搜档网
当前位置:搜档网 › 2.4GHZ射频前端设计

2.4GHZ射频前端设计

2.4GHZ射频前端设计
2.4GHZ射频前端设计

2.4GHz ISM 射频前端模块的设计及应用2.4GHz 工业科学医疗设备(ISM)是全世界公开通用使用的无线频段,蓝牙( Bluetooth)、Wi-Fi、ZigBee 等短距离无线数据通信均工作在2.4GHz ISM 频段。针对2.4GHz ISM 频段无线应用,锐迪科微电子公司推出了RDAT212 射频前端模块。T212 芯片集成了功率放大器( PA)、低噪声放大器( LNA)、天线开关(Antenna Switch)和功率检测器(Power Detector),并特别增加PA 带通及LNA 带通的省电功能,内部还针对天线端做了ESD 保护设计。T212 芯片采用标准的QFN 3×3mm 超小型封装,输入和输出已集成隔直电容和匹配电路,外围元件仅需少量滤波电容,极大地简化了PCB 设计。高集成度、超小尺寸并提供省电功能的T212 射频前端模块,在手机蓝牙以及802.11.b/g 扩展应用中大有可为。同时,T212 芯片还具有优异的线性度,支持Bluetooth 2.0 的高速率应用。T212 模块的性能T212 射频前端模块内集成的功率放大器采用先进的砷化镓异质结双极晶体管( GaAs HBT)工艺制造,低噪声放大器和天线开关采用增强型高电子迁移率场效应晶体管( E-PHEMT)工艺制造。尽管没有采用差分PA 的形式,但是T212 依然为客户提供了差分输入管脚,从而使客户不需要再关心差分转单端的设计。T212 集成的功率放大器是一款高线性高效率PA,在2.4GHz~2.5GHz 频段内有20dB 增益,线性输出功率为18dBm 时的三阶交调IM3 小于-30dBc。PA 的静态工作电流可低至10mA,饱和输出功率可达23dBm,功率附加效率高达45%,这么高的效率有助于延长供电时间。2

图1:T212 射频前端模块的功能模块图。T212 集成的低噪声放大器具有很高的线性度,在2.4GHz~2.5GHz 频段内有10dB 增益,工作电流仅4.5mA,噪声系数小于2.6dB(已包括开关损耗),输入三阶交调点IIP3 高达+8dBm。模块内的LNA bypass 功能,既可

作为省电模式,又能增大接收机的动态范围。T212 模块提供了PA 带通及LNA 带通的省电功能。无需硬件改动,仅通过改变控制逻辑,即可在正常工作模式和bypass 省电模式间自由切换。在蓝牙1 类应用时,模块可以在0dBm 输入条件下提供20dBm 的输出功率;在蓝牙2 类应用时,该模块又可切换到PA 带通状态,此时不消耗电流。T212 集成了功率检测,通过测量PD 端电压可以检测功放的输出功率。该模块采用了QFN 3×3mm 超小型封装,输入和输出已经在内部匹配到50 欧姆,客户应用时不需要在PCB 板上设计匹配电路,使得PCB 板设计更加容易。功率放大器的输出谐波已经抑制到-50dBc 以下,应用时外部通常已不需要滤波器。这样模块外部仅需少量滤波电容,缩小了PCB 板尺寸,并降低了系统成本,极适合对器件尺寸有特殊要求的手机蓝牙应用。T212 芯片的无线应用1)蓝牙应用:T212 支持蓝牙Bluetooth class1 和class2 应用。应用于Bluetooth class1 时,T212 集成的功率放大器提供20dBm 的输出,可以扩展蓝牙设备的有效传输距离至100 米;T212 的低噪声放大器的噪声系数小于2.6dB,可以很大的提高接收链路的灵敏度。应用于Bluetooth class2 时,T212 通过改变控制逻辑,即可自动切换到bypass 省电模式,此时不消耗电流。2

2)Wi-Fi 应用:T212 的高集成度和低功耗优点,极适合手机Wi-Fi 应用。功率放大器的静态工作电流可低至10mA,低噪声放大器的工作电流仅4.5mA。T212 应用于802.11g OFDM 时,可输出功率15dBm,消耗电流60mA。芯片还集成了功率检测电路,提供完整的功率检测方案。3)其他工业应用:T212 还可以广泛使用在其他2.4GHz ISM 频段的无线应用上,包括2.4G 无线数字影音传输模块、手持终端PDA、智能玩具、自动化数据采集系统、工业无线控制等应用。对于无线设备而言,暴露在外界的天线端最容易遭

受ESD 损坏,T212 内部针对天线端做了ESD 保护设计,人体模式下可抗静电8000V,极大的增强了工业设备的安全性。WLAN/WiMax 应用扩展针对更高功率的WLAN/ WiMax 应用,锐迪科还推出了工作在2.3~2.7GHz 频段的W260 功放芯片,3.3V 在电源工作时可输出线性功率26dBm @ -30dBc IM3,在5.0V 电源工作时可输出线性功率29dBm@ -30dBc IM3。同时,用于5.8GHz WLAN 的功放芯片W560 也正在开发中,预计近期即可提供样片。这样,锐迪科可以提供2.4G ISM 频段,涵盖Bluetooth 和Wi-Fi 等低功率射频模块到WLAN/WiMax 等高功率放大器芯片的全套解决方案,充分满足客户的各种应用需求。

射频电路板抗干扰设计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

实验三:射频前端发射接收机

实验三射频前端发射/接收机 1、实验设置的意义 由电子元器件可以构成各种功能电路,由这些功能电路按照一定的原理和要求又可以组成各类电子设备,各类电子设备按照入网要求和组成方案可组成网络或系统。元器件与电路、电路与设备以及设备与系统之间的关系是局部与整体的关系。 射频通信系统一般由发送装置、接收装置和传输媒质组成。发送装置包括换能器、发送机和发送天线三部分。其中发送机将电信号变换为足够强度的高频电振荡,发送天线则将高频电振荡变换为电磁波,向传输媒质辐射。本实验就是为了在压控振荡器实验和射频调制器实验的基础上,从整体角度了解和掌握射频发送机的原理和性能,巩固和加深对理论知识的理解,培养系统实验和测试技能 2、实验目的 2.1、了解射频发送/接收机的基本组成; 2.2、利用频谱仪测量射频发送/接收机的主要技术指标。 2.3、测量射频接收机前端的灵敏度。 3、实验原理 3.1、射频发射机原理 射频通信设备一般包括收发信机、天线设备(含馈线)、输入输出设备(如话筒、耳机等)、供电设备(如直流稳压电源)等等。其中主要组成部分是收发信机,因而射频通信设备的技术指标通常指的就是射频收/发信机的技术指标。 一般来说,收信机与发信机在体制上是相同的,如在频段划分、调制解调方式等要求相应一致,否则便不能达到通信的目的。在某些情况下,也允许收发信机存在某些不相对应的差异,如收信机的频率范围可以宽于发信机等。 射频发送设备的功能是将所要发送的信息(又称基带信号)经调制,将频谱搬移到射频上,再经过高频放大到额定功率后,馈送到天线发送到空间去。

射频发送机模块由VCO和功率放大器组成,它的模块方框图如图3-1所示。其功能是将所要发送的信息(又称基带信号)经过调制后,将频谱搬移到射频上,再经过高频放大,达到额定功率之后,馈送到天线,发送到空间去。 发送机的主要技术指标有工作种类、调制方式、频率范围、频率稳定度及准确度、输出功率、效率、杂散辐射等。下面对相关技术指标予以简介:发送机的工作种类指电话、电报,模拟、数字等。调制方式主要分调幅、调频和脉冲(数字)调制等。发射机的工作频率是指发射机的射频载波频率。发射机的频率准确度与频率稳定度也是相对于射频载波而言的。频率准确度是指实际工作频率对于标称工作频率的准确程度。频率准确度越高、建立通信就越快,以至于不寻找对方就可实现通信,提高通信的快速性。频率稳定度是指各种外界因素的影响下发射机频率稳定的程度。如果频率稳定度很高,建立通信后接收机不需要因频率变化而进行微调,从而提高了通信的可靠性。射频通信的有效距离及通信的可靠性均与发射天线的辐射功率有密切的关系。因而发射机必须保证输出足够大的功率。发射机的总效率是指发射机传送到天线馈线上的功率与整机输入功率的比值。在大功率发射机中,提高效率可以减小电源消耗,具有较大的经济意义。发射机的带外辐射统称为杂散辐射,如果发射机设计不当或使用不当,会使杂散辐射电平过高,干扰其他通信链路。当发射机使用宽带天线且带宽覆盖这些杂散频率时,干扰会更严重。为了尽量避免发生这种干扰,有关的规程和标准对发射机的杂散辐射都给出了一定的限制 3.2、射频接收机原理 射频接收机前端是射频接收机的关键部分,这里对此进行简单介绍。 (a)、最简单的射频前端结构 接收机前端电路有几种不同的结构。图3-2给出了一种最简单的形式。这种结构无射频放大器,在带通滤波器之后,只有混频器和本机振荡器。带通滤波器的输入来自天线,其

2.4GHZ射频前端设计

2.4GHz ISM射频前端模块的设计及应用 2.4GHz工业科学医疗设备(ISM)是全世界公开通用使用的无线频段,蓝牙( Bluetooth)、 Wi-Fi、ZigBee等短距离无线数据通信均工作在2.4GHz ISM频段。 针对2.4GHz ISM频段无线应用,锐迪科微电子公司推出了RDA T212射频前端模块。T212芯片集成了功率放大器( PA)、低噪声放大器( LNA)、天线开关(Antenna Switch)和功率检测器(Power Detector),并特别增加PA带通及LNA带通的省电功能,内部还针对天线端做了 ESD保护设计。T212芯片采用标准的 QFN 3×3mm2超小型封装,输入和输出已集成隔直电容和匹配电路,外围元件仅需少量滤波电容,极大地简化了PCB设计。 高集成度、超小尺寸并提供省电功能的T212射频前端模块,在手机蓝牙以及802.11.b/g扩展应用中大有可为。同时,T212芯片还具有优异的线性度,支持Bluetooth 2.0的高速率应用。 T212模块的性能 T212射频前端模块内集成的功率放大器采用先进的砷化镓异质结双极晶体管( GaAs HBT)工艺制造,低噪声放大器和天线开关采用增强型高电子迁移率场效应晶体管( E-PHEMT)工艺制造。尽管没有采用差分PA的形式,但是T212依然为客户提供了差分输入管脚,从而使客户不需要再关心差分转单端的设计。 T212集成的功率放大器是一款高线性高效率PA,在2.4GHz~2.5GHz频段内有20dB增益,线性输出功率为18dBm时的三阶交调IM3小于-30dBc。PA的静态工作电流可低至10mA,饱和输出功率可达23dBm,功率附加效率高达45%,这么高的效率有助于延长供电时间。

2.4GHz收发系统射频前端的ADS设计与仿真

2.4GHz收发系统射频前端的ADS设计与仿真 0 引言 近年来,随着无线通信业务的迅速发展,通信频段已经越来越拥挤。 1985 年美国联邦通信委员会(FCC)授权普通用户可以使用902MHz,2.4GHz 和5.8GHz 三个“工业、科技、医学”(ISM)频段。ISM 频段为无线通信设备提 供了无需申请在低发射功率下就能直接使用的产品频段,极大地推动了无线通 信产业的发展。虽然目前无线数字通信技术已经相当成熟,但射频设计仍然是 移动通信设计的瓶颈。射频电路的设计主要围绕着低成本、低功耗、高集成度、 高工作频率和轻重量等要求而进行。ISM 频段的射频电路的研究对未来无线通 信的发展具有重大的意义。国内外许多文献都对此作了研究,文献[2]中介绍了 在无线高速数据通信环境下,2.4GHz 发射机的设计。文献[3]介绍了一种低功 耗的CMOS 集成发射机的设计。 ADS(AdvancedDesignSystem)软件是Agilent 公司在HPEESOF 系列EDA 软件基础上发展完善的大型综合设计软件。它功能强大能够提供各种射频微波 电路的仿真和优化设计广泛应用于通信航天等领域。本文主要介绍了如何使用ADS 设计收发系统的射频前端,并在ADS 的模拟和数字设计环境下进行一些 仿真。 l 发射端的建模与仿真 由于设计是建立在实验室中已有的中频调制和解调的硬件基础上的,因 此发射端和接收端不考虑信号的调制和解调过程。实验室中的中频调制模块可 以输出大概8~10dBm 的40MHz 已调中频信号,经过分析选择,该发射端的 各个模块均参考MAXlM 公司的集成模块的参数而设计。本地振荡器采用的是MAX2700。MAX2700 是压控振荡器,通过设计合适的外围电路可以使它输出

手机射频前端项目策划方案

手机射频前端项目策划方案 规划设计/投资方案/产业运营

摘要 手机终端的通信模块主要分为天线、射频前端模块、射频收发模块、 基带信号处理。射频前端是移动智能终端产品的核心组成部分,它是模拟 电路中应用于高频领域的一个重要分支。按照设备中产品形态分类,射频 器件可分为分立器件和射频前端模组。分立器件即功放、滤波器、天线开 关等各个独立器件;射频前端模组则是将器件集成在一起,随着通信技术 的进步,集成化和小型化技术趋势已使射频前端模组倍受推崇。 该手机射频前端项目计划总投资20211.91万元,其中:固定资产 投资13285.74万元,占项目总投资的65.73%;流动资金6926.17万元,占项目总投资的34.27%。 本期项目达产年营业收入47023.00万元,总成本费用36947.23 万元,税金及附加351.85万元,利润总额10075.77万元,利税总额11817.38万元,税后净利润7556.83万元,达产年纳税总额4260.55 万元;达产年投资利润率49.85%,投资利税率58.47%,投资回报率37.39%,全部投资回收期4.17年,提供就业职位1039个。

手机射频前端项目策划方案目录 第一章概况 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目必要性分析 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章产品规划方案 一、产品规划 二、建设规模 第四章项目选址规划 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频电路中的电源设计要点

射频电路中的电源设计要点 看到文章的标题“射频电路中的电源设计要点”,相信有部分读者已经想到了,本文即将讲述的是一个综合的问题:结合和射频电路设计与电源电路设计。在我接触的同事,朋友当中,很多射频工程师都是埋头苦干,专心研究射频技术领域,却往往忽略了其他部分可能会造成的影响,电源电路就是其中的很重要的部分。所以我坚持认为,射频工程师要考虑到系统级别,包括时钟,电源,甚至数字电路部分,这样才能实现最优化设计,最佳性能与最高效率。我抛出这样的观点也许会遭到很多人的反对,不过不要紧,遇到问题时再来看这篇文章吧。 我准备重点讲述两部分的内容,第一部分是低噪声放大器的电源电路设计要点,第二部分是射频功率放大器的电源电路设计要点。由于近几年的产品设计采用的都是SoC方案,所以很少有机会接触独立的VCO,PLL,混频器,调制/解调器等,以后有机会接触再做总结。关于射频SoC的电源电路设计,过段时间我会单独撰写。低噪声放大器电源电路设计低噪声放大器位于接收机的最前端,对于整体的接收灵敏度的影响是最大的。从灵敏度表达式可以看出,对于给定的通信协议,提高灵敏度的方法是尽可能降低放大器的噪声系数NF,当然我们还需要尽可能高的增益,这是很矛盾的。为了

降低低噪声放大器的噪声系数,我们首先要选用合适的管子,然后选择合适的直流工作点,进行合理的射频电路设计,进行反复的测试,调试……但是你是否想过,低噪声放大器的电源设计?1. 排除不确定因素,使用LDO为LNA供电在现有的基于SoC的设计方案中,LNA的供电都是由SoC上相应的控制管脚实现的,如下图中的LNA_PE_G0就是用于控制LNA供电的。那么,如果LNA_PE_G0携带着很多噪声,射频电路设计的再好也没用了,而且可悲的是,我们没有任何手段保证LNA_PE_G0这种来自SoC的信号的纯净度。所以,我认为,LNA的供电最好使用具有较高PSRR(电源抑制比)的LDO(线性稳压器)来实现。例如,TI的TPS718xx,TPS719xx就是一种高性能的LDO,电源抑制比可达65dB@1kHz, 45dB@1MHz,比较适合在低噪声放大器中使用。2. 电源走线依据“先过电容”的原则不会Layout 的工程师不是好工程师,射频电路性能的好坏与Layout关系很大。在PCB Layout过程中,要时刻建立一种电流流向的概念,即电流从哪里来,要到哪里去,怎样让电流回路最小……对于低噪声放大器,滤波电容是少不了的,我们一定要保证电流先流过滤波电容,再进入放大器。看看下面的两张图片,自己体会一下。 3. 不要去做LDO的使能如果听取了我的建议,在设计中选用了LDO为低噪声放大器供电,那么你就千万别想着通过

GPS接收机射频前端电路原理与设计

GPS接收机射频前端电路原理与设计 摘要:在天线单元设计中采用了高频、低噪声放大器,以减弱天线热噪声及前面几级单元电路对接收机性能的影响;基于超外差式电路结构、镜频抑制和信道选择原理,选用GP2010芯片实现了射频单元的三级变频方案,并介绍了高稳定度本振荡信号的合成和采样量化器的工作原理,得到了导航电文相关提取所需要的二进制数字中频卫星信号。 关键词:GPS接收机灵敏度超外差锁相环频率合成 利用GPS卫星实现导航定位时,用户接收机的主要任务是提取卫星信号中的伪随机噪声码和数据码,以进一步解算得到接收机载体的位置、速度和时间(PVT)等导航信息。因此,GPS接收机是至关重要的用户设备。目前实际应用的GPS接收机电路一般由天线单元、射频单元、通信单元和解算单元等四部分组成,如图1所示。本文在分析GPS卫星信号组成的基础上,给出了射频前端GP2010的原理及应用。 1 GPS卫星信号的组成

GPS卫星信号采用典型的码分多址(CDMA)调制技术进行合成(如图2所示),其完整信号主要包括载波、伪随机码和数据码等三种分量。信号载波处于L波段,两载波的中心频率分别记作L1和L2。卫星信号参考时钟频率f0为10.23MHz,信号载波L1的中心频率为f0的154倍频,即: fL1=154×f0=1575.42MHz (1) 其波长λ1=19.03cm;信号载波L2的中心频率为f0的120倍频,即: fL2=120×f0=1227.60MHz (2) 其波长λ2=24.42cm。两载波的频率差为347.82MHz,大约是L2的 28.3%,这样选择载波频率便于测得或消除导航信号从GPS卫星传播至接收机时由于电离层效应而引起的传播延迟误差。伪随机噪声码(PRN)即测距码主要有精测距码(P码)和粗测距码(C/A码)两种。其中P 码的码率为10.23MHz、C/A码的码率为1.023MHz。数据码是GPS卫星以二进制形式发送给用户接收机的导航定位数据,又叫导航电文或D 码,它主要包括卫星历、卫星钟校正、电离层延迟校正、工作状态信息、C/A码转换到捕获P码的信息和全部卫星的概略星历;总电文由1500位组成,分为5个子帧,每个子帧在6s内发射10个字,每个字30位,共计300位,因此数据码的波特率为50bps。

宽带微波接收机的射频前端设计探讨

龙源期刊网 https://www.sodocs.net/doc/cc7438398.html, 宽带微波接收机的射频前端设计探讨 作者:刘瑶潘威 来源:《科学与信息化》2018年第13期 摘要随着微波技术的发展,微波接收机已经被广泛应用于通信、雷达等多个领域。由于信道上受到外界因素干扰较多,为了保证微波接收机的性能,接收机需要有较高的线性度、灵敏度、动态范围和选择性,这些性能的实现与射频前端息息相关。本文将在分析射频前端设计对宽度微波接收机作用的基础上,对几种常见的射频前端结构进行阐述,然后就影响射频前端性能的几种因素进行分析,探讨应该如何合理设计射频前端。 关键词宽带微波接收机;射频前端;低噪声;动态范围 1 射频前端对微波接收机的重要意义 现代电子技术的发展,使得接收机的种类越来越多,性能也得到了各方面的完善,功能更加复杂和通用化。目前接收机正朝着体积小、重量轻和功耗小,性能更加优越的方向发展,要求微波接收机具有宽频带、大动态范围、高灵敏度和低噪声。基于上述影响微波接收机信噪比、影响信号处理的因素分析,必须要对接收机重要组成部分射频前端进行优化设计,从而可对接收机性能起到保障作用。射频前端主要实现抗烧毁、信号预选、增益控制、幅度均衡等几方面功能,噪声系数、滤波器选择、幅度均衡以及输入1dB压缩点等都会对接收机前端性能产生重要影响。 2 射频前端的几种构成形式 2.1 常用接收机射频前端结构 在微波接收机接收有用信号的过程中,会受到高电平干扰信号的影响,从而影响信噪比,对信号处理产生不利作用。为了保证信噪比,微波接收机应该具有高选择性、高线性和低噪声的特点。 对来自天线下来的信号,首先会使用限幅器对信号进行限幅处理,保护后级的放大器不被大信号烧毁;再使用带通滤波器进行信号预选,最后使用低噪声放大器对信号进行一级放大,放大后的信号进入下一级进行处理。 在这个过程中,限幅器保护后级链路不受大功率信号的损坏,带通滤波器隔离带外信号,低噪声放大器在尽可能减少对噪声恶化的情况下补偿增益,该结构的作用是可以通过带通滤波器使互调失真降到最低,削弱失真响应,同时具有成本较低、结构简单的优点。 2.2 采用YIG统调预选滤波器的结构

ISO15693非接触式IC卡射频前端电路的设计

1前言 ISO15693标准协议是国际上规定的用于非接 触式IC卡的一种高频通信协议。该标准协议的非接触式IC卡的读写距离长达100cm,比同是高频通信 协议的ISO14443规定的10cm读写距离更大,应用范围也会更加广泛。ISO15693标准协议规定:读卡器到卡所发送的信号为采用脉冲位置编码的10% ASK和100%ASK两种调制模式的频率都为 13.56MHz的载波。 卡片解调电路的任务是把两种深秦燕青,葛元庆 (清华大学微电子学研究所,北京100084) ISO15693非接触式 IC卡射频前端电路的设计 摘要:介绍了ISO15693非接触式IC卡射频前端电路,采用了一种巧妙的整流电路,提高了整流效率。同时使用了一种适用于ISO15693非接触式卡片的简单的稳压电路结构,有助于信号的解调,并且使卡片在接收到的信号为10%ASK和100%ASK两种调制模式时都能正常工作。芯片测试结果显示:电源产生电路能够产生2.2V-3.8V的直流电压,解调电路能够在2.0V-3.8V电压下可靠稳定的工作;在 ISO15693规定的最小场强0.15A/M处,整个芯片的电源电压为3.3V,且功耗小于60μW。 关键词:ISO15693;非接触式IC卡;整流电路;电源产生电路;解调电路 DesignofaRFfront-endcircuitofcontactlessICcardsforISO15693 QINYan-qing,GEYuan-qing (InstituteofMicroelectronics,TsinghuaUniversity,Beijing100084,P.R.China) Abstract:ARFfront-endcircuitisdesignedforcontactlessICcardscomplyingwithISO15693.Anovelrectifierisdesignedtoenhancetheefficiencyofrectification.Asimplelimiterstructureisintroduced,whichisapplicableincontactlessICcards,anditishelpfultothedemodulationofthesignal.Thislimitercanalsohelptheabovecardsworknormallywhenthereceivedsignalis10%ASKor100%ASKmodulatingmode.Testresultsshowthatthepowergen-erationcircuitcanprovideaDCsupplyvoltagefrom2.2Vto3.8V.Thedemodulationcircuitcanworkproperlyandsteadilyfrom2.0Vto3.8V.Powerconsumptionislessthan60uWat3.3V,whenthewholechipworksattheminimumoperatingfield0.15A/M,whichisprescribedinISO15693. Keywords:ISO15693;contactlessICcards;rectifier;powergenerationcircuit;demodulationcircuitEEACC:1205;1250

射频电路设计公式

射频电路设计对特性阻抗Z的经验公式做公式化处理,参见P61 波阻抗公式: E H =Z= μ/ε=377Ω? 相速公式: v=ω β = 1 εμ 电抗公式: Xc= 1 Xl=ωL 直流电阻公式: R= l σS = l πa2σ 高频电阻公式: R′=a R 高频电感公式: L=R′ω 趋肤厚度公式: δ= 1πfμσ 铜线电感实用公式: L′=R a πfμσ= 2l 2 ? 1 πδμσ= 2l μ0/πσf= 1.54 f uH 高频电容公式: C=εA d 高频电导率: G=σA = ωεA = ωC 电容引线电感经验公式: L′=Rd?a πfμ.σ= 2lμ. = 771 f nH

电容引线串联电阻公式: R′=R?a 2δ = 2l 2πaσ πfμ.σ= l a μ.f πσ =4.8 fμΩ 电容漏电阻: R=1 G = 1 2πfC?tanΔ = 33.9exp6 f MΩ TanΔ的定义: ESR=tanΔωC 空气芯螺旋管的电感公式: L= πr2μ.N2螺旋管的电容: C=ε.?2πrN?2a l N =4πε.? raN2 l 微分算符的意义: ? x= 0? ? ?z ? ?y ? 0? ?? ? ?y ? ?x 电容,电感,电导,电阻的定义: C=εw d L= d G= σw R= d σw 特性阻抗表达式:

Z=L C 若是平行板传输线: Z=μεd w 关于微带线设计的若干公式: w/h < 1时, Z= Z. 2π ε′ 8? w + w 4? 其中, Z.=376.8Ω ε′=εr+1 + εr?1 1+ 12h? 1 2 +0.041? w2 w/h>1时 Z= Z. ε′? 1.39+ w h+ 2 3ln w h+1.444 其中, ε′=εr+1 + εr?1 1+ 12h? 1 2 如何设计微带线w/h<2时: w h = 8e A e2A?2 其中, A=2πZ Z. εr+1 2 + εr?1 εr+1 0.23+ 0.11 εr w/h>2时: W =2 (B?1?ln2B?1+ εr?1 (ln B?1 +0.39? 0.61 )) 其中, B= Z.π2Zεr 反射系数的定义:

24GHz射频前端频率合成器设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-24作者简介:饶睿楠(1977-),男,高级工程师。研究方向为频率综合器及微波电路技术。 24GHz 射频前端频率合成器设计 饶睿楠 王 栋 余铁军 唐 尧 (西安电子工程研究所西安710100) 摘要:随着微波射频集成电路集成度越来越高, 24GHz 频段的高集成雷达收发芯片逐渐大规模使用。其中英飞凌科技公司的24GHz 锗硅工艺高集成单片雷达解决方案就是其中具有代表性的一种,被大量应用在液位或物料检测、照明控制、汽车防撞、安防系统。FMCW 为此种应用最多采用的信号调制方式。本文采用锁相环频率合成方案,产生系统所需的FMCW 调制信号。关键词:24GHz 射频前端;FMCW ;频率综合器BGT24AT2ADF4159中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-066-04 引用格式:饶睿楠,王栋,余铁军,唐尧.24GHz 射频前端频率合成器设计[ J ].火控雷达技术,2019,48(1):66-69. DOI :10.19472/j.cnki.1008-8652.2019.01.014 Design of a Frequency Synthesizer for 24GHz RF Front Ends Rao Ruinan ,Wang Dong ,Yu Tiejun ,Tang Yao (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :With the increasing integration of microwave and radio-frequency integrated circuits ,highly integrated radar transceiver chips in 24GHz band have gradually found large-scale applications.Among those chips ,Infineon's 24GHz SiGe monolithic radar solution is a typical one.It has found wide applications in liquid (or material )detec-tion ,lighting control ,automotive collision avoidance ,and security systems.FMCW is the most widely used signal modulation method in these applications.This paper uses PLL frequency synthesis scheme to generate FMCW mod-ulation signals required by the system. Keywords :24GHz RF front end ;FMCW ;frequency synthesizer ;BGT24AT2;ADF4159 0引言 24GHz 频段雷达大量用于液位检测、照明控制、汽车防撞、安防等领域。近年来由于微波集成电路的高速发展,单芯片电路集成度越来越高,出现了一大批高集成、多功能的射频微波集成电路,以前需要几片或十几片芯片的电路被集成在一片集成电路之中。英飞凌公司推出的基于锗硅工艺的高集成单片雷达解决方案就是其中对具代表性的产品之一。FMCW 信号调制方式被广泛的应用于此类产品。本文采用英飞凌公司BGT24AT2单片信号源芯片与ADI 公司ADF4159锁相环芯片构成24GHz 射频前端频率合成器部分,产生了24GHz 24.2GHz FM-CW 发射信号。 1BGT24AT2锗硅24GHz MMIC 信号源芯片基本指标 BGT24AT2是一款低噪声24GHz ISM 波段多功能信号源。内部集成24GHzVCO 和分频器。3路独立的RF 输出可分别输出+10dBm 的信号,通过SPI 可对输出信号功率进行控制。发射信号的快速脉冲和相位反向可通过单独的输入引脚或通用的SPI 控制接口进行控制。片内集成输出功率及温度传感器,可对芯片工作情况进行监控。芯片工作的环境温度为-40? 125?,满足汽车级环境应用要求。封装为32脚VQFN 封装,单3.3V 电源供电,节省了大量板上空间。其原理框图如图1所示。

PCB设计中射频电路的特性解析

PCB设计中射频电路的特性解析 射频电路(RF circuit)的许多特殊特性,很难用简短的几句话来说明,也无法使用传统的模拟仿真软件来分析,譬如SPICE。不过,目前市面上有一些EDA软件具有谐波平衡(harmonic balance)、投射法(shooting method)…等复杂的算法,可以快速和准确地仿真射频电路。但在学习这些EDA软件之前,必须先了解射频电路的特性,尤其要了解一些专有名词和物理现象的意义,因为这是射频工程的基础知识。 射频的界面 无线发射器和接收器在概念上,可分为基频与射频两个部份。基频包含发射器的输入信号之频率范围,也包含接收器的输出信号之频率范围。基频的频宽决定了数据在系统中可流动的基本速率。基频是用来改善数据流的可靠度,并在特定的数据传输率之下,减少发射器施加在传输媒介(transmission medium)的负荷。因此,PCB设计基频电路时,需要大量的信号处理工程知识。发射器的射频电路能将已处理过的基频信号转换、升频至指定的频道中,并将此信号注入至传输媒体中。相反的,接收器的射频电路能自传输媒体中取得信号,并转换、降频成基频。 发射器有两个主要的PCB设计目标:第一是它们必须尽可能在消耗最少功率的情况下,发射特定的功率。第二是它们不能干扰相邻频道内的收发机之正常运作。就接收器而言,有三个主要的PCB设计目标:首先,它们必须准确地还原小信号;第二,它们必须能去除期望频道以外的干扰信号;最后一点与发射器一样,它们消耗的功率必须很小。 小的期望信号 接收器必须很灵敏地侦测到小的输入信号。一般而言,接收器的输入功率可以小到1 μV。接收器的灵敏度被它的输入电路所产生的噪声所限制。因此,噪声是PCB设计接收器时的一个重要考虑因素。而且,具备以仿真工具来预测噪声的能力是不可或缺的。附图一是一个典型的超外差(superheterodyne)接收器。接收到的信号先经过滤波,再以低噪声放大器(LNA)将输入信号放大。然后利用第一个本地振荡器(LO)与此信号混合,以使此信号转换成中频(IF)。前端(front-end)电路的噪声效能主要取决于LNA、混合器(mixer)

手机射频前端项目合作方案

手机射频前端项目合作方案 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “手机射频前端项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx有限责任公司(盖章) xxx年xx月xx日

项目概要 手机终端的通信模块主要分为天线、射频前端模块、射频收发模块、 基带信号处理。射频前端是移动智能终端产品的核心组成部分,它是模拟 电路中应用于高频领域的一个重要分支。按照设备中产品形态分类,射频 器件可分为分立器件和射频前端模组。分立器件即功放、滤波器、天线开 关等各个独立器件;射频前端模组则是将器件集成在一起,随着通信技术 的进步,集成化和小型化技术趋势已使射频前端模组倍受推崇。 该手机射频前端项目计划总投资18988.82万元,其中:固定资产 投资15089.15万元,占项目总投资的79.46%;流动资金3899.67万元,占项目总投资的20.54%。 达产年营业收入37173.00万元,总成本费用28769.61万元,税 金及附加366.16万元,利润总额8403.39万元,利税总额9928.64万元,税后净利润6302.54万元,达产年纳税总额3626.10万元;达产 年投资利润率44.25%,投资利税率52.29%,投资回报率33.19%,全部投资回收期4.51年,提供就业职位669个。 消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动 安全的法规和要求,符合相关行业的相关标准。项目承办单位所选择 的产品方案和技术方案应是优化的方案,以最大程度减少建设投资, 提高项目经济效益和抗风险能力。项目承办单位和项目审查管理部门,

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

实验一 射频前端发射和接收器

实验一射频前端发射和接收器 一、实验目的: 1、了解射频前端发射器和接收器的基本结构与主要设计参数。 2、利用实验模组的实际测量了解射频前端发射器和接收器的基本特性。 二、预习内容: 1、预习放大器、滤波器、混频器、功率放大器的原理的理论知识。 2、预习放大器、滤波器、混频器、功率放大器的设计的原理的理论知识。 3、熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的 理论知识。 4、熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的 设计的理论知识。 三、实验设备: 四、理论分析: 基本结构与设计参数说明: 在无线通讯中,射频发射器担任着重要的角色。无论是话音还是数据信号要利用电磁波传送到远端,必须使用射频前端发射器。如图1-1(a)所示,它大抵可分成九个部分。 1.中频放大器(IF Amplifier) 2.中频滤波器(IF Bnadpass Filter) 3.上变频频混频器(Up-Mixer; Up Converter) 4.射频滤波器(RFBandpass Filter) 5.射频驱动放大器(RF Driver Amplifier) 6.射频功率放大器(RF Power Amplifier) 7.载波振荡器(Carrier Oscillator; Local Oscillator) 8.载波滤波器(LO BPF) 9.发射天线(Antenna) 其中放大器的基本原理与设计方法可参考主题六,而滤波器的基本原理与设

计方法已可参考主题五的说明。至于振荡器的部分,可于主题八与与主题九获得一些参考。 天线部分则可由主题十得到概念。 所以,在此单元中将就上变频器部分的基本原理做一说明。并介绍发射器的几个重要设计参数。 图1-1(a)基本射频前端发射器结构图 图1-1(b)单变频结构射频前端接收器 如图1-1(b)可见,射频前端接收器可分为天线(Antenna)、射频低噪声放大器(RF Low Noise Amplifier , LNA)、下变频器(Down-Mixer , Down Converter)、中频滤波器(Intermidate Frequency Bandpass Filter , IF BPF)、本地振荡器 (Local Oscillator , LO)。其工作原理是将发射端所发射的射频信号由天线接收后,经LNA 将功率放大,再送入下变频器与LO 混频后由中频滤波器将设计所要的部分(Baseband Processing Unit 、BPU)解调(Demodulation)出所需要的信号(Message Signals). 这类只经一个混频器上变频(或下变频)的电路构造称为单变频结构(Single Conversion configuration)。而在实际应用中也有双变频结构(Dual Conversion Configuration),甚至多变频结构(Multi-conversion Configuration),使用的时机视系统指标而定。因为BPU 的处理频率有所限制(一般在500MHz 以下),所以需要利用变频器(Mixer)及频道振荡器(Channel Oscillator)将射频信号由射频前端接收器下变频为中频段(Intermidate Frequency Band 、IF)信号后再送入BPU ,或是将BPU 送出的IF 信号用射频前端发射器上变频至射频段(Radio Frequency Band 、RF)信号经放大后再发射。 本单元以单变频结构来说明一个射频前端接收器的各设计参数. Signal From Unit BPU

05射频前端下变频器

实验五 微波下变频器的测试实验 一、实验目的 1.了解射频前端接收器的基本电路结构与主要设计参数的计算. 2.用实验模块的实际测量得以了解射频前端接收器的基本特性. 二、预习内容 1. 熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的理论知识。 2. 熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的设计的理 论知识。 三、实验设备 四、理论分析 如图6-1所示,射频前端接收器可分为天线(Antenna)、射频低噪声放大器(RF Low Noise BPU ANTENNA 图6-1单变频结构射频前端接收器基本电路结构

Amplifier , LNA)、下变频器(Down-Mixer , Down Converter)、中频滤波器(Intermidate Frequency Bandpass Filter , IF BPF)、本地振荡器 (Local Oscillator , LO)。其工作原理是将发射端所发射的射频信号由天线接收后,经LNA 将功率放大,再送入下变频器与LO 混频后由中频滤波器输出到 基带处理单元(Baseband Processing Unit 、BPU)解调(Demodulation)出所需要的信号(Message Signals). 这类只经一个混频器上变频(或下变频)的电路构造称为单变频结构(Single Conversion configuration)。而在实际应用中也有双变频结构(Dual Conversion Configuration),甚至多变频结构(Multi-conversion Configuration),使用的场合视系统指标而定。因为BPU 的处理频率有所限制(一般在500MHz 以下),所以需要利用变频器(Mixer)及频道振荡器(Channel Oscillator)将射频信号由射频前端接收器下变频为中频段(Intermidate Frequency Band 、IF)信号后再送入BPU ,或是将BPU 送出的IF 信号用射频前端发射器上变频至射频段(Radio Frequency Band 、RF)信号经放大后再发射。 射频前端接收器有如下设计参数. (一) 天线 (Antenna) (二) 射频接收滤波器 (RF_ BPF1) (三) 射频低噪声放大器 (LNA) (四) 射频混频滤波器 (RF_BPF2) (五) 下变频器 (Down Mixer) (六) 带通滤波器 (Filter) (七) 本地振荡嚣 (Local Oscillator) (八) 中频放大器 (IF Amplifier) 主要设计参数: (一) 接收灵敏度(Receiver Sensitivity) s d w T Z SNR B T k F S ?????=)( (式6-1) 其中 S —— 接收灵敏度 K —— 1.38*10-23(Joul/°K),波尔兹曼常数(B oltzmann’s Constant ) T —— 绝对温度(°K)= 273.15+T(°C) B W —— 系统的等效噪声频宽 SNR d —— 在检波器输入端,系统要求的信噪比 (Signal-to-noise Ratio) Zs —— 系统阻抗(System Impedance) F T —— 总等效输入噪声因子(Noise Factor) 而上述中,总等效输入噪声因子(Noise Factor)则是由三大部分组成. (1) F in1,由接收器各单级的增益与噪声指数(Noise Figure)造成., (2) F in2,由镜频噪声(Image Noise)造成. (3) F in3,由宽带的本地振荡调制噪声(Wideband LO AM Noise)造成. 其计算公式如(式6-2) (式6-3) (式6-4)及(式6-5)所列. 321in in in T F F F F ++= (式6-2)

相关主题