005)926–933929

Immediately after mixing,the cement particles and polymer particles are dispersed in the water.The ?rst hydration of the cement takes place,which results in an alkaline pore solution.This is indicated as Step 1,Fig.1.

The second step is presented in Fig.2.A portion of the polymer particles is deposed on the surface of the ce-ment grain and the aggregate.The polymer–cement ra-tio determines the amount of polymers present in the pore solution and present at the aggregate surface.Part of the polymer particles may coalesce into a continuous ?lm.This preferably takes place at the surface of the cement hydrates where extra forces are exerted on the polymer particles due to the extraction of water for cement hydration.The polymer ?lm can partly or completely envelop a cement grain,which results in a retardation or even a complete stop of the hydration of the cement grain.

The following step,Fig.3consists of cement hydra-tion,polymer ?occulation and possibly polymer coales-cence into a ?lm.The processes that take place depend on the curing conditions.If no dry curing period,i.e.,cur-ing at a lower relative humidity,is included,the overall ?lm formation is retarded and the in?uence on

the

Fig.2.Step 2,after mixing,the polymer particles interact with the cement particles and the aggregates.In the case a dry curing period is introduced,a continuous ?lm may be formed—polymer particles ?occulate together,on restricted places,no coalescence has taken place at this

stage.

Fig.3.Step 3,cement hydration proceeds,polymer ?lm formation starts on speci?c spots—polymer particles coalesce together into a continuous

?lm.

Fig.4.Final step,cement hydration continuous,the polymer particles coalesce into a continuous ?lm—cement particles are hydrated.

930 D.Van Gemert et al./Cement &Concrete Composites 27(2005)926–933

properties of the fresh mixture is limited at this stage.If a dry curing period is included,polymer?lm formation takes place during this step,which in?uences the cement hydration process as well as the strength development at early ages.In the bulk liquid phase,hydrates are present, which form a combined inorganic and organic product. The fractions of the di?erent types of product formed de-pend on the polymer-cement ratio used.The polymer fractions included in these hydration products do not contribute to the strength development of the specimen [12].

The?nal step,Fig.4includes further hydration and ?nal?lm formation.Through the cement hydrates,a continuous polymer?lm forms as water is further re-moved from the pore solution.The part of the polymer particles,that is still present in the dispersion,is re-stricted to the capillary pores and at the interface of the aggregates and the bulk polymer–cement phase.It is this part which contributes the most to the elastic and?nal strength properties.The continuity of the poly-mer phase through the binder matrix is more pro-nounced in the case of a higher polymer–cement ratio. In the case the minimum?lm-forming temperature (MFT)of the polymer dispersion is much more elevated than the curing temperature,the polymer particles may not coalesce into a continuous?lm,but remain as clo-sely packed polymer particles.

The use of the integrated Beeldens–Ohama–Van Gemert model can be illustrated with the di?erent cur-ing conditions.From the results,it is concluded that optimal conditions towards the strength development are a wet curing period followed by a dry curing period. The longer the moist and water curing period is,the higher the?nal?exural strength will be if shrinkage is prevented and if a curing period at lower relative humidity is introduced.This means that?rst cement hydration takes place and only limited?lm formation. Therefore,the polymer particles remain in the pore solution and a larger amount of polymer particles will be incorporated into the continuous?lm,which is formed in the?nal stage.If the drying period is intro-duced earlier in the process,the?lm formation will start sooner,i.e.,before and simultaneously with the ce-ment hydration,resulting in enlarged encapsulation of the cement hydrates as well as incorporation of the polymer phase in the hydration product precipitated from the pore solution.

The relative humidity of the surrounding atmosphere has a large in?uence on the?lm formation and espe-cially on the drying rate.The higher the relative humi-dity of the surrounding atmosphere,the lower the drying rate becomes.This in?uences to a large extent the?lm-forming temperature of the dispersion.The low-er the drying rate,the lower the amount of energy needed for the polymer particles to coalesce into a continuous ?lm.Therefore,the MFT is reduced with a reduced dry-ing rate.Tests indicated that even at laboratory circum-stances,i.e.,20°C,a poly(styrene-acrylic ester)(SAE) dispersion with a MFT of32°C,could form a continu-ous?lm,as long as the drying rate was low enough.

The cement hydration is also in?uenced by the fact that water is longer retained due to the presence of the surfactants at the surface of the polymer particles.This results in a better dispersion of the polymer particles and the cement hydrates,but also retards the cement hydra-tion.The in?uence increases with increasing polymer–cement ratio.

This model accentuates two important changes towards the original model of Ohama.First of all,a rela-tion to the time scale of the di?erent processes is made. When a dry curing period is included,cement hydration and polymer?lm formation coincide and encapsulation of cement particles is possible.Further,the formation of an interstitial phase,consisting of inorganic and or-ganic precipitates in the bulk phase is pointed out.This is important towards an optimal bene?t of polymer modi-?cation since the polymers present in this phase are con-tributing less to the?nal properties of the material.The optimum conditions come forward from these?ndings, i.e.,a long period of water or moist curing(up to28days) during which the cement hydrates develop followed by a period of curing at lower relative humidity during which the polymer?lm formation is promoted.

5.Polymers as microcrack stopper in cement

concrete[13]

At the Building Materials Institute of Technical Uni-versity of Dresden,the new technology of environmental scanning electron microscopy is being used in combina-tion with a specially developed loading device,that al-lows to apply tensile load on small specimen inside the microscope chamber.They are now able to show the ef-fects of microcrack propagation in the loaded specimen. Opening increase of microcracks can be followed

and Fig.5.Crack bridging behaviour of polymers in concrete,maximum crack width 9l m.

D.Van Gemert et al./Cement&Concrete Composites27(2005)926–933931

investigated from a width of about 300nm up to about 20l m,allowing to study the behaviour of all the parti-cles,which are broken by the crack.Especially the poly-mer action as microcrack stopper can be observed by visualization of the stretching of the polymer particles over the microcrack.

The power of this innovative investigation technique can be illustrated with some pictures of a microcrack in a polymer cement concrete,with a polymer–cement ra-tio of 30%,at consecutive crack widths during tensile loading.Not only the crack bridging e?ect can be seen,but also the moment of rupture of the polymer bridges can be observed,Figs.5–7.This investigation technique

provides spectacular features for the study of hydration

and hardening reactions,and for the study of polymer–cement hydrate interactions.

6.Results and expectations of 11th ICPIC

The novelties and signi?cant progress,reported at the 11th ICPIC Congress in Berlin,are summarized in Table 4.The paper number refers to the reference number of the paper in the proceedings [1].For each topic,we gave our appreciation of the relevance ?eld,or the state of progress of the

matter.

Fig.6.Crack bridging behaviour of polymers in concrete,maximum crack width 11l

m.Fig.7.Crack bridging behaviour of polymers in concrete,maximum crack width 13l m.

Table 4

Novelties and signi?cant progress,reported at 11th ICPIC,Berlin 2004Description

Reference Paper no.Test method Research Application

1.Integrated model

Beeldens et al.1+2.Nanomonitoring interfaces

Schorn et al.2+Benzarti et al.67+3.Soluble polymer modi?ers Knapen et al.11+4.Slag PCC Joo,Ohama et al.13+Fly ash PCC

Jolley,Kruger 60+5.Ultrasonic evaluation methods

Garbacz

15+6.Pro?lometry and surfometry analysis Courard et al.16+7.CPC standardisation

Ohama

18+8.Sound absorbing materials Knapen et al.24+9.Quanti?cation of synergy

Czarnecki et al.25+10.High strength ECC without hardener Ohama et al.30+11.Ultra-lightweight polymer concrete Sung et al.

35,36+12.GFRP-PC

San-Jose

′et al.37+13.Electrical insulators

Gunasekaran 40,41+14.Preplaced aggregate epoxy concrete Murray

43+15.Ecological coatings

Erkens et al.44+16.Optimization thin overlays S

ˇus ˇters ˇic 54+17.Textile reinforced PCC Dilthey et al.58+18.Waste reuse Bignozzi et al.72+19.Intelligent PC

Blair et al.31+20.FRP strengthening

Frigione et al.61+Ignoul et al.63++Byun et al.64++21.Admixtures

Pourchez et al.69+Gru ¨bl et al.

75+

932 D.Van Gemert et al./Cement &Concrete Composites 27(2005)926–933

7.Conclusions

The use of polymers in construction industry is stea-dily growing.The synergetic action of polymers and ce-ment mortar and concrete o?ers great opportunities for improvement and a wide range of new and innovative applications.Society and environment require corrective actions to be taken continuously.The use of polymers should be well-considered to guarantee better perfor-mance and improved sustainability.

Polymers are no longer special construction materials that replace classical mineral or organic building materi-als.They are now one vital component in the production of composite and sustainable building materials.They will further allow the development of new and durable constructions,as well as new and durable restoration and retro?tting techniques.

References

[1]Maultzsch M.Proceedings of the11th congress on polymers in

concrete.Berlin:BAM Editions;2004.

[2]de Longcamp M.Re′alite′s e′conomiques des polyme`res dans la

construction.Proceedings European colloquium Orgagec?02,13–15March2002,Poitiers.Paris:LCPC;2002.

[3]Commission of European Community DG XI.Financial costs of

plastics marking.Final report,August1999.Available from: http://europa.eu.int/comm/enterprise/construction/index.htm. [4]Plastics Europe.An analysis of plastics consumption and recovery

in Europe2002&2003,2004.

[5]Argu¨elles V.Environmental and health aspects in the European

construction products directive.Proceedings European collo-quium Orgagec?02,13–15March2002,Poitiers.Paris:LCPC;

2002.

[6]Beeldens A,Van Gemert D,Schorn H,Ohama Y.Integrated

model for microstructure building in polymer cement concrete.

Proceedings of the11th congress on polymers in concrete.Ber-lin:BAM Editions;2004.p.1–10.

[7]Beeldens A,Van Gemert D,Schorn H,Ohama Y,Czarnecki L.

From microstructure to macrostructure:an integrated model of structure formation in polymer modi?ed concrete.RILEM Int J Mater Struct2005;38(280):601–7.

[8]Beeldens A.In?uence of polymer modi?cation on the behaviour

of concrete under severe conditions.PhD thesis.Katholieke Universiteit Leuven,Leuven,2002.

[9]Beeldens A,Van Gemert D,Ohama Y,Czarnecki L.Integrated

model of structure formation in polymer modi?ed concrete.In: Proceedings of the11th international congress on the chemistry of cement,11–16May2003,Durban,2003.

[10]Ohama Y.Handbook of polymer-modi?ed concrete and mortars,

properties and process technology.Park Ridge,NJ:Noyes Pub-lications;1995.

[11]Schorn H,Schiekel M.Shape and distribution of polymer

particles in PMC—investigated by environmental scanning electron microscope(ESEM).In:Proceedings(CD-ROM)of the 10th international congress on polymers in concrete,Hawaii, 2001.

[12]Tabor LJ.Dispersed polymers,revision of concrete society

technical report no.9—polymer concrete[chapter7].Contribu-tion to the?fth international congress on polymers in concrete, Brighton,1987.p.83–94.

[13]Schorn H,Butler M,Hempel S.Polymers as microcrack

stopper in concrete observed in ESEM.Proceedings of the11th congress on polymers in concrete.Berlin:BAM Editions;2004.

p.11–8.

D.Van Gemert et al./Cement&Concrete Composites27(2005)926–933933

房建钢筋班组施工工艺流程标准

钢筋施工技术标准及工艺流程 本施工技术标准及工艺流程将参照相关国家规范、国家标准及建筑行业 标准制定,钢筋施工人员需依据建设施工设计图纸和施工方案等编制钢筋用 料单,并经项目技术负责人审核认可签字后开始施工。 钢筋施工标准及流程如下: 一、钢筋放样 根据施工图纸编制的钢筋用料单中应包含钢筋的规格、形状、长度、数量、应用部位等信息。根据结构施工图下料,做到长短料相配合,杜绝浪费。 二、钢筋进场 钢筋进场后需缓送轻放,分型号堆放整齐,下部距地面20公分,上部 覆盖薄膜,防止雨淋生锈。 三、钢筋加工 加工前应准备好的机械设备包括钢筋冷拉机、调值机、切断机、弯曲成型机、弯箍机、点焊机、对焊机、电弧焊机及相应吊装设备。各种设备在操作前检修完好,保证正常运转,并符合安全规定。 钢筋的加工制作应在专门的操作区域内进行,严禁在规定区域外加工操作。操作步骤如下: (1)除锈:钢筋加工前将钢筋表面的油渍、漆渍及浮皮、铁锈等清除干净,可结合冷拉工艺除锈,使其与混凝土的粘接效果达到最佳。 (2)调直:调直后应保证钢筋平直,经调直后的钢筋不得有局部弯曲、死弯、小波浪形,其表面伤痕不应使钢筋截面减少5%,无局部曲折。 (3)切断:钢筋的切断需遵循“先长后短,长短搭配,统筹排料”的原则,尽量减少和缩短钢筋短头,以节约钢材,避免浪费。 (4)弯曲成型:手工弯曲和机械弯曲相结合进行,钢筋弯曲后,弯曲内皮收缩、外皮延伸、轴线长度不变,弯曲点处不得有裂痕。 根据施工计划和现场实际情况将加工成型的钢筋成品按分批、分期码放整齐,挂牌标识,露天存放时应对钢筋成品采取保护措施,防止变形和生锈。

四、钢筋的安装绑扎 成品钢筋在吊装运送过程中应遵循就近原则,缓吊轻放,一次到位,避免对成品钢筋件造成毁坏变形。绑扎顺序由下至上、层次鲜明,合理规划。 (一)、基础钢筋绑扎 工艺流程:清理垫层→基础钢筋绑扎→画线或弹线→绑扎底板下层受力钢筋绑扎→预留、预埋→板的支座马凳铁通长设置→后浇带处止水带的安装→板的上层钢筋绑扎→复检 操作工艺: (1)绑扎前应沿轴线方向在垫层上画好等分线; (2)网格绑扎时交叉点需绑扎牢固,扎丝扣成八字形,防止网片歪曲变形; (3)钢筋搭接长度要符合国家规范和设计要求; (4)筏板基础长向钢筋用直螺纹连接,短向钢筋用闪光对焊连接; (二)、柱钢筋安装绑扎 工艺流程:清理基层杂物→安放和绑扎柱竖向受力筋→套柱箍筋→画箍筋间距线→绑扎箍筋→复检 操作工艺: (1)清理柱基处杂物,以便看清基轴线,安放柱子竖向钢筋和定位箍筋应焊接牢固,防止浇筑混凝土时发生位移; (2)按图纸设计间距套放箍筋,由上而下采用缠扣绑扎牢固,不得跳扣绑扎; (3)柱竖向钢筋采用机械或焊接连接时,其搭接长度和连接要求应复合设计规范要求; (4)箍筋的弯钩叠合处应沿拄子竖筋交错布置,并绑扎牢固; (5)柱筋保护层厚度应符合规范要求,如主筋外皮为25mm; (三)、梁钢筋安装绑扎 工艺流程:清理梁基底杂物→画主次梁箍筋间距→放主梁次梁箍筋→穿主梁底层纵筋及弯起筋→穿次梁底层纵筋并与箍筋固定→穿主梁上层纵向架立筋→按箍筋间距绑扎→穿次梁上层纵向钢筋→按箍筋间距绑扎→复检

基础钢筋绑扎施工工艺标准模板

基础钢筋绑扎施工工艺标准 10.1总则 10.1.1适用范围 适用于建筑结构工程的基础及底板钢筋绑扎。 10.1.2编制参考标准及规范 《混凝土结构设计规范》( GB50010—) ; 《混凝土结构工程施工质量验收规范》( GB50204—) ; 《钢筋焊接及验收规程》( JGJ18—96) ; 《建筑施工安全检查标准》( JGJ59—99) ; 《中国建筑工程总公司施工安全检查生产监督管理条例》; 钢筋、绑丝等相关材料标准和有关规定。 10.2术语、符号 10.2.1现浇结构 系现浇混凝土结构的简称, 是以现场支模并整体浇筑而成的混凝土结构。 10.2.2HPB235级钢筋 系指现行国家标准《钢筋混凝土用热轧光圆钢筋》( GB13013—1991) 中的Q235钢筋, 相当于原级别I级钢筋。 10.2.3HRB335( 20MnSi) 钢筋 系指现行国家标准《钢筋混凝土用热轧带肋钢筋》( GB1499—1998) 中的HRB335钢筋, 相当于原级别II级钢筋。 10.2.4HRB400( 20MnSiV、20MnSiNbv、20MnSiTi) 级钢筋

系指现行国家标准《钢筋混凝土用热轧带肋钢筋》( GB1499—1998) 中的HRB400钢筋, 相当于原级别III级钢筋。 10.2.5RRB400( K20MnSi) 级钢筋 系指现行国家标准《钢筋混凝土用余热处理钢筋》( GB13014—91) 中的KL400钢筋, 相当于原级别III级钢筋。 10.2.6La 钢筋锚固长度。 10.3基本规定 10.3.1一般规定 ( 1) 当钢筋的品种、级别或规格需作变更时, 庆办理材料代用手续。 ( 2) 浇筑混凝土前, 应进行钢筋隐蔽工程验收, 其内容包括: 1) 纵向受力钢筋的规格、数量、位置等; 2) 钢筋的连接方式、接头位置、接头数量、接头面积百分率等; 3) 箍筋、横向钢筋的品种、规格、数量、间距等; 4) 预埋件的规格、数量、位置等; 5) 避雷网线的布设与焊接等。 10.3.2质量目标 达到《混凝土结构工程施工质量验收规范》( GB50204—) 的要求, 并符合图纸及”施工组织设计”的要求。 10.4施工准备 10.4.1技术准备

钢筋绑扎施工工艺

1承台钢筋绑扎施工工艺 1.1执行标准 《混凝土结构工程施工质量验收规范》(GB50204—2002)(2010版); 《混凝土结构设计规范》(GB50010—2010); 《钢筋焊接及验收规程》(JGJ18—2012); 《冷轧带肋钢筋混凝土结构技术规程》(JGJ95—2011); 《中国建筑工程总公司建筑工程施工工艺标准》; 钢筋、绑扎丝等相关材料标准和有关规定。 1.2施工工艺流程和操作要点 1.2.1施工工艺流程 1.2.2操作要点

确定承台十字轴线,并用墨线弹在施工垫层地板上。经驻地

监理工程师核查、批准后绑扎。 2)划钢筋位置线:按图纸标明的钢筋间距,算出底板实际需用的钢筋根数,一般让靠近底板模板边的那根钢筋离模板边为5cm,在底板上弹出钢筋位置线。 2、钢筋加工: 1)钢筋清理:钢筋表面应洁净,粘着的油污、泥土、浮锈使用前必须清理干净。 2)钢筋调直:可用机械或人工调直。经调直后的钢筋不得有弯曲、死弯、小波浪形,其表面伤痕不应使钢筋截面减小5﹪. 3)钢筋截断:应根据钢筋直径、长度和数量,长短配搭,先断长料后端短料,尽量减少和缩短钢筋短头,以节约钢材。 3、钢筋运输: 将加工好的钢筋运往施工现场时,应做好钢筋编号,并做好钢筋的运输管理,防止钢筋在运输过程中发生变形,被污染。 4、底板钢筋绑扎: 1)按弹出的钢筋位置线,先铺下层钢筋。根据底板受力情况,决定下层钢筋哪个方向钢筋在下面,一般情况下先铺短向钢筋,再铺长向钢筋。 2)钢筋绑扎时,靠近外围两行的相交点每点都绑扎,

中间部分的相交点可相隔交错绑扎,双向受力的钢筋必须将钢筋交叉点全部绑扎。 3)摆放底板混凝土保护层用砂浆垫块,垫块厚度等于保护层厚度,按每1m左右距离梅花型摆放。如底板较厚或用钢筋较大,摆放距离可缩小。 5、钢筋固定: 1)先绑2~4根竖筋,并画好横筋分档标志。然后在下部及齐胸处绑两根横肋定位,并画好竖筋分档标志。一般情况横筋在外。竖筋在里,所以先绑竖筋后绑横筋。横竖筋的间距及位置应符合设计要求。 2)在钢筋外侧应绑上带有铁丝的砂浆垫块,以保证保护层的厚度。 6、顶板钢筋绑扎: 在进行顶板钢筋绑扎前应该现对该基础再次施工放样,即对已经的施工完成的钢筋绑扎进行检查,能确定基础的平面尺寸。根据放样进行顶板的钢筋绑扎。绑扎的工艺与底板的施工工艺基本一致。 7、预埋件钢筋绑扎: 1)根据弹好的肋板(立柱)位置线,将肋板(立柱)伸入基础的插筋绑扎牢固,插入基础深度要符合设计要求,甩出长度不宜过长,其上端应采取措施保证甩筋垂直,不歪斜、倾倒、变位。

房屋建筑工程钢筋绑扎施工方法

房屋建筑工程钢筋绑扎施工方法 一、基础钢筋绑扎施工方法和施工措施 1工艺流程: 划钢筋位置线→运钢筋到使用部位→绑底板及梁钢筋→绑墙钢筋 2划钢筋位置线:按图纸标明的钢筋间距,算出底板实际需用的钢筋根数,一般让靠近底板模板边的那根钢筋离模板边为5cm,在底板上弹出钢筋位置线(包括基础梁钢筋位置线)。 3绑基础及基础梁钢筋 3.l按弹出的钢筋位置线,先铺底板下层钢筋。根据底板受力情况,决定下层钢筋哪个方向钢筋在下面,一般情况下先铺短向钢筋,再铺长向钢筋。 3.2钢筋绑扎时,靠近外围两行的相交点每点都绑扎,中间部分的相交点可相隔交错绑扎,双向受力的钢筋必须将钢筋交叉点全部绑扎。如采用一面顺扣应交错变换方向,也可采用八字扣,但必须保证钢筋不位移。 3.3摆放混凝土保护层用砂浆垫块,垫块厚度等于保护层厚度,按每1m左右距离梅花型摆放。如基础底板较厚或基础梁及底板用钢量较大,摆放距离可缩小,甚至砂浆垫块可改用铁块代替。 3.4底板如有基础梁,可分段绑扎成型,然后安装就位,或根据梁位置线就地绑扎成型。 3.5基础底板采用双层钢筋时,绑完下层钢筋后,摆放钢筋马凳或钢筋支架(间距以1m左右一个为宜),在马凳上摆放纵横两个方向定位钢筋,钢筋上下次序及绑扣方法同底板下层钢筋。 3.6钢筋如有绑扎接头时,钢筋搭接长度及搭接位置应符合施工规范要求,钢筋搭接处应用铁丝在中心及两端扎牢。如采用焊接接头,除应按焊接规程规定抽取试样外,接头位置也应符合施工规范的规定。 3.7由于基础底板及基础梁受力的特殊性,上下层钢筋断筋位置应符合设计

要求。 3.8根据弹好的柱位置线,将柱伸入基础的插筋绑扎牢固,插入基础深度要符合设计要求,甩出长度不宜过长,其上端应采取措施保证甩筋垂直,不歪斜、倾倒、变位。 二、构造柱、圈梁钢筋绑扎施工方法和施工措施 1构造柱钢筋绑扎: 1.1工艺流程:预制构造柱钢筋骨架→修整底层伸出的构造柱塔接筋→安装 构造柱钢筋骨架→绑扎搭接部位箍筋 1.2预制构造柱钢筋骨架: 1.2.1先将两根竖向受力钢筋平放在绑扎架上,并在钢筋上画出箍筋间距。 1.2.2根据画线位置,将箍筋套在受力筋上逐个绑扎,要预留出搭接部位的长度。为防止骨架变形,宜采用反十字扣或套扣绑扎。箍筋应与受力钢筋保持垂直;箍筋弯钩叠合处,应沿受力钢筋方向错开放置。 1.2.3穿另外二根受力钢筋,并与箍筋绑扎牢固,箍筋端头平直长度不小于10d(d为箍筋直径),弯钩角度不小于135°。 1.2.4在柱顶、柱脚与圈梁钢筋交接的部位,应按设计要求加密柱的箍筋,加密范围一般在圈梁上、下均不应小于六分之一层高或45cm,箍筋间距不宜大于10cm(柱脚加密区箍筋待柱骨架立起搭接后再绑扎)。 1.3修整底层伸出的构造柱搭接筋:根据已放好的构造柱位置线,检查搭接筋位置及搭接长度是否符合设计和规范的要求。底层构造柱竖筋与基础圈梁锚固;无基础圈梁时,埋设在柱根部混凝土座内, 1.4安装构造柱钢筋骨架:先在搭接处钢筋上套上箍筋,然后再将预制构造柱钢筋骨架立起来,对正伸出的搭接筋,搭接倍数不低于35d,对好标高线,在竖筋搭接部位各绑3个扣。骨架调整后,可绑根部加密区箍筋。 1.5绑扎搭接部位钢筋:

钢筋绑扎施工方案最新版

西蒋峪房地产开发项目一标段 9#楼钢筋施工方案 编制: 审核: 审批: 建筑单位: 济南城市建设投资集团有限公司 监理单位: 济南市建设监理有限公司 施工单位: 中国建筑第八工程局有限公司 二〇一五年五月四日

目录 一工程概况 (1) 二编制依据 (1) 三施工准备 (1) 3.1 技术准备 (1) 3.2 机具准备 (3) 3.3 材料准备 (3) 四主要施工方法 (3) 4.1 工艺流程 (4) 4.2 钢筋堆放 (5) 4.3 钢筋加工 (5) 4.4 钢筋连接 (6) 4.5 钢筋绑扎 (8) 五质量要求 (16) 6.1 钢筋绑扎及预埋件的允许偏差 (16) 6.2 钢筋加工的允许偏差 (17) 6.3 质量控制要点 (17) 六安全文明措施 (17) 七成品保护措施 (18)

一工程概况 西蒋峪B地块房地产开发项目9#楼,拟建场地位于济南市历下区龙鼎大道以西,原西蒋峪村内,东临孟家水库,南临济南西蒋峪公租房项目,北距奥体中心约2.7公里。9#楼位于市政道路北侧,与3#车库相连(与车库位置见下图),地下3层,地上20层,东西长59.19m,南北长18.5m,总高度约69.9m。 本工程为剪力墙结构,剪力墙抗震等级为三级,基础为条形+筏板基础,基础高度1000mm,基础底标高-10.920m。 二编制依据 西蒋峪房地产开发项目一标段建筑、结构设计图纸 《地基与基础工程质量验收规范》GB50202-2002 《混凝土结构工程施工质量验收规范》GB50204-2002 《钢筋机械连接通用技术规程》JGJ107-2010 《钢筋混凝土用热轧带肋钢筋验收标准》GB1499.1-2007 《钢筋混凝土用热轧带肋钢筋验收标准》GB1499.2-2008 《建筑机械使用安全技术规程》JGJ33-2001 《施工现场临时用电安全技术规范》JGJ46-2005 《混凝土结构施工图平面整体表示方法制图规则和构造详图》11G101-1 《混凝土结构施工图平面整体表示方法制图规则和构造详图》11G101-2 《混凝土结构施工图平面整体表示方法制图规则和构造详图》11G101-3 三施工准备 3.1 技术准备 1、由项目技术负责人组织有关人员学习施工规范和工艺标准,熟悉施工图纸,并结合实际讨

钢筋绑扎施工方案.doc

一、施工准备 1材料及主要机具: (1)钢筋:应有出厂合格证,按规定作力学性能复试。当加工过程中发生脆断等特殊情况,还需作化学成分检验。钢筋应无老锈及油污。 (2) 铁丝:可采用20~22号铁丝或镀锌铁丝。铁丝的切断长度要满足使用要求。 (3) 控制混凝土保护层用的砼垫块、各种挂钩或撑杆等。 (4) 工具:钢筋钩子、撬棍、扳子、绑扎架、钢丝刷子、粉笔、尺子等。 2作业条件: (1)按施工现场平面图规定的位置,将钢筋堆放场地进行清理、平整。准备好垫木,按钢筋绑扎顺序分类堆放,并将锈蚀进行清理。 (2) 核对钢筋的级别,型号、形状、尺寸及数量是否与设计图纸及加工配料单相同。 (3) 当施工现场地下水位较高时,必须有排水及降水措施。 (4) 熟悉图纸,确定钢筋穿插就位顺序,并与有关工种作好配合工作,如支模、管线、防水施工与绑扎钢筋的关系,确定施工方法,作好技术交底工作。 (5) 根据地下室防水施工方案,底板钢筋绑扎前做完底板下防水层及保护层;支完底板四周模板(或砌完保护墙,做好防水层)。当地下室外墙防水采用内贴法施工时,在绑扎墙体钢筋之前砌完保护墙,做好防水层及保护层。 二、操作工艺 (1)、工艺流程: → → →

(2)划钢筋位置线:按图纸标明的钢筋间距,算出底板实际需用的钢筋根数,一般让靠近底板模板边的那根钢筋离模板边为5cm,在底板上弹出钢筋位置线(包括基础梁钢筋位置线)。 (3)绑基础底板及基础梁钢筋 1)按弹出的钢筋位置线,先铺底板下层钢筋。根据底板受力情况,决定下层钢筋哪个方向钢筋在下面,本工程先铺长向钢筋,再铺短向钢筋。 2)钢筋绑扎时,靠近外围两行的相交点每点都绑扎,中间部分的相交点可相隔交错绑扎,双向受力的钢筋必须将钢筋交叉点全部绑扎。如采用一面顺扣应交错变换方向,也可采用八字扣,但必须保证钢筋不位移。 3)摆放底板混凝土保护层用砼垫块,垫块厚度等于保护层厚度,按每1m左右距离梅花型摆放。如基础底板较厚或基础梁及底板用钢量较大,摆放距离可缩小。 4)底板如有基础梁,可分段绑扎成型,然后安装就位,或根据梁位置线就地绑扎成型。 5)基础底板采用双层钢筋时,绑完下层钢筋后,摆放钢筋马凳或钢筋支架(间距以1m左右一个为宜),在马凳上摆放纵横两个方向定位钢筋,钢筋上下次序及绑扣方法同底板下层钢筋。 6)底板钢筋如有绑扎接头时,钢筋搭接长度及搭接位置应符合施工规范要求,钢筋搭接处应用铁丝在中心及两端扎牢。如采用焊接接头,除应按焊接规程规定抽取试样外,接头位置也应符合施工规范的规定。 7)由于基础底板及基础梁受力的特殊性,上下层钢筋断筋位置应符合设计要求。 8)根据弹好的墙、柱位置线,将墙、柱伸入基础的插筋绑扎牢固,插入基础深度要符合设计要求,甩出长度不宜过长,其上端应采取措施保证甩筋垂直,不歪斜、倾

柱钢筋绑扎施工工艺

柱钢筋绑扎施工工艺Last revision on 21 December 2020

柱钢筋绑扎施工工艺柱筋定位卡示意图柱筋定位卡制作实例图 框架柱绑扎柱根部500mm范围内做法 柱钢筋绑扎施工工艺: 1、工艺流程: 柱筋绑扎→安装柱筋定位卡具→平台混凝土浇筑→拆除定位卡具→套柱箍筋→柱主筋连接→绑扎竖向受力筋→画箍筋控制线→箍筋绑扎→保护层设置 2、操作要点: 定位卡具制作:柱钢筋绑扎前,根据柱主筋间距,制作钢筋卡具。卡具固定筋采用φ14钢筋、限位筋采用φ6钢筋,限位筋间距为柱主筋直径+10mm主筋定位卡制作完成后,可涂刷黄色油漆标示。 柱筋绑扎:根据钢筋位置线校正板面上部预留柱筋,吊装绑扎柱筋。 柱筋定位卡具放置:按照图纸要求绑扎好柱钢筋。绑扎成型后,在距楼面标高上20cm处安装定位卡具,并与主筋绑扎牢固。 套柱箍筋:按图纸要求间距,计算好每根柱箍筋数量,先将箍筋套在下层伸出的搭接筋上,然后立柱子钢筋(包括采用机械连接或电渣压力焊连接施工),当采用绑扎搭接连接时,在搭接长度内,绑扎不少于3个,绑扣要向柱中心。如果柱子主筋采用光圆钢筋搭接时,角部弯钩应与模板成45度,中间钢筋的弯钩应与模

板成90度 竖向受力钢筋连接:柱主筋≥Φ16mm采用直螺纹套筒机械连接,Φ12mm、Φ14mm根据现场实际情况考虑电渣压力焊连接或者钢筋绑扎搭接连接,<Φ12mm采用钢筋搭接绑扎连接。绑扎接头的搭接长度应符合设计要求和规定,框架梁、牛腿及柱帽等钢筋,应放在柱的纵向钢筋内侧。 画箍筋间距线:在立好的柱子竖向钢筋上,按图纸要求用粉笔画箍筋间距线,第一根箍筋距离楼面一般为50mm 柱箍筋绑扎: 保护层设置:保护层垫块应绑在柱纵向钢筋外皮上,使用水泥砂浆垫块、塑料卡,间距控制在1000mm左右以保证主筋保护层厚度尺寸正确。柱筋绑扎后,不得攀爬。在混凝土面以上500mm范围内主筋采用塑料薄膜缠绕,减少混凝土对主筋的污染,混凝土浇筑完成后,压光时将塑料薄膜清理干净,并将钢筋周边混凝土抹压密实。 3、质量要求: 钢筋进场时,应按现行国家标准《钢筋混凝土用热轧带肋钢筋》等的规定抽取试件作力学性能检验,其质量必须符合有关标准的规定。 钢筋规格、形状、尺寸、数量、锚固长度、接头位置,必须符合设计施工图纸及规范的规定,如有变更,需办理设计变更文件。箍筋末端应弯成135°平直部分长度为10d。

钢筋绑扎工程施工工艺

1 钢筋工程施工工艺 1.1 适用范围 1.1.1 本工艺适用于本项目工程混凝土工程的钢筋加工、制作、绑扎作业。 1.2施工准备 1.2.1 材料要求 1 混凝土结构所用的钢筋其品种、规格、性能等应符合设计要求和现行国家产品标准。 2 钢筋应按进场的批次进行检查和验收,检验合格后方可使用。进场检验应符合下列规定: 1)每批钢筋应由同一牌号、同一炉罐号、同一规格、同一等级、同一交货状态组成,并不得大于60t。 2)检查每批钢筋的外观质量。钢筋表面不得有裂纹、结症和折叠;表面的凸块和其他缺陷的深度和高度不得大于所在部位的尺寸的允许偏差(带肋钢筋为横肋的高度);测量本批钢筋的直径偏差; 3)经外观检查合格的每批钢筋中任选两根钢筋,在其上各截取1组试样,每组试样各制3根试件,分别作拉伸(含抗拉强度、屈服点、伸长率)和冷弯试验。 带肋钢筋应按规定增加反向弯曲试验项目。 4)当试样有1个试验项目不符合要求时,应另取2倍数量的试件对不合格项目作第2 次试验,当仍有1根不合格时,则该批钢筋应判为不合格。 3 在浇筑混凝土之前应进行钢筋的隐蔽工程验收。钢筋的数量、位置和连接方式应符合设计要求,预埋件的规格、数量和位置应符合设计要求。

4 钢筋在运输和储存时,不得损坏标志,存放时应按钢筋类型、直径、钢号、批号、厂家等条件进行分类堆放,设分类标志牌、不得混淆;同时应避免锈蚀和污染(一般应架空地面0.3m以上,并苫盖防雨);在码放时应将外观检查不合格的钢筋及时剔除。 5 钢筋的级别、种类和直径应按设计要求采用。当需要代换时,应由原设计单位做变更设计。 6 工地应对运进的钢筋进行检验,作为使用本批钢筋的使用依据。 7 经检验合格的钢筋在加工和安装过程中出现异常现象(如脆断、焊接性能不良或力学性能显著不正常等)时,应作化学成分分析。 8 当对钢筋质量或类别有疑问时,应根据实际情况进行抽样鉴定,并不得用于主要承重结构的重要部位。 9 焊接用电焊条应与钢材强度相适应,焊条质量应符合现行国家标准《碳钢焊条》GB/ T5117的规定。 1.2.2 施工机具与设备 1 钢筋加工设备(钢筋切断机、钢筋调直机、数控钢筋弯曲机、数控卷笼机、电焊机),钢筋笼运输设备(运输汽车)、吊装设备(吊车)等。 2 钢筋绑扎工具(钢筋勾、石笔、墨斗、钢尺、撬棍等)。 1.2.3 作业条件 1 现场道路畅通,施工场地已清理平整,现场用水、用电接通,备有夜间照明设施。 2 钢筋工程所需的原材料数量已备足,进场。 3 钢筋加工场地应平整坚实,钢筋加工机械、焊接设备按平面布置图,合理确定安装位置。设备测试和试运转检测合格。 1.2.4 技术准备 1 根据施工部位、结构型式、环境条件、工程量、安全要求等因素,制定专项方案批准后实施。 2 技术交底和安全交底,并履行书面交底手续;熟悉施工图纸及配筋图。 3 按结构部位,编制钢筋加工单并通过专业工程师批准。 4 经专业技术培训,考试合格;焊工等专业技术工种应持证上岗。 1.3 操作工艺 1.3.1 工艺流程 钢筋加工场建设→钢筋加工设备安装→原材料进场检查、检测试验→钢筋下料→钢筋加工→钢筋焊接→钢筋安装→检查、检测。 1.3.2 钢筋加工场建设

基础钢筋绑扎施工工艺

基础钢筋绑扎施工工艺流程:基础垫层完成T弹底板钢筋位置线T钢筋半成品运 输到位T按线布放钢筋T绑扎。 操作工艺: 1、将基础垫层清扫干净,用石笔和墨斗在上面弹放钢筋位置线。 2、将钢筋位置线布放基础钢筋。 3、绑扎钢筋。四周两行钢筋交叉点每点绑扎牢。中间部分交叉点可相隔交错扎 牢,但必须保证受力钢筋不位移。双向主筋的钢筋网,贝懦将全部钢筋相交点 扎牢。相邻绑扎点的钢丝扣成八字形,以免网片歪斜变形。 4、基础底板采用双层钢筋网时,在上层钢筋网下面应设置钢筋撑脚或混凝 土撑脚,以保证钢筋位置正确,钢筋撑脚下应垫在下片钢筋网上。见图: 钢筋撑脚的形式和尺寸如图,图一所示类型撑脚每隔1m放置1个。其直径选用:当板厚h w 300mrfl寸为8~10mm当板厚h=300~500,时为12~14mm当板厚 h>500mn时,选用图二所示撑脚,钢筋直径为16~18mm沿短向通长布置,间距以 能保证钢筋位置为准。 5、钢筋的弯钩应朝上,不要倒向一边:双层钢筋网的上层钢筋弯钩应朝下。 6、独立柱基础底板钢筋为双向弯曲,其底面短向的钢筋应放在长向钢筋的 上面。

7、现浇柱与基础连接用的插筋,其箍筋尺寸应比柱的箍筋尺寸小一个柱筋直径,以 便连接。箍筋的位置一定要绑扎固定牢靠,以免造成柱轴线偏移。 & 基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm当无垫层时,不应小于70mm。 9、钢筋的连接: ①受力钢筋的接头宜布置在受力较小处。接头末端至钢筋弯起点的距离不应小于钢筋直 径的10倍。 ②若采用绑扎搭接接头,则接头相邻纵向受力钢筋的绑扎接头宜相互错开。钢筋绑扎 接头连接区段的长度为1.3 倍搭接长度。凡搭接接头中点位于该区段的搭接接头均属于同一连接区段。位于同一区段内的受拉钢筋搭接接头百分率为25%; ③当钢筋的直径d>28mm时,不宜采用绑扎接头; ④纵向受力钢筋采用机械连接接头或焊接接头时,连接区段的长度为35d (d 为纵向受力钢筋的较大值)且不小于500m m。同一连接区段内,纵向受力钢 筋的接头面积百分率应符合设计规定,当设计无规定时,应符合下列规定:一、在 受拉区不宜大于50%;二、直接承受动力荷载的基础中,不宜采用焊接接头;当采用机械连接接头时,不应大于50%。 10、基础浇筑前,把基础面上预留墙柱插筋扶正理顺,保证插筋位置准确。 11、承台钢筋绑扎前,一定要保证桩基伸出钢筋到承台的锚固长度。 剪力墙钢筋绑扎施工工艺标准 本标准适用于外板内模、外砖内模、全现浇等结构形式的剪力墙钢筋绑扎。工程 施工应以设计图纸和有关施工质量验收规范为依据 一、材料要求根据设计要求,工程所用钢筋种类、规格必须符合要求,并经检验合格。

梁板钢筋绑扎施工工艺

梁板钢筋绑扎施工工艺 平台板钢筋绑扎 梁柱节点钢筋绑扎 梁板钢筋绑扎施工工艺: 1、工艺流程: 1.1梁钢筋绑扎工艺流程 1.1.1、模内绑扎:画主次梁 箍筋间距→放主梁次梁箍筋→穿 主梁底层纵筋及弯起筋→穿次梁底层纵筋并与箍筋固定→穿主梁上层纵向架立筋→按箍筋间距绑扎→穿次梁上层纵向钢筋→按箍筋间距绑扎 1.1.2、、模外绑扎(先在梁模板上口绑扎成型后再入模内):画箍筋间距→在主次梁模板上口铺横杆数根→在横杆上画放箍筋→穿主梁下层纵筋→穿次梁下层钢筋→穿主梁上层钢筋→按箍筋间距绑扎→穿次梁上层纵向钢筋→按箍筋间距绑扎→抽出横杆落骨架于模板内 1.2板钢筋安装工艺流程 清理模板→模板上画线→绑板下受力筋→绑负弯矩钢筋 2、操作要点:

2.1在梁侧模板上画出箍筋间距,摆放箍筋。 2.2先穿主梁的下部纵向受力钢筋及弯起钢筋,将箍筋按已画好的间距逐个分开;穿次梁的下部纵向受力钢筋及弯起钢筋,并套好箍筋;放主次梁的架立筋;隔一定间距将架立筋与箍筋绑扎牢固;调整箍筋间距使间距符合设计要求,绑架立筋,再绑主筋,主次梁同时配合进行。 2.3框架梁上部纵向钢筋应贯穿中间节点,梁下部纵向钢筋伸入中间节点,锚固长度及伸过中心线的长度要符合设计要求。框架梁纵向钢筋在端节点内的锚固长度也要符合设计要求。 2.4绑梁上部纵向筋的箍筋,宜用套扣法绑扎。箍筋的接头(弯钩叠合处)应交错布置在两根架立钢筋上,其余同柱。 2.5箍筋在叠合处的弯钩,在梁中应交错绑扎,箍筋弯钩为135度,平直部分长度为10d,如做成封闭箍时,单面焊缝长度为5d。 2.6梁端第一个箍筋应设置在距离柱节点边缘50mm处。梁端与柱交接处箍筋应加密,其间距与加密区长度均要符合设计要求。 2.7板、次梁与主梁交叉处,板的钢筋在上,次梁的钢筋居中,主梁的钢筋在下;当有圈梁或垫梁时,主梁的钢筋在上。在主、次梁受力筋下均应垫垫块(或塑料卡),保证

桥梁钢筋绑扎施工工艺标准

桥梁钢筋绑扎施工工艺标准 FHEC-QH-28-3-2007 1、适用范围 本工艺标准适用于桥梁工程中桩基、承台、墩柱、盖梁、T梁等的钢筋绑扎工程。 2、编制主要应用标准和规范 2.1中华人民共和国行业标准《公路桥涵施工技术规范》JTJ 041-2000 2.2中华人民共和国行业标准《公路工程质量检验评定标准》JTG F80/1-2004 2.3中华人民共和国国家标准《钢筋混凝土用热轧光圆钢筋》GB 13013-91 2.4中华人民共和国国家标准《钢筋混凝土用热轧带肋钢筋》GB 1499-1998 2.5中华人民共和国国家标准《低碳钢热轧圆盘条》GB 701-1997 3施工准备 3.1技术准备 3.1.1熟悉图纸,编制单项钢筋绑扎施工组织设计。 3.1.2严格按照图纸要求进行钢筋下料。 3.1.3向各钢筋班组进行书面的一级技术交底。 3.2材料准备 3.2.钢筋:钢筋进场有出厂合格证和出厂检验报告,钢筋表面或每捆(每盘)钢筋均有标志。钢筋进场后应按有关规定见证取样送检作力学性能复试。当加工过程中发生脆断等特殊情况,还需作化学成分检验。钢筋应无老锈及油污。 3.2.2铁丝:可采用20~22号铁丝(为烧丝)或镀锌铁丝(铅丝)。铁丝切断长度

要满足使用要求。 3.2.3垫块:根据钢筋骨架保护层的厚度选用大小不同的垫块。桩基所用垫块为水泥砂浆制成,强度等级同混凝土设计强度等级,厚度同保护层,其它结构根据保护层厚度选择3cm、5cm的塑料垫块,该种垫块必须有一定的抗压强度,能够承受承台或盖梁的重压,侧面用垫块宜选择圆形,底面用垫块宜选择方形。 3.2.4钢管:作为绑扎骨架的辅助材料,适用于吊装的骨架,如方形墩柱、盖梁骨架等,通过钢管搭设架子,在架子上进行绑扎。 3.3机具准备 主要机具:钢筋钩子、撬棍、扳子、钢丝刷子、手推车、粉笔、尺子等。 3.4作业条件 3.4.1按施工平面图中指定的位置,将钢筋堆放和加工场地进行清理、平整。按规格、使用部位、编号、钢筋绑扎顺序分类,分别加垫木堆放。 3.4.2钢筋绑扎前,应检查有无锈蚀,除锈之后再运至绑扎部位。 3.4.3熟悉图纸、按设计要求检查已加工好的钢筋规格、形状、数量、尺寸是否正确。 3.4.4桥面铺装网片几何尺寸规格及焊接质量检验合格后可使用。 3.4.5根据设计图纸及工艺标准要求,确定钢筋穿插就位顺序,并与有关工种作好配合工作,确定施工方法,向班组技术交底。 3.4.6在现场绑扎(如承台、盖梁等)时,可以在底模上用粉笔画好主筋的位置,通过垫块提前预留保护层的厚度。 4、施工操作工艺 4.1桩基钢筋绑扎工艺

混凝土结构钢筋现场绑扎施工工艺

钢筋现场绑扎工法 本施工工艺适用于混凝土结构中的钢筋绑扎工程。 1.材料性能要求 (1)钢筋原材: 钢筋出厂质量证明书、按规定作力学性能复试和见证取样试验。当加工过程中发生脆 (2)成型钢筋 断等特殊情况,还需做化学成分检验。钢筋应无老锈及油污。?必须符合配料单的规格、型号、尺寸、形状、数量,并应进行标识。成型钢筋必须进行覆盖,防止雨淋生锈。?(3)铁丝 可采用20~22号铁丝(火烧丝)或镀锌铁丝(铅丝)。铁丝切断长度要满足使用要求。? (4)垫块 用水泥砂浆制成50mm矩形,厚度同保护层,垫块内预埋20~22号火烧丝。或用塑料卡、拉筋、支撑筋。 2.施工工具与机具 钢筋钩子、撬棍、扳子、绑扎架、钢丝刷子、手推车、粉笔、尺等。 3.作业条件 (1)钢筋进场后资料齐全,复试合格。做完复试,按施工平面图中指定的位置,按规格、使用部位和编号分别加垫木堆放。 (2)钢筋绑扎前,应检查有无锈蚀,除锈之后再运至绑扎部位。 (3)钢筋绑扎前先认真熟悉图纸,检查配料表与图纸设计是否有出入,仔细检查成品尺寸、形状是否与下料表相符。核对无误后方可进行绑扎。 (4)做好抄平放线工作,弹好水平标高线,柱、墙外皮尺寸线。 (5)根据弹好的外皮尺寸线,检查下层预留搭接钢筋的位置、数量、长度,如不符合要求时,应进行处理。绑扎前先按1:6整理调直下层伸出的搭接筋,并将锈蚀、水泥砂浆等污垢清除干净。 (6)根据标高检查下层伸出搭接筋处的混凝土表面标高(柱顶、墙顶)是否符合图纸要求,混凝土施工缝处要剔凿到露出石子并清理干净。 (7)按要求搭好脚手架。 4.施工工艺 (1)底板及承台钢筋绑扎 弹出钢筋位置线→先绑扎承台、地梁钢筋→铺底板下层钢筋→摆放钢筋马磴→绑扎上

钢筋绑扎施工方案

城关街道东街村、丁家洼村定向安置房 项目1#楼 钢筋加工安装施工方案 建设单位:北京燕房新城投资有限公司 监理单位:北京科信工程管理有限公司 施工单位:北京順腾建筑工程有限责任公司 编制人:张艳水编制日期2014.5.8 审核人:谢福全审核日期2014.5.9

目录 1编制依据 (3) 2工程概况 (3) 3施工准备 (5) 4主要施工方法 (8) 5保证保护层厚度的措施 (25) 6季节施工 (27) 7质量要求 (28) 8应注意的问题 (30) 9成品保护措施 (30) 10安全、环保及文明施工要求 (31)

1编制依据 1.1城关街道东街村、丁家洼村定向安置房项目1#楼施工图纸、洽商、规范标准以及施工现场的实 际情况。 1.2施工图纸 1.3主要规范、规程 2工程概况 2.1 建施设计概况表2-2

2.2 结施设计概况表2-3

2.3流水段划分 本工程按基础后浇带和主体伸缩缝划分为三个流水段,其中第一段1-19轴。第二段20-38轴。第三段39-57轴。 3施工准备 3.1技术准备 熟悉施工图纸,学习有关规范、规程,按规范要求编制钢筋施工方案,包括基础底板、剪力墙、框架梁、连梁、板钢筋等的加工、绑扎等施工内容。 ①组织工人学习直螺纹接头的工艺操作、钢筋加工、绑扎等施工工艺标准。 ②熟悉钢筋直螺纹连接工艺规程及规范要求。 ③按设计要求放样,检查已加工好的钢筋规格、形状、数量全部正确。 ④做好抄平放线工作,弹好水平标高线,柱、墙外皮尺寸线。 ⑤按设计、规范列出本工程墙柱筋接头锚固一览表(包括错开百分比、错开长度、百分比系数),根据弹好的外皮尺寸线,检查下层预留搭接钢筋的位置、接头百分比、错开长度。如不符合要求时,要进行处理。绑扎前保护层偏位按1:6调正伸出的搭接筋,并将锈蚀、水泥砂浆等污垢清除干净。

砖混结构钢筋绑扎工程施工方案

砖混结构钢筋绑扎工程施工技术方案 一、施工准备 (一)作业条件 1.核对钢筋品种、级别、规格、形状、尺寸、数量、位置是否与设计图纸及加工配料单相同。 2.弹好标高水平线及构造柱的外皮线。 3.构造柱钢筋绑扎前,柱板施工缝已处理完毕,柱筋调整完毕并办理完隐检手续。 (二)材质要求 1.钢筋:应有产品合格证、出厂检测报告和进场复验报告。钢筋应无老锈及油污。 2.绑丝:可采用20?22#铁丝或火烧丝(根据钢筋的规格确定)。 3.控制混凝土保护层用的塑料卡子、塑料垫块应有足够的承载强度, 塑料垫块的规格尺寸根据钢锯的直径和设计的钢筋混凝土保护层厚度确定(或现场预制水泥砂浆保护层垫块)。 (三)施工机具 钢筋弯曲机、卷扬机、钢筋切断机、钢筋钩子、撬棍、钢筋扳子、绑扎架、钢丝刷、粉笔、尺子等。 二、质量要求 具体要求请参照本人文档“箱型基础工程”章节中“钢筋工程”相应部分。 三、工艺流程 (一)构造柱钢筋绑扎 加工构造柱钢筋-施工缝混凝土表面凿毛、修整底层伸出的构造柱搭接筋-安装构造柱钢筋骨架-绑扎搭接部位钢筋 (二)圈梁钢筋绑扎 画钢筋位置线-放箍筋-穿圈梁受力筋-绑扎箍筋 (三)剪力墙钢筋绑扎 修理伸出筋-绑扎(焊接)节点竖向钢筋-绑扎墙体箍筋-网片定位—修整四、操作工艺 (一)构造柱钢筋绑扎 1.制作构造柱钢筋骨架 (1)先将两根竖向受力钢筋平放在绑扎架上,并在钢筋上画出箍筋间距。

(2)根据画线位置,将箍筋套在受力筋上逐个绑扎,要预留出搭接部位的长度。为防止骨架变形,宜采用反十字扣或缠扣绑扎。箍筋应与受力钢筋保持垂直;箍筋弯钩叠合处,应沿受力钢筋方向错开放置。为防止骨架在运输中变形,构造柱对角钢筋之间用弯起筋绑扎固定。 (3)穿另外二根受力钢筋,并与箍筋绑扎牢固。箍筋端头弯钩角度为135°,其弯钩的弯曲直径应大于受力钢筋的直径,且不小于箍筋直径的2.5倍;箍筋平直段长度不应小于箍筋直径的10倍。 (4)在柱顶、柱脚与圈梁钢筋交接的部位,应按设计要求加密柱的箍筋;无设计要求时加密范围一般在圈梁向上、向下500mm范围,箍筋间距为100m(柱脚加密区箍筋待柱骨架立起搭接后再绑扎)。 2.修整底层伸出的构造柱搭接筋。根据已放好的构造柱位置线,检 查搭接筋位置及搭接长度是否符合设计和抗震规范的要求。底层构造柱竖筋与基础圈梁锚固要求:有设计要求时,应按设计要求进行施工;无设计要求时,无基础圈梁时,埋设在垫层或基础混凝土座内。示。当墙体附有管沟时,构造柱埋设深度应大于沟深。 3.安装构造柱钢筋骨架。先在搭接处的钢筋套上箍筋,注意箍筋应交错布置。然后再将预制构造柱钢筋骨架立起来,对正伸出的搭接筋,对好标高线,在竖筋搭接部位各绑3个扣,两端中间各一扣。骨架调整后,可以顺序从根部加密区箍筋开始往上绑扎。 4.绑扎搭接部位钢筋。 (1)构造柱钢筋必须与各层纵横墙的圈梁钢筋绑扎连接,形成一个圭寸闭框架。 (2)在砌砖墙大马牙槎时,沿墙高每50cm埋设两根? 6.5水平拉结筋,与构造柱钢筋绑扎连接。 (3)砌完砖墙后,应对构造柱钢筋进行修整,以保证钢筋位置及间距准确。 (二)圈梁钢筋的绑扎 1.一般采用预制圈梁钢筋骨架,然后按编号吊装就位进行组装后支模板。也可现场绑扎,后支模板,一般采用硬架支模方法。如在模内绑扎时,按设计图纸要求间距,在模板侧帮画箍筋位置线。放箍筋后穿受力钢筋。箍筋搭接处应沿受力钢筋互相错开。 2.圈梁与构造柱钢筋交叉处,圈梁钢筋放在构造柱受力钢筋内侧。

基础钢筋绑扎施工工艺

基础钢筋绑扎施工工艺流程:基础垫层完成→弹底板钢筋位置线→钢筋半成品运输到位→按线布放钢筋→绑扎。 操作工艺: 1、将基础垫层清扫干净,用石笔和墨斗在上面弹放钢筋位置线。 2、将钢筋位置线布放基础钢筋。 3、绑扎钢筋。四周两行钢筋交叉点每点绑扎牢。中间部分交叉点可相隔交 错扎牢,但必须保证受力钢筋不位移。双向主筋的钢筋网,则需将全部 钢筋相交点扎牢。相邻绑扎点的钢丝扣成八字形,以免网片歪斜变形。 4、基础底板采用双层钢筋网时,在上层钢筋网下面应设置钢筋撑脚或混凝 土撑脚,以保证钢筋位置正确,钢筋撑脚下应垫在下片钢筋网上。见图: 钢筋撑脚的形式和尺寸如图,图一所示类型撑脚每隔1m放置1个。其直径选用:当板厚h≦300mm时为8~10mm;当板厚h=300~500,时为12~14mm。当板厚 h>500mm时,选用图二所示撑脚,钢筋直径为16~18mm。沿短向通长布置,间 距以能保证钢筋位置为准。 5、钢筋的弯钩应朝上,不要倒向一边:双层钢筋网的上层钢筋弯钩应朝下。 6、独立柱基础底板钢筋为双向弯曲,其底面短向的钢筋应放在长向钢筋的 上面。

7、现浇柱与基础连接用的插筋,其箍筋尺寸应比柱的箍筋尺寸小一个柱筋 直径,以便连接。箍筋的位置一定要绑扎固定牢靠,以免造成柱轴线偏 移。 8、基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm,当无垫层时, 不应小于70mm。 9、钢筋的连接: ○1受力钢筋的接头宜布置在受力较小处。接头末端至钢筋弯起点的距离不应小于钢筋直径的10倍。 ○2若采用绑扎搭接接头,则接头相邻纵向受力钢筋的绑扎接头宜相互错开。钢筋绑扎接头连接区段的长度为1.3倍搭接长度。凡搭接接头中点位于该区段的搭接接头均属于同一连接区段。位于同一区段内的受拉钢筋搭接接头百分率为25%; ○3当钢筋的直径d>28mm时,不宜采用绑扎接头; ○4纵向受力钢筋采用机械连接接头或焊接接头时,连接区段的长度为35d(d 为纵向受力钢筋的较大值)且不小于500mm。同一连接区段内,纵向受力钢筋的接头面积百分率应符合设计规定,当设计无规定时,应符合下列规定:一、在受拉区不宜大于50%;二、直接承受动力荷载的基础中,不宜采用焊接接头;当采用机械连接接头时,不应大于50%。 10、基础浇筑前,把基础面上预留墙柱插筋扶正理顺,保证插筋位置准确。 11、承台钢筋绑扎前,一定要保证桩基伸出钢筋到承台的锚固长度。 剪力墙钢筋绑扎施工工艺标准 本标准适用于外板内模、外砖内模、全现浇等结构形式的剪力墙钢筋绑扎。工程

钢筋绑扎施工方案

施工准备 1材料及主要机具: (1)钢筋:应有出厂合格证,按规定作力学性能复试。当加工过程中发生脆断等特殊情况,还需作化学成分检验。钢筋应无老锈及油污。 (2)铁丝:可采用20~22 号铁丝或镀锌铁丝。铁丝的切断长度要满足使用要求。 (3)控制混凝土保护层用的砼垫块、各种挂钩或撑杆等。 (4)工具:钢筋钩子、撬棍、扳子、绑扎架、钢丝刷子、粉笔、尺子等。 2作业条件: (1)按施工现场平面图规定的位置,将钢筋堆放场地进行清理、平整。准备好垫木,按钢筋绑扎顺序分类堆放,并将锈蚀进行清理。 (2)核对钢筋的级别,型号、形状、尺寸及数量是否与设计图纸及加工配料单相同。 (3)当施工现场地下水位较高时,必须有排水及降水措施。 (4)熟悉图纸,确定钢筋穿插就位顺序,并与有关工种作好配合工作,如支模、管线、防水施工与绑扎钢筋的关系,确定施工方法,作好技术交底工作。(5)根据地下室防水施工方案,底板钢筋绑扎前做完底板下防水层及保护层;支完底板四周模板(或砌完保护墙,做好防水层) 。当地下室外墙防水采用内贴法施工时,在绑扎墙体钢筋之前砌完保护墙,做好防水层及保护层。 二、操作工艺 (1) 、工艺流程:

(2)划钢筋位置线:按图纸标明的钢筋间距,算出底板实际需用的钢筋根数,一般让靠近底板模板边的那根钢筋离模板边为5cm,在底板上弹出钢筋位置线(包括基础梁钢筋位置线)。 (3)绑基础底板及基础梁钢筋 1)按弹出的钢筋位置线,先铺底板下层钢筋。根据底板受力情况,决定下层钢筋哪个方向钢筋在下面,本工程先铺长向钢筋,再铺短向钢筋。 2) 钢筋绑扎时,靠近外围两行的相交点每点都绑扎,中间部分的相交点可相隔交错绑扎,双向受力的钢筋必须将钢筋交叉点全部绑扎。如采用一面顺扣应交错变换方向,也可采用八字扣,但必须保证钢筋不位移。 3)摆放底板混凝土保护层用砼垫块,垫块厚度等于保护层厚度,按每1m 左 右距 离梅花型摆放。如基础底板较厚或基础梁及底板用钢量较大,摆放距离可缩小。 4) 底板如有基础梁,可分段绑扎成型,然后安装就位,或根据梁位置线就地绑扎成型。 5) 基础底板采用双层钢筋时,绑完下层钢筋后,摆放钢筋马凳或钢筋支架(间距以1m 左右一个为宜),在马凳上摆放纵横两个方向定位钢筋,钢筋上下次序及绑扣方法同底板下层钢筋。 6) 底板钢筋如有绑扎接头时,钢筋搭接长度及搭接位置应符合施工规范要求,钢筋搭接处应用铁丝在中心及两端扎牢。如采用焊接接头,除应按焊接规程规定抽取试样外,接头位置也应符合施工规范的规定。

柱钢筋绑扎施工工艺

柱钢筋绑扎施工工艺 柱筋定位卡示意图柱筋定位卡制作实例图 框架柱绑扎柱根部500mm范围内做法 柱钢筋绑扎施工工艺: 1、工艺流程: 柱筋绑扎→安装柱筋定位卡具→平台混凝土浇筑→拆除定位卡具→套柱箍筋→柱主筋连接→绑扎竖向受力筋→画箍筋控制线→箍筋绑扎→保护层设置 2、操作要点: 2.1定位卡具制作:柱钢筋绑扎前,根据柱主筋间距,制作钢筋卡具。卡具固定筋采用φ14钢筋、限位筋采用φ6钢筋,

限位筋间距为柱主筋直径+10mm主筋定位卡制作完成后,可涂刷黄色油漆标示。 2.2柱筋绑扎:根据钢筋位置线校正板面上部预留柱筋,吊装绑扎柱筋。 2.3柱筋定位卡具放置:按照图纸要求绑扎好柱钢筋。绑扎成型后,在距楼面标高上20cm处安装定位卡具,并与主筋绑扎牢固。 2.4套柱箍筋:按图纸要求间距,计算好每根柱箍筋数量,先将箍筋套在下层伸出的搭接筋上,然后立柱子钢筋(包括采用机械连接或电渣压力焊连接施工),当采用绑扎搭接连接时,在搭接长度内,绑扎不少于3个,绑扣要向柱中心。如果柱子主筋采用光圆钢筋搭接时,角部弯钩应与模板成45度,中间钢筋的弯钩应与模板成90度 2.5竖向受力钢筋连接:柱主筋≥Φ16mm采用直螺纹套筒机械连接,Φ12mm、Φ14mm根据现场实际情况考虑电渣压力焊连接或者钢筋绑扎搭接连接,<Φ12mm采用钢筋搭接绑扎连接。绑扎接头的搭接长度应符合设计要求和规定,框架梁、牛腿及柱帽等钢筋,应放在柱的纵向钢筋内侧。 2.6画箍筋间距线:在立好的柱子竖向钢筋上,按图纸要求用粉笔画箍筋间距线,第一根箍筋距离楼面一般为50mm 2.7柱箍筋绑扎: 2.7.1、按已画好的箍筋位置线,将已套好的箍筋往上移动,

相关主题