搜档网
当前位置:搜档网 › 三角函数常用公式表

三角函数常用公式表

三角函数常用公式表
三角函数常用公式表

07高中数学会考复习提纲(2)(三角函数)

第四章 三角函数

1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈?+=,360| αββ}

(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,

就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。 (2)、度数与弧度数的换算:π=

180弧度,1弧度

)180

( =π

(3)、弧长公式:r l ||α= (α是角的弧度数)

扇形面积:2||2

121r lr S α===

3、三角函数 (1)、定义:(如图) (2)y

r

y x r x x

r

x y r y ======

ααααααcsc cot cos sec tan sin

(3)、 特殊角的三角函数值

(1)平方关系: (2)商数关系: (3)倒数关系:

1cos sin 22=+αα αααc o s

s i n

t a n = 1c o t t a n =αα

αα22sec tan 1=+ αααs i n

c o s

c o t =

1c s c s i n =αα

αα22csc cot 1=+ 1sec cos =αα

(4)同角三角函数的常见变形:(活用“1”)

①、αα22cos 1sin -=, αα2cos 1sin -±=;αα2

2sin 1cos -=, αα2sin 1cos -±=;

②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αα

α

ααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-

x

y

+ + _ _

O x

y

+

+

_

_

O

αtan

x

y

+ +

_

_

O

=

r αsec αsin

αtan αcot

csc

③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=± 5、诱导公式:(奇变偶不变,符号看象限)

公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=??+=??+=??+k k

k 公式二: 公式三: 公式四: 公式五:

ααααααtan )180tan(cos )180cos(sin )180sin(-=-?-=-?=-? α

αααααtan )180tan(cos )180cos(sin )180sin(=+?-=+?-=+? ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-?=-?-=-?

补充:α

απααπα

απ

cot )2tan(sin )2cos(cos )2

sin(=-=-=- ααπααπα

απ

cot )2tan(sin )2cos(cos )2

sin(-=+-=+=+ ααπ

ααπα

απcot )2

3tan(sin )2

3cos(cos )2

3sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+

6、两角和与差的正弦、余弦、正切

)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=

+ )(βα-T : β

αβ

αβαtan tan 1tan tan )tan(+-=

- )(βα+T 的整式形式为:)tan tan 1()tan(

tan tan βαβαβα-?+=+ 例:若?=+45B A ,则2)tan 1)(tan 1(=++B A .(反之不一定成立)

7、辅助角公式:???

?

??

++++=+x b a b x b a a b a x b x a cos sin cos sin 2

22222 )sin()sin cos cos (sin 2222???+?+=?+?+=x b a x x b a

(其中?称为辅助角,?的终边过点),(b a ,a

b =

?tan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)

α2C : ααα2

2sin cos 2cos -= ααα2sin 21

cos sin =

1cos 2sin 212

2-=-=αα 2

12cos 2122cos 1sin 2+-=-=

ααα α2T : ααα

2t a n

1t a n 22t a n -= 212cos 2122cos 1cos 2

+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;

②、

|sin |2cos 2121αα=-, |cos |2cos 2

121αα=+

③、2

2sin 1cos sin 21cos sin 22

2

4

4

ααααα-=-=+; ααα2cos sin cos 4

4=-;

④半角:2cos 12

sin

αα

=,2cos 12cos αα+±=,α

ααcos 1cos 12tan +-±=αααα

cos 1sin sin cos 1+=-=

9、三角函数的图象性质

(1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;

②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。 (2)、函数的奇偶性:①、定义:对于函数f (x )的定义域内的任意一个x , 都有:f (-x )= - f (x ),则称f (x )是奇函数,f (-x )= f (x ),则称f (x )是偶函数

②、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称; ③、奇函数,偶函数的定义域关于原点对称;

Z k ∈x y sin =图象的五个关键点:(0,0),(

2

,1),(π,0),(2,-1),(π2,0);

π,0),(,-1),(3π

,0),(π2,1);

x y sin =的对称中心为(0,πk );对称轴是直线2

π

π+

=k x ; )sin(?ω+=x A y 的周期ω

π

2=

T ;

x y cos =的对称中心为(0,2ππ+k );对称轴是直线πk x =; )c o s (?ω+=x A y 的周期ω

π

2=T ;

x y tan =的对称中心为点(0,πk )和点(0,2ππ+k ); )tan(

?ω+=x A y 的周期ω

π

=T ;

(4)、函数)0,0)(sin(>>+=ω?ωA x A y 的相关概念:

)sin(?ω+=x A y 的图象与x y sin =的关系:

①、振幅变换:x y sin =

x A y sin =

②、周期变换:x y sin = x y ωsin =

③、相位变换:x y sin = )sin(?+=x y

④、平移变换:x A y ωsin = )sin(?ω+=x A y 常叙述成: ①、把x y s i n =上的所有点向左(0>?时)或向右(0

②、再把)sin(?+=x y 的所有点的横坐标缩短(1>ω)或伸长(<01<ω)到原来的

ω

1

倍(纵坐标不变)

得到)sin(?ω+=x y ;③、再把)sin(?ω+=x y 的所有点的纵坐标伸长(1>A )或缩短(<01

先平移后伸缩的叙述方向: )](sin[)sin(ω

?ω?ω+=+=x A x A y 11、三角函数求值域

(1)一次函数型:B x A y +=sin ,例:5)12

3sin(2+--=π

x y ,x x y cos sin =

用辅助角公式化为:=

+=x b x a y cos sin )sin(22?+?+x b a ,例:x x y cos 3sin 4-=

(2)二次函数型:①、二倍角公式的应用:x x y 2cos sin += ②、代数代换:x x x x y cos sin cos sin ++=

当A 1>时,图象上各点的纵坐标伸长到原来的A 倍

当<0A 1<时,图象上各点的纵坐标缩短到原来的A 倍当1>ω时,图象上各点的纵坐标缩短到原来的

ω

1

倍 当<0

1<ω时,图象上各点的纵坐标伸长到原来的

ω

1

当0>?时,图象上的各点向左平移?

个单位倍

当0

当0>?

时,图象上的各点向左平移

ω?

个单位倍 当0

ω

?

个单位倍

第五章、平面向量

1、空间向量:(1)、定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示。 (2)、零向量:长度为0的向量叫零向量,记作;零向量的方向是任意的。

(3)、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:|

|a =;

(4)、平行向量:方向相同或相反的非零向量叫平行向量也叫共线向量,记作//;规定与任何向量平行; (5)、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等;

任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。 2、向量的运算:(1)、向量的加减法:

(2)、实数与向量的积:①、定义:实数λ与向量的积是一个向量,记作:λ; ②:它的长度:||||||a a ?=λλ;

③:它的方向:当0>λ,λ与向量的方向相同;当0<λ,λ与向量的方向相反;当0=λ时,λ=; 3、平面向量基本定理:如果21,e e 是同一平面内的两个不共线的向量,那么对平面内的任一向量,有且只有一对实数21,λλ,使2211e e λλ+=;

不共线的向量21,e e 叫这个平面内所有向量的一组基向量,{21,e e }叫基底。

4、平面向量的坐标运算:(1)、运算性质:()()

a a a c

b a

c b a a b b a =+=+++=+++=+00,, (2)、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→

设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→

. (3)、实数与向量的积的运算律: 设()y x a ,=→,则λ()()y x y x a λλλ,,==→

(4)、平面向量的数量积:①、 定义:??

? ??≤≤≠≠?=?→→→→→

→→→001800,0,0cos θθb a b a b a , 00=?→

→a . ①、平面向量的数量积的几何意义:向量a 的长度|a |与b 在a 的方向上的投影|b |θcos 的乘积;

③、坐标运算:设()()2211,,,y x b y x a ==→→,则2121y y x x b a +=?→

→ ;

向量的模||:?=2||22y x +=;模||22y x +=

④、设θ是向量()()2211,,,y x b y x a ==→

的夹角,则2

2

222

1

212121cos y x y x y y x x +++=

θ, ⊥0=??

5、重要结论:(1)、两个向量平行的充要条件: →

=?b a b a λ// )(R ∈λ

设()()2211,,,y x b y x a ==→→,则?→

→b a // 01221=-y x y x (2)、两个非零向量垂直的充要条件:0=??⊥→

→→

b a b a

设 ()()2211,,,y x b y x a ==→

,则 02121=+?⊥→

y y x x b a (3)、两点()()2211,,,y x B y x A 的距离:221221)()(||y y x x -+-=

(4)、P 分线段P 1P 2的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且→

=21PP P P λ ,

(即21=λ

则定比分点坐标公式???

?

??

?

++=++=λλλλ112

121y y y x x x , 中点坐标公式???

????

+=+=22

2121y y y x x x

(5)、平移公式:如果点 P (x ,y )按向量()k h a ,=→

平移至P ′(x ′,y ′),则?????+=+=.

,

''

k y y h x x

6、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2

1

sin 21sin 21===? (2)、在△ABC 中:?=++180C B A ,

因为C B A -?=+180:C B A sin )sin(=+, C B A cos )cos(-=+, C B A tan )tan(-=+ 因为

2

902C B A -?=+:2cos )2sin(C B A =+, 2sin )2cos(C B A =+, 2cot )2tan(C B A =+

(3)、正弦定理,余弦定理 ①、正弦定理:

sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R C

c

B b A a ======, 边用角表示: ②、余弦定理:)

1(2)(cos 2cos 2cos 222222

2

2

222cocC ab b a C ab b a c B

ac c a b A

bc c b a +-+=-+=?-+=?-+=若:ab

c b a ab c b a ab

c b a 322222

2

2

222±=-+±=-+±=-+则:

求角: ab

c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2

22222222-+=-+=-+=

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数常用公式

数学必修4三角函数常用公式及结论 、三角函数与三角恒等变换 2 2 2 5、 升幕公式 1 ± Sin2 a = (sin a± COS a ) 1 + COS2 a =2 COS a 1- COS2 a = 2 sin a 6、 两角和差的三角函数公式 sin ( a±3 ) = sin a COS 3 土 COS a sin 3 COS ( a±3 ) = COS a COS 3 干 sin a sin 3 tan tan tan 1 tan tan 7、两角和差正切公式的变形: tan a± tan 3 = tan ( a±3 ) (1 干 tan a tan 3 ) 2、同角三角函数公式 sin 2 2 . g a + COS a = 1 tan Sin cos 3、二倍角的三角函数公式 sin2 a = 2sin a cos a cos2 2 2 a =2cos a -1 = 1-2 Sin a : 2 2 =COS a - Sin a tan 2 2ta n 1 tan 2 4、 2 CO S 1 cos 2 2 2 1 cos2 sin ------------------ 2 1 tan =tan45 tan = tan ( 1 tan 1 tan 45 tan --- a ) 1 tan 1 tan tan 45 tan 1 tan 45 tan =tan ( — - a ) 4

在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式 . 3.三角形中三内角的三角函数关系 (ABC ) O sin A sin (B C ), cos A cos (B C ), ta nA tan (B C ).(注:二倍角的关系) ― A B C A O sin cos( ),cos — 2 2 2 5.几个重要的结论 O A B si nA si nB,cosA cosB ; O 三内角成等差数列 B 600, A C 1200 si n ( n — a ) = sin a, cos ( n — a )= —cos a, tan ( n — a )= —tan a; si n ( n + a ) = — Sin a cos ( n + a ): = —cos a ta n ( n + a )= :tan a sin (2 n — a ) = — sin a cos (2 n — a )= cos a tan (2 n — a )= —tan a si n ( —a ) = — sin a cos ( — a )= cos a ta n ( — a )= -tan a si n ( —a )= cos a cos ( — a )= sin a 2 2 si n ( _+ a ) = cos a cos ( _+ a ) = —sin a 2 2 11.三角函数的周期公式 函数y sin( x ) , x € R 及函数y cos( x ),x € R(A, w , 为常数, 且 2 A M 0,w> 0)的周期T ;函数 10、三角函数的诱导公式 “奇变偶不变,符号看象限。 y tan( x ) , x k ,k Z (A, w , 为常数,且 A M 0,3> 0)的周期T —. 2 解三角形知识小结和题型讲解 解三角形公式。 1. 正弦定理 a b c si nA si nB si nC 2. 余弦定理 a 2 b 2 c 2 2bccosA b 2 a 2 c 2 2ac cos B c 2 a 2 b 2 2ab cosC 2R (R 是 ABC 的外接圆半径) cos A b 2 2 c 2 a 2bc cosB 2 a 2 c b 2 2ac cosC 2 a b 2 2 c 2ab sin (B C), 2

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

三角函数常用公式表

1 1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; 2)、与 终边相同的角,连同角 在内,都可以表示为集合 { | k 360 ,k Z } ( 3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限, 就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。 2)、度数与弧度数的换算: 180 弧度, 1 弧度 (180) 57 18 3)、弧长公式: l | |r 是角的弧度数) x 2 P (x 0 y y ) 2 y sin cos y r x r tan cot y x x y sec csc r x r y + y + y + y + O x O x + O + x (3)、 特殊角的三角函数值 sin cos tan 的角度 0 30 45 60 90 120 135 150 180 270 360 的弧度 0 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 10 2 2 2 2 2 2 cos 1 3 2 1 0 1 2 3 1 01 2 2 2 2 2 2 tan 3 1 3 3 1 3 0 —0 3 3 扇形面积: 0 x 各象限的符号: 3、三角函数 2)、 4式 1)平方关系: 2)商数关系: 倒数关 系: 3) S 1lr 2 (1)、定 义: 2| |r 2 如图) sin 2 cos 2 1 tan sin tan cot cos 1 tan 2 2 sec cot cos sin sin csc 1 cot 2 2 csc cos sec cot 4)同角三角函数的常见变 形: 活用 1” ) ①、 sin 2 2 cos sin 1 cos 2 2 cos 2 sin cos 1 sin 2 ; ② tan cot cos 2 sin 2 sin cos sin2 2 , cot tan cos 2 sin 2 sin cos 2cos2 2cot2 sin2

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

反三角函数常见公式

反三角函数常见公式 李浩翔 .,)1()1()1()()()1()1(#.,0,,1),1(*)0(,2 3)1(),0(,2)1()0(,2 )1(#),0(,2)1(*arcsin )1csc(,arccos )1sec(sec )1arccos(csc )1arcsin(arccos )arccos(),()(,2 arccos )()2)((sec )sec()(arccos )arccos() (csc )csc()(arcsin )arcsin(2csc sec ,2,2arccos arcsin 是显然的第二个等号由余角关系第一个等号得证证明:是显然的第二个等号由余角关系第一个等号得证于是可直接取反函数>又则证明:令<><>,,余切的特殊性): 倒数关系(注意正切和则可得利用例:设”即可证明□构造“证明利用奇函数的性质即可负数关系: (易证)余角关系: πππππππππππ πππππππ-=?-=-=-?--=--=--=====-=+=-==--=-=-======-=-=-- =-=?? ???-=--=--=-?? ???-=--=--=-=+=+= +arcctgx x arctg x arctg arcctgx x arctg arcctgx x arcctg x arctg x arctg arcctgx y x ctgy x tgy x x arctg y x arcctgx arctgx x arcctg x arcctgx arctgx x arcctg x arctgx arcctgx x arctg x arctgx arcctgx x arctg x x arc x x arc x arc x x arc x x x x f x f x x f x f x arc x arc arcctgx x arcctg x x x arc x arc arctgx x arctg x x x arc x arc arcctgx arctgx x x

常用的函数公式大全--高中三角函数公式

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角函数公式大全(很详细).docx

高中三角函数公式大全[ 图] 1 三角函数的定义三角形中的定义 图1 在直角三角形中定义三角函数的示意图 在直角三角形 ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数

直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数 余切函数 正割函数 余割函数 2 转化关系倒数关系

平方关系 2和角公式 3倍角公式、半角公式倍角公式 半角公式

万能公式 4积化和差、和差化积积化和差公式 证明过程

首先, sin( α+β)=sin αcosβ+sin β(cos已证α。证明过程见《》)因为 sin( α+β)=sin αcosβ+sin β(cos正弦α和角公式)则 sin( -αβ) =sin[ α-β+( )] =sin α cos(-β )+sin(-β )cos α =sin α cos-sinβ β cos α 于是 sin( -αβ )=sin α cos-sinββ cos(α正弦差角公式) 将正弦的和角、差角公式相加,得到 sin( α +β )+sin(-β )=2sinα α cos β 则 sin α cos β =sin( α +β )/2+sin(-β(“α积化和差公式”之一)同样地,运用诱导公式cosα=sin( π-/2α),有 cos( α +β )= sin[ π-/2(α +β )] =sin( π-/2α-β) =sin[(π-α/2 )+(-β )] =sin( π-/2α )cos(-β )+sin(-β )cos( π-α)/2 =cos α cos- βsin α sin β 于是 cos( α +β )=cos α-cossin βα sin(β余弦和角公式) 那么 cos( α-β) =cos[ α-+(β )] =cos α cos(-β)-sin α sin(-β) =cos α cos β +sin α sin β cos( α-β )=cos α cos β +sin (α余sin弦β差角公式) 将余弦的和角、差角公式相减,得到 cos( α +β)-cos( α-β )=-2sin α sin β

相关主题