搜档网
当前位置:搜档网 › 地球各点重力加速度近似计算公式

地球各点重力加速度近似计算公式

地球各点重力加速度近似计算公式
地球各点重力加速度近似计算公式

地球各点重力加速度近似计算公式: 我国主要城市的重力加速度:

北京:9.80151

天津:9.80106

唐山:9.80164

石家庄:9.79973

昆明:9.78363

南宁:9.78769

柳州:9.78850

乌鲁木齐:9.80146

武汉:9.79361

呼和浩特:9.79864

吉林:9.80480

长春:9.80476

西安:9.79136

成都:9.79134

哈尔滨:9.80665

开封:9.79660

南昌:9.79196

广州:9.78833

青岛:9.79849

南京:9.79494

上海:9.79460

福州:9.78910

杭州:9.79362

F=mg-V(&k)g=mg-(m/&f)g(&k)

m:物体的质量

g:物体所在地的重力加速度

&k:空气密度(一般取1.2kg/立方厘米)

&f:物体材料密度

地球各点重力加速度近似计算公式:

g=g0(1-0.00265cos&)/1+(2h/R)

g0:地球标准重力加速度9.80665(m/平方秒)

&:测量点的地球纬度

h:测量点的海拔高度

R:地球的平均半径(R=6370km)

s:时间

根据IEC标准,重力加速度计算公式为:

g=9.80617(1-2.64×10-3cos2ψ+7×10-6cos22ψ)-3.086×10-6Z;式中,ψ为纬度值,Z为海拔高度值。

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

我国主要城市的重力加速度及风雪

我国主要城市的重力加速度: 北京:9.80151 天津:9.80106 唐山:9.80164 石家庄:9.79973 昆明:9.78363 南宁:9.78769 柳州:9.78850 乌鲁木齐:9.80146 武汉:9.79361 呼和浩特:9.79864 吉林:9.80480 长春:9.80476 西安:9.79136 成都:9.79134 哈尔滨:9.80665 开封:9.79660 南昌:9.79196 广州:9.78833 青岛:9.79849 南京:9.79494 上海:9.79460 福州:9.78910 杭州:9.79362 F=mg-V(&k)g=mg-(m/&f)g(&k) m:物体的质量 g:物体所在地的重力加速度 &k:空气密度(一般取1.2kg/立方厘米) &f:物体材料密度

地球各点重力加速度近似计算公式: g=g0(1-0.00265cos&)/1+(2h/R) g0:地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R:地球的平均半径(R=6370km) s:时间 附录D 基本雪压和风压的确定方法 D.1基本雪压 D.1.1 在确定雪压时,观察场地应具有代表性。场地的代表性是指下述内容: ——观察场地周围的地形为空旷平坦; ——积雪的分布保持均匀; ——设计项目地点应在观察场地的地形范围内,或它们具有相同的地形。 对于积雪局部变异特别大的地区,以及高原地形的山区,应予以专门调查和特殊处理。 D.1.2 雪压是指单位水平面积上的雪重,单位以kN/㎡计。当气象台站有雪压记录时,应直接采用雪压数据计算基本雪压;当无雪压记录 时,可间接采用积雪深度,按下式计算雪压: 式中h—积雪深度,指从积雪表面到地面的垂直深度(m); ρ—积雪密度(t/m3); g—重力加速度,9.8m/s2。 雪密度随积雪深度、积雪时间和当地的地理气候条件等因素的变化有较大幅度的变异,对于无雪压直接记录的台站,可按地区的平均雪密度计算雪压。

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x *=-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x * *-== 通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差 ''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 1212 12 12 (,)(,) () f x x f x x e y dx dx x x ?? =+ ?? 相对误差 121122 12 12 (,)(,) ()()() r r r f x x x f x x x e y e x e x x y x y ?? =+ ?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n为计算机字长 3. 指数p称为阶码(指数),有固定上下限L、U

4. 尾数部 120.n s a a a =±,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤ 截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤ 截断相对1|()|||n x fl x x β--≤ 九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

实验二重力加速度的测定(精)

实验二重力加速度的测定 一、单摆法 实验内容 1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。 教学要求 1.理解单摆法测量重力加速度的原理。 2.研究单摆振动的周期与摆长、摆角的关系。 3.学习在实验中减小不确定度的方法。 实验器材 单摆装置(自由落体测定仪),秒表,钢卷尺 重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。 伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。 应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长L,只需要量出摆长,并测定摆动的周期,就可以算出g值。 实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 θ 图2-1 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 sin θ= L x f=psin θ=-mg L x =-m L g x (2-1) 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =m f =-ω2 x 可得ω= l g 于是得单摆运动周期为: T =2π/ω=2π g L (2-2) T 2 =g 2 4πL (2-3) 或 g=4π22T L (2-4) 利用单摆实验测重力加速度时,一般采用某一个固定摆长L ,在多次精密地测量出单摆的周期T 后,代入(2-4)式,即可求得当地的重力加速度g 。 由式(2-3)可知,T 2 和L 之间具有线性关系,g 2 4π为其斜率,如对于各种不同的 摆长测出各自对应的周期,则可利用T 2—L 图线的斜率求出重力加速度g 。 上述单摆测量g 的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差: 1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的T 与θ无关。 实际上,单摆的周期T 随摆角θ增加而增加。根据振动理论,周期不仅与摆长L 有关,而且与摆动的角振幅有关,其公式为: T=T 0[1+( 21)2sin 22θ+(4231??)2sin 22 θ+……] 式中T 0为θ接近于0o 时的周期,即T 0=2πg L 2.悬线质量m 0应远小于摆球的质量m ,摆球的半径r 应远小于摆长L ,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

实验2自由落体法测定重力加速度(详写)教学教材

《实验2 自由落体法测定重力加速度》 实验报告 一、实验目的和要求 1、学会用自由落体法测定重力加速度; 2、用误差分析的方法,学会选择最有利的测量条件减少测量误差。 二、实验描述 重力加速度是很重要的物理参数,本实验通过竖直安放的光电门测量自由落体时间来求重力加速度,如何提高测量精度以及正确使用光电计时器是 实验的重要环节。 三、实验器材 MUJ-5C型计时计数测速仪(精度0.1ms),自由落体装置(刻度精度0.1cm), 小钢球,接球的小桶,铅垂线。 四、实验原理 实验装置如图1。 在重力实验装作用下,物体的下落运动是匀加速直线运动, 其运动方程为 s=v0t+1/2g t2 该式中,s是物体在t时间内下落的距离;v0是物体运动的初 速度;g是重力加速度;若测得s, v0,t,即求出g值。 若使v0=0,即物体(小球)从静止释放,自由落体,则可 避免测量v0的麻烦,而使测量公式简化。但是,实际测量S 时总是存在一些困难。本实验装置中,光电转换架的通光孔总 有一定的大小,当小铁球挡光到一定程度时,计时-计数-计频 仪才开始工作,因此,不容易确定小铁球经光电转换架时的挡 光位置。为了解决这个问题,采用如下方法: 让小球从O点处开始下落,设它到A处速度为v0,再经过 t1时间到达B处,令AB间距离为s1,则 gt12 s1=v0t1?1 2 同样,经过时间t2后,小球由A处到达B’处,令AB’间 的距离为s2,则有 s2=v0t2+1/2g t22 化简上述两式,得: 图1 实验装置图g=2(s2t1-s1t2)/ t1t22-t2t12=2(s2/t2-s1/t1)/ t2-t1 --------------------------------------------(1)

定积分的近似计算

数学实验报告

1n y -+++ 1n y -+++,此时计算的相对误差

3212422)2()]n n y y y y --++++ + )公式. 3212422)2()]n n y y y y --++++ + =0.78539816339745,

主要内容(要点): 1 用矩形法、梯形法和抛物线法分别计算单调增函数,单调减函数,凸函数和凹函数在某个区间的定积分。 要求:·每类函数三个以上; ·总结对同一类函数,用哪种方法近似结果更好; 单调递增函数: 31)(x x f = 52)(x x f = 73)(x x f = 单调递减函数: 31)(x x f -= 52)(x x f -= 73)(x x f -= 凸函数: 91)(x x f -= 112)(x x f -= 133)(x x f -= 凹函数: 91)(x x f = 112)(x x f = 133)(x x f = 实验过程记录(含基本步骤、主要程序清单及异常情况记录等): 1: 程序代码: %用矩形法计算函数在某个区间的定积分 format long n=100;a=0;b=1; syms x fx fx=x^5; %通过改变函数来改变对不同函数用矩形法进行定积分近似计算 inum=0; for i=1:n xj=a+(i-1)*(b-a)/n; xi=a+i*(b-a)/n; fxij=subs(fx,'x',(xi+xj)/2); inum=inum+fxij*(b-a)/n; end inum integrate=int(fx,0,1) integrate=double(integrate) fprintf('The relative eroor between inum and real-value is about: %e\n\n',... abs((inum-integrate)/integrate)) %用梯形法进行定积分近似计算 format long n=100;a=0;b=1;inum=0; syms x fx fx=x^5; %通过改变函数来改变对不同函数用梯形法进行定积分近似计算 for i=1:n; xj=a+(i-1)*(b-a)/n; xi=a+i*(b-a)/n; fxj=subs(fx,'x',xj); fxi=subs(fx,'x',xi); inum=inum+(fxi+fxj)/2*(b-a)/n;

对地球大气密度随高度分布规律的讨论

书山有路勤为径,学海无涯苦作舟 对地球大气密度随高度分布规律的讨论 以NASA 大气模式MS 1、由玻耳兹受能分布律导出的大气密度随高度分布1687 年牛顿发表了万有引力定律, 1859 年麦克斯韦导出了平衡态下气体分子的速率分布定律,尔后,玻耳兹曼发展了麦克斯韦的分子运动学说,证明了在有势的力场中处于热平衡态的分子速度分布定律,即玻耳兹曼能量分布律。麦克斯韦-玻耳兹曼分布律是对相互作用可忽略的大量同类气体分子的集合,采用概率统计的方法导出的川。玻耳兹曼能量分布律的表达式为: 2、由大气模式得到的大气密度随高度分布2.1、大气层的温度分布大气 层可以被粗略地表征为环绕地球从海平面到大约1000Km 高度的区域,其间电中性气体可以被检测。50Km 以下该大气可以被假定为均匀混合的而且可以被当做一种理想气体。80Km 以上该流体静力学平衡因扩散而逐渐崩溃且垂直输运变得重要。在上层大气中主要的气体种类是N2,O,O2,H,He。按温度的垂直分布可将大气层分为对流层,从海平面直到大约10Km,其间温度逐渐降低,同温层,从10Km 直到大约45Km,其间温度逐渐上升,中间层,从45Km 直到大约95Km,其间温度再次逐渐降低,热层,从95Km 直到大约400Km,其间温度再次逐渐上升;而外逸层,大约在400Km 以上,其间温度是常数。 限于篇幅,文章第二章节的部分内容省略,详细文章请到论坛下载:对 地球大气密度随高度分布规律的讨论。 5、结论(1)MS (2)关心大气成分的数密度时,玻耳兹曼能量分布律仅适用于几公里至几十公里高度以内的分子态气体包括无所谓原子态还是分子态的惰性气体,但不包括

数学计算公式大全

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高

V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体

高斯曲率的计算公式

高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -== - 。 注意 (,,)uu r r r L n r =?= r r r r r , (,,) uv r r r M n r =?= r r , (,,) vv r r r N n r =?= r r 。 所以 2 2LN M K EG F -=- 2221[(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F =--r r r r r r r r r , 利用行列式的转置性质和矩阵乘法

性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r -r r r r r r r r r (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? r r r r r r r r r r r r u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-?????????r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-???????r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-???r r r r r r r r r r r r r r r r r r r r , (其中用到行列式按第三行展开计 算的性质。) 利用 u u r r E ?=r r ,u v r r F ?=r r ,

全国各地区重力加速度表

全国各地区重力加速度表 力加速度地区修正值 序号地区 g(m/s2) g/1kg g/3kg g/6kg g/15kg g/30kg 1 包头9.7986 -0.3981 -1.1943 -2.3886 -11.9430 -11.9430 2 北京9.8015 -0.7045 -2.1135 -4.2270 -10.5675 -21.1350 3 长春9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 4 长沙9.791 5 0.3267 0.9801 1.9602 9.8010 9.8010 5 成都9.7913 0.3267 0.9801 1.9602 4.9005 9.8010 6 重庆9.7914 0.326 7 0.9801 1.9602 4.9005 9.8010 7 大连9.8011 -0.6636 -1.9908 -3.9816 -9.9540 -19.9080 8 广州9.7833 0.6432 1.9296 3.8592 9.6480 19.2960 9 贵阳9.7968 0.7963 2.3889 4.7778 23.8890 23.8890 10 哈尔滨9.8066 -1.2251 -3.6753 -7.3506 -18.3765 -36.7530 11 杭州9.7936 0.1020 0.3060 0.6120 1.5300 3.0600 12 海口9.7863 0.8474 2.5422 5.0844 25.4220 25.4220 13 合肥9.7947 0.0204 0.0612 0.1224 0.3060 0.6120 14 吉林9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 15 济南9.7988 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 16 昆明9.7830 1.1230 3.3690 6.7380 16.8450 33.6900 17 拉萨9.7799 0.5513 1.6539 3.3078 16.5390 16.5390 18 南昌9.7920 0.2654 0.7962 1.5924 7.9620 7.9620 19 南京9.7949 -0.0306 -0.0918 -0.1836 -0.4590 0.9180 20 南宁9.7877 0.7044 2.1132 4.2264 10.5660 21.1320 21 青岛9.7985 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 22 上海9.7964 0.0000 0.0000 0.0000 0.0000 0.0000 23 沈阳9.8035 -0.9086 -2.7258 -5.4516 -13.6290 -27.2580 24 石家庄9.7997 -0.5513 -1.6539 -3.3078 -8.2695 -16.5390 25 太原9.7970 -0.2450 -0.7350 -1.4700 -3.6750 -7.3500

计算e的近似值

计算e的近似值。 #include main() { int i=1,d=1; float e=1.0,t; do { d*=i; t=1.0/d; i++; e+=t; }while(t>=1e-5); printf(“e=%f\n”,e); return 0; } 百马百担问题 #include void main() { int m,n,k; int sum=0; int n1,n2; scanf(“%d %d”,&n1,&n2); for(m=1;m<=n1-2;m++) for(n=1;n<=n1-m;n++) { k=n1-m-n; if(3*m+2*n+0.5*k==n2) sum++; } Printf(“%d\n”,sum); } 计算Y=1*1/2*1/3’’’’’’’*1/n #include main() { double Y=0; int n,i; scanf("%d",&n); for(i=1;i<=n;i++) y*=1.0/i; printf("%.12lf",Y); return 0;

} 统计高于平均成绩的人数#include void main() { int a[50]; int i,sum=0.k=0; float aver; for(i=0;i<50;i++) { scanf(“%d”&a[i]); sum+=a[i]; } aver=(float)sum/50; for(i=0;i<50;i++) if(a[i]>aver) k++; printf(“%d\n”,k); }

测量重力加速度实验报告.docx

一、复摆法测重力加速度 一.实验目的 1.了解复摆的物理特性,用复摆测定重力加速度, 2.学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动 体系。如图 1, 刚体绕固定轴O在竖直平面内作左右摆动, G是该物体 的质心,与轴 O的距离为h,为其摆动角度。若规定右转角为正, 此时刚体所受力矩与角位移方向相反,则有 Mmgh sin ,(1) 又据转动定律,该复摆又有

M I ,(2) (I 为该物体转动惯量)由( 1)和( 2)可得2 sin,(3) 其中2mgh 。若很小时(在5°以内)近似有 I 2,(4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为 I,(5) T 2 mgh

设I G为转轴过质心且与O轴平行时的转动惯量,那么根据平行轴定律可知 I I G mh 2,(6) 代入上式得 T 2I G mh 2,(7) mgh 设( 6)式中的I G mk2,代入()式,得 7 T 2mk2mh22k 2h2,(11) mgh gh k 为复摆对 G(质心)轴的回转半径 ,h 为质心到转轴的距离。对(11)式平方则有 T 2h 4 2k 2 4 2h2,(12) g g 设 y T 2 h, x h2,则(12)式改写成 y 4 2k 2 4 2x ,(13) g g (13)式为直线方程,实验中 ( 实验前摆锤 A 和 B 已经取下 )测出 n 组(x,y) 值,用作图法求直线的截距 A 和斜率 B,由于A 4 2k 2 ,B 4 2, g g 所以

圆管明渠均匀流的新近似计算公式.

【水利水电工程】 圆管明渠均匀流的新近似计算公式 文辉,李风玲,黄寿生 (茂名学院建筑工程系,广东茂名525000 摘要:分析总结了前人对圆管均匀流水力计算的研究成果,在此基础上运用拟合的方法得到了新的圆管明渠均匀流近似计算公式。此公式计算误差较小,特别是在<0.2时,公式计算精确度较高。在工程的常用范围内,即0.33< < 0.8时,此公式为线性方程,表达形式最为简洁。 关键词:圆管;均匀流;近似公式 中图分类号:TV133.1 文献标识码:A 文章编号:10001379(200602006702 圆管明渠均匀流是给水排水工程、水利工程中常用的输水 形式,它具有结构形式简单、力学和水力学条件好等特点。但 其基本方程为超越函数,无法直接求解,而查图、查表和试算等 方法存在着工作量大、误差大等缺陷。王正中[1]、陈水[2]和韩 会玲[3]等人为寻求简便算法作了较深入的研究,得到了一些 近似解直接计算公式,但在 0.2时,计算结果误差都较大。 笔者首先根据圆管明渠均匀流的基本方程导出了参数与无量 纲正常水深(充满度的关系;其次依据给水排水工程规范及水 利工程规范等的要求,确定公式的应用范围,即 0.8,若超

出此范围,公式则没有太大实际工程意义;最后运用拟合法得出了圆管明渠均匀流水力计算的近似公式。 1 圆管明渠均匀流水力计算的直接计算公式 圆管明渠均匀流水力计算时的圆管断面见图1。 图1 圆管断面图 圆管明渠均匀流水力计算的基本方程为[4] Q=A C R i(1 A=d2 8 ( -s i n (2 R=d 4 (1- si n (3 C= 1 n R1/6(4

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

测重力加速度

设计性实验 重力加速度的测量 重力加速度g 是一个反映地球引力强弱的地球物理常数,它与地球上各个地区的经纬度、海拔高度及地下资源的分布有关,一般说来,两极的g 最大,赤道附近的g 最小,两者相差约1/300。重力加速度的测定在理论、生产和科学研究中都具有重要意义。 实验研究课题 1、测定本地区重力加速度g 值,测量结果至少有4 位有效数字,并要求百分误差小于1%。 2、试比较各种实验测量方法的优缺点。讨论各种实验测量方法中,哪些量可测得精确?哪些量不易测准?并说明如何减小或消除影响精确测量的各种因素等。 可选择的仪器 单摆、三线摆、复摆、圆球、重锤、米尺、游标卡尺、光电门、数字毫秒计(手机秒表代替)、杨氏模量测量仪等。 设计方案举例: 测量重力加速度的方法很多,有单摆、复摆、开特摆、三线摆、气垫导轨法和自由落体仪法等等,它们各有特点。 下面例举几种比较典型的方案。 方案一、单摆法 一、实验目的: 1、掌握实验原理及方法,进一步熟悉根据什么以及如何选择实验仪器和测量工具; 2、利用单摆测定重力加速度g 值; 3、分析受力情况,讨论误差原因,评价测量结果。 二、实验原理 单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小sin =-f mg θ(图1),其中g 为当地的重力 加速度,这时锤的线加速度为sin -g θ。设单摆长为 L ,则摆的角 加速度 sin /=-g L αθ。当摆角很小时(小于 5°),可认为 ,这 时sin ≈θθ,即振动的角加速度和角位移成比例,式中的负号表示 角加速度和角位移的方向总是相反。此时单摆的振动是简谐振动。 从理论分析得知,其振动周期 T 和上述比例系数的关系是 2=T π ω,所以 2=T (2),式中L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。 将测出的摆长L 和对应和周期 T 代入上

π的近似计算

实验报告 课程名称:数学实验 实验名称:π的近似计算 实验目的、要求: 1.了解圆周率π的计算历程。 2.了解计算π的割圆术、韦达公式、级数法、拉马努金公式、迭代法。 3.学习、掌握MATLAB 软件有关的命令。 实验仪器: 安装有MA TLAB 软件的计算机 实验步骤: 一、 实验内容 1.内容 π是人们经常使用的数学常数,对π的研究已经持续了2500多年,今天,这种探索还在继续中。1.割圆术。2.韦达(VieTa )公式。3.利用级数计算π。4.拉马努金(Ranmaunujan )公式。5.迭代方法。6.π的两百位近似值。 计算π的近似值: 2. 原理 1、 刘徽的迭代公式 1106.2 6.2 6.2 6.224, 3.2,1n n n n n x x s x x ++=--== 2、利用韦达(VieTa )公式 22222 222222...2222π ++++++= 3、莱布尼茨级数 n 1(1)=421n n π∞=-+∑ 4、级数加速后的公式 2121n 0n 011(1)1(1)116arctan 4arctan 164523921521239k k k k k k π∞∞++==--=-=?-?++∑∑ 5、拉马努金公式 4n 01 22(4)!110326396=9801396n n n π∞=+?∑(n!) 二、实验结果

练习1 用刘徽的迭代公式 11 6.206.2 6.2 6.224, 3.2,1n n n n x x s x x ++=--== 计算π的近似值。 相应的MA TLAB 代码为 >>clear; >>x=1; >>for i=1:30 >>x=vpa (sqrt(2-sqrt(4-x^2)),15)%计算精度为15位有效数字 >>S=vpa(3*2^i*x,10) >>end 计算可得 x =.517638********* S =3.105828541 x =.261052384440103 S =3.132628613 … 练习题 1.1106.2 6.2 6.2 6.224, 3.2,1n n n n n x x s x x ++=--==,计算π的近似值,迭代50次,有效数字取为100位。 解: x=.5176380902050415899751101278525311499834060668945312500000000000000000000000000000000000000000000000 S =3.105828541 x =.26105238444010321659775747351901 S =3.132628613 x =.13080625846028615048946927650964 S =3.139350203 x =.65438165643552292570302790136363e-1 S =3.141031951 x =.32723463252973567509131365534310e-1 S =3.141452472 x =.16362279207874260682204029836769e-1 S =3.141557608 x =.81812080524695802451715035172989e-2 S =3.141583892 x =.40906125823281907567941283992211e-2 S =3.141590463 x =.20453073606766093463703416909438e-2 S =3.141592106 x =.10226538140273951344639001691572e-2 S =3.141592517 x =.51132692372483469411943625174689e-3 S =3.141592619 x =.25566346395130951352151834359580e-3 S =3.141592645

用近似公式开平方

用近似公式开平方 我上初中的时候,计算器还没普及,那时每个学生一本《中学数学用表》,可以查到一个数平方根的4位有效数字。课本里有笔算开平方的方法,但要列竖式,感觉麻烦,没多久就忘了。高中的时候,知道有近似公式,但不知道怎么用。最近一个偶然的机会,发现一种简单的近似算法可以很方便地算出一个数平方根的4位有效数字,误差最大不会超过最后一位有效数字的一个点,在没有电脑、计算器的情况下,倒可以一用,我的感觉,比列竖式简单。 一、近似公式 1.如果C=a2±b,且b≤a,那么√C≈a±b/2a 一般使用这个公式即可达到四位有效数字的要求。这个公式计算出的结果比真实值略大,如果需要更精确的近似值,可以用下面的公式 2.如果C=a2±b,且b≤a,那么√C≈a±b/2a-b2/8a3 这个公式比第一个公式多减了b2/8a3,稍麻烦,但精确度可达六七位有效数字,在百度百科里,我称之为“精确开方公式”,一般只在需要更精确数值或某些特殊情况下使用。 下面介绍具体怎么用。 二、公式用法 1.四位数的平方根。也就是1000---9999的平方根 首先估计一下最接近方根的两位数。个位数是0的两位数的平方根容易很算出来,如702=4900,802=6400;个位数是5的两位数也很容易心算出来,如果十位上的数字是m,那么把m*(m+1),后面再加25就行了,例如85的平方,十位数字是8,那么8*9=72,后面加25,即 7225就是85的平方。 现在算√2882=? 502=2500,而552=3025,所以√2882在50---55之间,我们估算一下532=2809,2882=532+73,73﹥53,不合要求,而2882=542-34,符合公式要求,所以√2882≈54-34/(54*2)≈54-0.3148=53.6852≈53.69,用计算器验算√2882=53.6842621≈53.68,误差非常微小,只是在保留四位有效数字时增大了误差。 再例如√5656=? 5656=752+31,所以√5656≈75+31/150=75+0.207=75.21,实际√5656=75.206≈75.21,四位有效数字完全一样。 2.三位数的平方根。即100----999的平方根 基本与四位数的算法一样。例如√620=? 620=252-5,所以√620=√(252-5)≈25-5/50=25-0.1=24.90。 需要注意:当C﹤600,且a=b时,计算得到的第三四位有效数字一定为50,应改为49,也可以用第二个公式计算以减小误差,这时公式变为√c≈a±b/2a-b 2/8a3=a±b/2a-1/8a。例如用第一个公式计算出√240=√(152+15)≈15+15/30=15.50,用第二个公式计算则为 √240=√(152+15)≈15+15/30-1/120=15.491666...实际√240=15.491933...,显然第二个公式更接近真实值。 再如用第一个公式计算√132≈11.50,用第二个公式计算则为 √132=11+11/22-1/88=11.4886....实际√132=11.4891...第二个公式更接近真实值。

相关主题