搜档网
当前位置:搜档网 › 一根浸没在水中钢柱的模态分析(Workbench需插入命令)

一根浸没在水中钢柱的模态分析(Workbench需插入命令)

一根浸没在水中钢柱的模态分析(Workbench需插入命令)
一根浸没在水中钢柱的模态分析(Workbench需插入命令)

Modal Analysis of A Steel Post Submerged in Water

以下是真空中的一般模态分析贴图,以便于对两种工况下的结果进行对比:

Inserted Commands for Wet Modal Analysis:

! Commands inserted into this file will be executed just prior to the Ansys SOLVE command.

! These commands may supersede command settings set by Workbench.

! Active UNIT system in Workbench when this object was created: Metric (mm, kg, N, s, mV, mA)

finish

/prep7

allsel,all

*get,etmax,etyp,,num,max,

*get,matmax,mat,,num,max,

*set,hetid,etmax+1

*set,tetid,etmax+2

*set,matid,matmax+1

et,hetid,fluid220

keyopt,hetid,2,1

et,tetid,fluid221

keyopt,tetid,2,1

mp,dens,matid,1000e-9

mp,sonc,matid,1400e3

cmsel,s,water,

emodif,all,mat,matid,

esel,r,ename,,solid186

emodif,all,type,hetid,

allsel,all

cmsel,s,water,

esel,r,ename,,solid187

emodif,all,type,tetid,

allsel,all

*get,etmax,etyp,,num,max,

*set,hetid,etmax+1

*set,tetid,etmax+2 et,hetid,fluid220

et,tetid,fluid221 cmsel,s,present, esln,r

esel,r,ename,,fluid220 emodif,all,type,hetid, allsel,all

cmsel,s,present, esln,r

esel,r,ename,,fluid221 emodif,all,type,tetid, allsel,all

finish

/solu

modopt,unsym,10, sf,present,fsi

d,pressure,pres,0 allsel,all

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

基于ANSYS WORKBENCH轴承的模态分析

基于ANSYS WORKBENCH轴承的模态分析 1有限元模型的建立 利用proe软件进行建模,可以从原件库里面直接调用,也可以重新建模,建模无需建立装配模型,只需要在单体零件中直接建立轴承内外圈和球体,选择不合并实体,从而形 成多实体的单体零件。轴承元件之间的间隙可以消除。 ?三维模型的建立 三维模型的建立是数值模拟分析中重要、关键的环节。UG软件能够方便地建立复杂的 三维模型,企业提供的初始的轴承三维模型主体钢结构是由不同厚度的钢板焊接而成,模 型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的 前提下建立模型,有必要对结构做合理的简化。其主要简化说明如下: (1).忽略零件中一些微小特征。螺栓孔、倒圆角等一些微小的结构对结果准确性的 影响很小,所以建模时不考虑这些微小几何图元; (2).所有焊接位置不允许出现裂缝、虚焊等工艺缺陷,认为在焊接位置材料是连续的,直接填充间隙; (3).轴承模型附件品种繁多,形状复杂,且对机架的刚度和强度影响不大,在计算 模型中只要考虑其自重即可,例如料斗、辊子、走台、链板等其它辅助设备。 ?材料属性 结构用钢均采用Q235碳素结构钢材,Q235的弹性模量E=2.1e11N/m2,密度7830 kg/m3,剪切模量为81000MPa,泊松比为0.3,模型材料为各向同性。 表1 材料Q235许用应力一览表: MPa (N/mm2) Tab.1 List of Material Q235 Allowable stress: MPa (N/mm2)

简单轴的模态分析

简单轴的模态分析 一根轴,半径r=0.03m,长s=1m,密度p=7800kg/m3,弹性模量E=2e11,两端简支。 (1)理论计算公式为:f = ( n^2 / s^2 ) * ( pi / 2 ) * sqrt ( E * I / ( p * A ) ) n=1,2,3,... ^表示平方,sqrt表示开方,pi是圆周率,A=pi*r^2为圆截面的面积, I=pi*D^4/64为圆截面的惯性矩, D=2*r为直径 (2)计算前三阶结果为119.311 HZ,477.242 HZ,1073.795 HZ。 ANSYS WORKBENCH 12.1求解(很可能有不准确的地方,逐渐修正) (一)思路:通过二维线模拟轴,线有圆形截面,半径0.03m 1.DesignModeler中的造型 1)创建两构造点(construction point),定义点的坐标。 2)通过两点创建线。

3)创建截面。 4)在线体上应用所创建的截面。

5)显示带有截面的线体。 2.Model中进行模态分析。注意可以导入到Model中的体的类型,这里要包含Line body。 1)对两端点创建简支(simply support)约束 2)求解结果在solution中。前三阶的固有频率为118.33,467.19,1029.7。最后一阶与理论计 算值误差较大。

(二)思路:直接创建三维的轴。 1)对两端面创建远距离移动(Remote Displacement)约束。两面的约束设置如下: 2)求解结果在solution中。前三阶的固有频率为118.68,473.57,1061.5。与理论计算值接近。

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析 弹性平面问题、振动模态分析 1、弹性平面问题 1、1.题目一:(见图一所示) 图1 已知条件: 1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =; 1、1.1解题的总体思路 由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示) 图2 并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。荷载分别为均布荷载和一个集中力荷载。 1、1.2运行结果 此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。 1、各个节点的位移和扭矩 主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的

节点的位移和扭矩。 只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm 2、受力后与受力前变形图(放大)【见图3所示】 图3 3、X方向的变形图【见图4所示】 图4 4、Y方向的变形图【见图5所示】

图5 5、内力图【见图6所示】 图6 结论: 节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。 1、1.3命令流 /PREP7 N,1,0,0!确定第一个节点 N,31,300,0!确定第31个节点 FILL,1,31!在1到31节点中插入节点 NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10 ET,1,PLANE42!常量的设置 MP,EX,1,200E9 MP,NUXY,1,0.3 E,1,2,33,32 !创建第一个单元 EGEN,30,1,1 !复制1到31个单元的建立 EGEN,14,31,1,30 !所有的单元创建 EDELE,151,165 !下面都是挖去中间的面 EDELE,181,195 EDELE,211,225 EDELE,241,255

实验四 五:结构静力分析与ANSYS模态分析

注:3月20号,周二课程内容主要是完成下面实验四 特别注意:本周六没课,本五周23号,8:00--12:00有课------------------------------------------------------------------------------------- 实验四MEMS薄膜压力传感器静力学分析 一、实验目的 1、掌握静力学分析 2、验证理论分析结果 3、对不同形状膜的分析结果进行对比 二、实验器材 能够安装ANSYS软件,内存在512MHz以上,硬盘有5G空间的计算机 三、实验说明 (一)基本思路 1、建模与网格化 2、静力学分析 3、对结果进行分析和比较 (二)问题描述: 由于许多压力传感器的工作原理是将受压力作用而变形的薄膜硅片中的应变转换成所需形式的电输出信号,所以我们要研究比较一下用什么样形状的膜来作为压力传感器的受力面比较好。我们比较的膜形状有三种,分别是圆形. 正方形. 长方形。在比较的过程中,三种形状膜的面积.,厚度和承受的压力是都是相等的。设置参数具体为:F=0.1MPa, EX=1.9e11,PRXY=0.3,DENS=2.33e3.单元尺寸为5e-006。为了选

择合适的网格化类型,首先我们拿圆的结构进行一下比较,最后选择比较接近理论计算的网格化类型,通过比较,我们知道映射网格化类型比较优越,所以后面的两种类型膜结构选择了映射网格化。 四、实验内容和步骤 圆形薄膜1 1.先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话 框如图,输入数据如图4-1,单击OK. 图4-1 2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide 项,在其右侧下拉表框中选择brick 8node 45选项,单击OK. 在点击close.如图4-2.

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

workbench 模态分析

Workbench -Mechanical Introduction 第五章 模态分析

简介 Training Manual ?在这一章中,将介绍模态分析。进行模态分析类似线性静力分析。 –假设用户已学习了第4章线性静力结构分析部分。 ?本章内容: –模态分析步骤 –有预应力的模态分析步骤 ?本节所述的功能,一般适用于ANSYS DesignSpace Entra及以上版本的许可。

Training Manual 模态系统分析基础 ?对于模态分析,振动频率ωi 和模态φi 是根据下面的方程计算的出的: 2?假设: [][](){}0 =?i i M K φω–[K] 和[M] 不变: ?假设材料特性为线弹性的 ?利用小位移理论,并且不包括非线性的?不存在[C] ,因此无阻尼?无{F} , 因此无激振力 ? 结构可以强迫振动也可以不强迫振动 –模态{φ} 是相对值,不是绝对值

A.模态系统分析步骤 Training Manual ?模态分析与线性静态分析的过程非常相似,因此不对所有的步骤做详细介绍。用蓝色斜体字的步骤是针对模态分析的。 –附加几何模型 –设置材料属性 –定义接触区域(如果有的话) –定义网格控制(可选择) –定义分析类型 –加支撑(如果有的话) –求解频率测试结果 –设置频率测试选项 –求解 –查看结果

…几何体和质点 Training Manual ?模态分析支持各种几何体: 实体, 表面体和线体 –, ?可以使用质量点: ?质点在模态分析中只有质量(无硬度)。 质点在模态分析中只有质量(无硬度) ?质量点的存在会降低结构自由振动的频率。 ?材料属性: 杨氏模量,泊松比, 和密度是必需的。 密度是必需的

振动系统的模态分析

理论力学振动系统模态分析实验 一.实验目的: 1.了解数字化测试技术的原理和做法。学习模态分析原理。 2.学会用“锤击发”测量振动系统的模态参数与振型。 二.实验仪器: 1.MSC-1型弹性力锤。 2.Yj9A压电加速度传感器。 3.Zj-601A型震动教学试验仪。 三.实验装置示意图: 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1.准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的 五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形 及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6.对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7.调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8.振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图。

手册-无比钢结构设计pdf

STRAT轻型薄壁钢住宅钢结构设计 (无比钢结构) 钢结构住宅是近年来的热门课题,也是我国在大力推动的产业政策。但是钢结构住宅的问题不在钢结构本身,而在于隔墙等围护辅助结构,在于隔音、隔热等建筑功能,一直未能有经济、有效的技术手段。轻型薄壁钢住宅钢结构体系(无比钢),将受力结构与维护结构合为一体,提供了一种经济高效的解决方案。随着中国社会发展、劳动力成本的增加,这种建造快捷、环保节能的结构体系,必然会得到普遍地使用。 STRAT软件再次把握技术发展的趋势,开发出针对这一新技术的计算、设计功能。 这种结构体系,大量采用桁架作为柱、梁结构,结合蒙皮木板,组成复合墙板。这种特殊的受力体系,将复合墙板作为基本受力单元进行计算、设计,则计算模型太过粗略,导致浪费的同时,也会存在不安全因素。 STRAT针对这种结构体系的开展研究,推导特有的偏撑桁架的刚度、强度、稳定计算的公式。在此基础上,利用STRAT已有的强大的三维图形功能,和强大的综合计算功能,建立包含桁架梁、桁架柱、木墙板、屋面三角桁架的三维空间模型。每个单榀桁架、每片木墙板均参与结构计算,计算其精确受力。 STRAT对这种结构体系进行全面细致的构件验算,包括偏心桁架的立柱、剪撑的强度稳定验算,连接剪撑、立柱的销钉的抗剪验算、得到需要销钉的面积,木墙板的强度和固定墙板所需要的销钉面积。确保各个环节、各个部位均满足受力要求,使这种新型结构体系的设计更安全、合理,并在此基础上实现结构设计的优化。 STRAT开发了这种结构体系特有的一些格构构件类型,单柱单撑、单柱双撑、双柱单撑、双柱双撑、三柱多撑等各种截面类型,具有双向受力的双偏撑柱类型,基本满足轻型薄壁钢住宅结构的各类构件的计算要求。 在后续开发中,STRAT将推出该结构体系的施工图功能。 STRAT软件的本项功能开发,得到了无比钢专利持有人,加拿大英特兰公司的资助。 使用方法简介 1、前处理Prep的“组合截面”,在原有“包含式”、“拼接式”基础上,增加了“格构式”类型,用于无比钢偏撑桁架的计算。 “格构式”组合截面,包含两个基本截面。第一基本截面是桁架的立柱截面,第二基本截面是

格构柱施工方案.

. . 京文大厦(A、B栋)项目基坑工程 格 构 柱 专 项 方 案 编制:谭海泳 审核:陈春雷 审批:牟庆坤 武汉华中岩土工程有限责任公司 2017年7月

目录 第一章工程概况 (1) 1、工程概况 (1) 2、场地工程地质情况 (1) 第二章格构柱施工工艺及技术措施 (3) 一、施工工艺 (3) (一)立柱桩施工 (3) (二)立柱桩格构柱制作与安装 (5) (三)混凝土浇筑 (6) (四)空孔回填 (6) 第三章、施工质量保证措施 (7) (一)立柱桩入岩要求: (7) (二)格构柱定位、固定与吊装 (7) 第四章机械设备需用量计划表 (9) 第五章劳动力需用量计划表 (10) 第六章特殊作业人员安全操作规程 (12) 第七章测量仪器配备及使用 (17)

第一章工程概况 1、工程概况 本工程位于武汉市东湖新技术开发区驿山南路与神墩一路交叉口处。东侧:东侧为拟建规划道路,现为空阔用地,地下室外墙距用地红线约为2.0m。南侧:南侧临近在建地下空间,临近地下空间开挖深度为20.5m。地下室外墙边紧贴原有支护桩。西侧:西侧临近驿山南路,地下室外墙距用地红线约为5.2m。 北侧:北侧临近在建三泰路,地下室外墙距用地红线约为5.0m。 ±0.000=37.000m,南侧现状地面为30.000m,北侧及东西两侧均为36.000m,基坑开挖面积约12600m2,基坑周长约 600m,基坑周边普挖深度5.60~14.60m。 2、场地工程地质情况 1.2、基坑总体呈不规则长方多边形,特别是南侧与地铁十一号线项目共用支护桩,一层及二层地下室临近地铁地下空间,场地狭小,高差较大。 1.3、场地位于武汉市东湖高新开发区,三泰路以南、驿山南路以东、神墩一路以北,地形起伏较大。 根据本项目岩土工程勘察报告,与基坑有关的地基土如下:

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

钢结构格构式柱的结构设计计算 张涛

钢结构格构式柱的结构设计计算张涛 发表时间:2017-12-28T21:03:24.050Z 来源:《基层建设》2017年第28期作者:张涛 [导读] 摘要:本文通过对钢结构格构式柱的强度、整体稳定性、局部稳定性的实例设计计算,理论结合实际,指出在进行钢结构格构式柱设计中的部分误区及设计人员容易忽视的部分,避免设计人员在今后的设计工作中出现重大设计失误. 舞阳钢铁有限责任公司设备部河南舞钢 462500 摘要:本文通过对钢结构格构式柱的强度、整体稳定性、局部稳定性的实例设计计算,理论结合实际,指出在进行钢结构格构式柱设计中的部分误区及设计人员容易忽视的部分,避免设计人员在今后的设计工作中出现重大设计失误. 关键词:钢结构格构式柱;强度;整体稳定性;局部稳定性 一、引言 工程实践中,我们常常遇到钢结构格构式柱如:钢结构厂房柱、钢结构民用建筑框架柱、钢结构管道支架等。对于这些钢结构格构式柱在工程结构设计中,应该对柱的强度、整体稳定性、局部稳定性,逐一进行验算,只有这样才能使你的设计方案达到安全、经济、适有、美观。但在实际工程设计中,对于设计经验不足设计人员,通常只注重柱的强度验算,而忽视柱的稳定性验算,认为只要构件强度满足要求就是安全的,对钢结构构件稳定性的重要程度认识不够,这个设计误区往往导致构件的失稳破坏,造成工程事故。还有设计人员容易忽视的一个问题就是:在工况和作用力不变的情况下,由于施工现场实际情况,需要在不改变柱材料的情况下,增大柱的截面尺寸,部分设计人员认为,增大柱截面对柱自身的整体稳定性是起有利作用的。对于这个问题,本人通过多年的设计经验和设计实例得出:在不改变工况、作用力和柱材料的情况下,增大柱的截面尺寸对格构式柱自身的整体稳定性是不利的。以下通过设计实例来证实本人的以上论断。 二、设计实例 本人于2012年设计的动力厂一轧钢北侧DN800煤气管线异地更换工程-钢结构格构式管道支架,燃气专业提供条件:煤气管线在事故状态下管道单重:300Kg/m,支架最大间距:17m,支架高度:6.143m,滑动支架摩擦系数:0.15。采用Q235钢材。 1.荷载及作用力计算:(由于燃气专业提供的管道单重为事故状态下单重,所以在荷载及作用力计算时不再乘荷载分项系数) N=17X300X10=51000N=51KN; Vx=51X0.15=7.65KN; My=0KN/m; Mx=7.65X6.143≈47KN/m 2.支架几何截面选型(见图示1): iy=0.4h=0.4X250=100mm;分肢截面参数:

钢结构试题含答案

一、选择题(每题2分) 1.大跨度结构常采用钢结构的主要原因是钢结构(B) A.密封性好 B.自重轻 C.制造工厂化 D.便于拆装 2、钢材的设计强度是根据 C 确定的。 A、比例极限; B、弹性极限; C、屈服强度; D、极限强度。 3.钢结构的承载能力极限状态是指( C ) A.结构发生剧烈振动 B.结构的变形已不能满足使用要求 C.结构达到最大承载力产生破坏 D.使用已达五十年 4、某构件发生了脆性破坏,不经检查可以肯定下列问题中 A 对该破坏无直接影响。 A、钢材的屈服点过低; B、构件的荷载增加速度过快; C、存在冷加工硬化; D、构件有构造原因引起的应力集中。 5.钢材的抗拉强度fu与屈服点fy之比fu/fy反映的是钢材的 A ) A.强度储备 B.弹塑性阶段的承载能力 C.塑性变形能力 D.强化阶段的承载能力 6、Q235钢按照质量等级分为A、B、C、D四级,由A到D表示质量由低到高,其分类依据是 C 。 A、冲击韧性; B、冷弯试验; C、化学成分; D、伸长率。 7. 钢号Q345A中的345表示钢材的( C ) A.fp值 B.fu值 C.fy值 D.fvy值 8.钢材所含化学成分中,需严格控制含量的有害元素为( C ) A.碳、锰 B.钒、锰 C.硫、氮、氧 D.铁、硅

9、同类钢种的钢板,厚度越大, A 。 A、强度越低; B、塑性越好; C、韧性越好; D、内部构造缺陷越少。 10.对于普通螺栓连接,限制端距e≥2d0的目的是为了避免( D ) A.螺栓杆受剪破坏 B.螺栓杆受弯破坏 C.板件受挤压破坏 D.板件端部冲剪破坏 11、以下关于应力集中的说法中正确的是 B 。 A、应力集中降低了钢材的屈服强度 B、应力集中产生同号应力场,使塑性变形受到限制 C、应力集中产生异号应力场,使钢材变脆 D、应力集中可以提高构件的疲劳强度 12.Q235与Q345两种不同强度的钢材进行手工焊接时,焊条应采用( C ) A.E55型 B.E50型 C.E43型 D.H10MnSi 13.在搭接连接中,为了减小焊接残余应力,其搭接长度不得小于较薄焊件厚度的( A ) A.5倍 B.10倍 C.15倍 D.20倍 14、图示连接中高强度螺栓群受弯后的旋转中心为。 A、a点; B、b点; C、c点; D、d点。 15.如图所示两端铰支理想轴心受压构件Ix/Iy≥4,其临界压力Ncr为( D ) A.π2EIx/(2b2) B.π2EIx/b2 C.π2EIy/(4b2) D.π2EIy/b2 16. 承压型高强度螺栓连接比摩擦型高强度螺栓连接( B )

结构模态分析研究生论文

课程论文题目:模态分析技术在机械 领域中的运用 课程名称结构模态分析 课程类别□学位课□非学位课 任课教师 所在学院 学科专业 姓名 学号 提交日期2010年6月18日

模态分析技术在机械领域中的运用 摘要:本文首先系统地解析了模态分析技术的基本定义,以模态分析技术的理论为基础,查阅了大量的文献和资料后介绍了模态分析技术在国内、外机械领域的中的研究运用,并结合自己的研究方向对模态分析技术的运用进行总结。 关键词:模态分析;机械;结构;运用 Modal analysis technology in the field of mechanical use Abstract:This paper first system analysis of the modal analysis technology in the basic definition, the modal analysis technology, based on the theory of the massive literature and access information introduced the modal analysis technology in domestic and foreign machinery field of study of utilization, and combined with their research direction of modal analysis of the use of technology were summarized in this paper. Key words:Modal analysis;Machinery;Structure;Use 1前言 模态分析技术是现代机械产品结构设计、分析的基础,是分析结构系统动态特性强有力的工具[1]。试验模态分析方法(EMA,ExperimentalModalAnalysis)通过试验数据采集系统的输入输出信号,经过参数识别获得模态参数,验证有限元理论模态分析模型正确性,根据模态试验结果修改有限元理论模型。计算模态分析可以预测产品的动态特性,为结构优化设计提供依据。 模态分析是研究结构动力特性的一种方法,是系统辨别方法在工程振动领域中的应用[2]。振动模态是弹性结构固有的、整体的特性,如果通过模态分析方法得到结构各阶模态的 主要特性,就可能预知结构在此频段内,在外部或是内部各种振源作用下实际的振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以将这些参数用于设计过程,优化系统动态性能。模态分析过程如果是由有限元计算的方法取得的,称为是数值模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,则称为试验模态分析[3]。 实际的机械结构在振动环境中都受到动载的作用,为确保其良好的动态性能,必须对机械结构系统进行动态设计。结构动态设计要求根据结构的动载工况、对结构提出的功能要求以及设计准则,按照结构动力学的分析方法和实验方法反复进行分析和计算[4]。结构模态分析是结构动态设计的核心,其目的是利用模态变换矩阵将耦合的复杂自由度系统解耦为一系列单自由度系统振动的线性叠加,为结构系统的振动特性分析,振动故障诊断与预报以及结构动力特性的优化设计提供依据。 2模态分析技术的运用 模态分析技术源于30年代提出的将机电进行比拟的机械阻抗技术。经过几十年的发展,模态测试和分析技术已经在航空、航天、航海、汽车、土木、机械等几乎所有和结构动态分析相关的领域得到了广泛应用[5]。 2.1国外研究现状 国外的结构模态分析技术发展较早,应用到了航空、航天等诸多军工领域和汽车、电子、机械、土木等民用的各个领域,使模态分析得到了广泛的发展和充分的应用[6-8]。模态分析软件以美国的ME’scopeVEs的功能最为全面。ME,ScopeVES软件的功能包括信号处理(signalprocessing)、运行挠曲振型(operatingoerlectionshapes)、模态分析(ModalAna-ysis)、结

重型格构式梁柱厂房钢结构施工方案

XX某有限公司北区系统工程转炉炼钢连铸 钢结构工程施工组织设计 一、工程概况 1、工程名称:XX某有限公司北区系统工程转炉炼钢连铸项目 2、建设地点:XX省××市新北区魏村镇 3、结构类型:重型格构式梁柱厂房钢结构 4、工程范围:钢结构制作安装总量约4000吨 5、质量标准:合格 6、安全文明要求: 安全文明样板工地 7、工期要求:150日历天 8、施工特点与关键:该工程工期短,制作量大,构件数量多,高空安装作业多。该工程的制作过程进度,质量的控制是保证履约的关键。制作过程的关键在于现场大型H钢的生产线装备与生产工艺的合理性,先进性;其次是格构式梁柱的分段组对,焊接与防止变形工艺技术的合理程度;安装的关键在于安装过程的测量,合理的安装程序和重要节点的焊接。 二、施工布署 1、项目经理部的建立与职能 根据本工程的施工特点,施工内容和关键技术,为确保该项目在工期、施工质量、安全、文明施工等诸多方面都充分履约,我司应组建一个技术精湛年高力强、有经验充有活力的项目经理部,严格按照项目法组织施工,实行项目经理负责制,以项目管理班子为核心,合理组建项目的组织机构和作业班组配置充足的施工管理力量。项目经理部充分利用各种资源(施工场地、劳力、材料、机械等),充分调动各责任人员的积极性,作好项目的协调工作,服从总

承包方的统一指令最终达到履约合同的目标。 1.1项目经理部的组织机构: 组织机构图 1.2管理人员职责: 1.2.1项目经理职责: A、贯彻公司质量方针,全面覆行工程承包合同规定的责任。 B、负责项目组织机构的建立和人员安排,确定项目人员职责范围。 C、全面组织施工,组织实施项目施工组织设计与质量计划,保证质量 体系的有效运行。 D、负责项目资源的组织,配备和处置。 E、批准内部文件和对业主的重要文件。 F、组织竣工验收、交付。

阶梯轴 ANSYS静态分析与模态分析

阶梯轴 ANSYS静态分析与模态分析阶梯轴结构如下:

下面来做轴的静态分析: 1 定义工作文件名和工作标题(过程略) 2 显示工作平面(过程略) 3 利用矩形面素生成面 1) 生成矩形面:Main Menu>Preprocessor>Create>Rectangle>By Dimensions,在对话框的“X-coordinates”和“Y-coordinates”后面输入栏中分别输入下列数据: X1=0, X2=260, Y1=0, Y2=70,单击“Aplay” X1=260, X2=380, Y1=0, Y2=75,单击“Aplay”; XI=380, X2=420, Y1=0, Y2=100,单击“Aplay”; X1=420, X2=660, Y1=0, Y2=80,单击“Aplay”; X1=660, X2=800, Y1=0, Y2=75,单击“ok”;生成的结果如图 2) 矩形面相加操作:Main Menu>Preprocessor>Operate>Add>Areas,出现一个拾取框,单击“Pick All”,则完成相加操作,生成的结果如图

4 由面绕轴线生成体 1)面绕轴线操作:Main Menu>Preprocessor>Operate> Extrude>About Axis, 出现一个拾取框,单击“Pick All”又出现第二个拾取轴心线两端点的拾取框,用鼠标在图形上分别拾取编号为“1、18”的关键点,然后单击“OK”, 又弹出一个对话框单击“OK”.

2)保存到文件中:Main Menu> File>Save As, 弹出一个对话框,在 “Save Database to”下面的输入栏中输入用户自定义的文件名“shaft.DB”,单击“OK”. 5 生成A-A键槽 1)移动工作平面:在“Offset WP by Increments ”中的“X,Y,Z Offset” 下面的输入栏中输入“85,0,40”(A-A键槽左侧圆弧中心),并按“Enter” 键确认。 2)生成一个圆 Main Menu>Preprocessor>Create> Cylinder>Solid Cylinder, 弹出一个对话框,在其输入栏中分别输入“Radius=25,Deoth=50”,单击“OK”。 3)生成一个块:Main Menu>Preprocessor>Create> Block>By Dimensions, 弹出一个话框,在其输入栏中输入的数据如图所示,单击OK。

基于MATLAB的振动模态分析

摘要 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 关键词:振动系统;单自由度;MATLAB;多自由度

Abstract Vibration system is to study the kinematics and dynamics of mechanical vibration, the vibration of a single free system has practical significance, because there are many engineering problems by simplifying, using the vibration theory of a single degree of freedom system can be satisfied with the results. Vibration system problems is a relatively virtual problems, more abstract and theoretical analysis, problem analysis for a mathematical model can be materialized by MATLAB can be converted into images. Single degree of freedom frequency, damping, mode shape analysis, we can create mathematical models, the final program data through the use of MATLAB graphics; many degrees of freedom main matrix iterative solution, our analysis based on abstract theory, while MATLAB programming The last iteration of data can be the desired data, so our calculations easier Using MATLAB programming and verify the correctness of the program.Through the process of operation, can quickly obtain multiple degrees of freedom vibration system and the main vibration mode natural frequency for the design to prevent resonance provide the theoretical basis for the preliminary analysis of the vibration of each component, and laid the decoupling of system response basis. Key words:vibrating system; Single Degree of Freedom ;MATLAB; multiple degree of freedom

相关主题