搜档网
当前位置:搜档网 › 面板协整检验

面板协整检验

面板协整检验
面板协整检验

2.1.2 面板协整检验

在时间序列的协整检验是很重要的一个环节。最早Granger和Newbold (1974)发现以前的研究对于残差的自相关性没有充分重视。但是实际中的很多宏观时间序列都是非平稳的。如果采用分析平稳时间序列的方法来分析非平稳的时间序列(如普通最小二乘估计、移动平均法、指数平滑法),就可能会出现十分荒谬的结论(如失业率和某人的体重高度相关这样的伪回归),有些时候对于存在相关关系的变量又可能得出它们完全不相关的结论。当有些非平稳的时间序列间短期内不相关,但是长期内却有趋于均衡的关系时,传统的方法不能区别这些。时间序列的协整检验就能有效的解决这个问题。首先从经济学理论方面推出可能存在协整关系的经济变量,然后通过对已观察的数据进行协整检验。对于结果是经济变量间存在协整关系,就可以进一步建立相关的计量经济模型,对未来的趋势进行分析。一般时间序列都是用Engle-Granger两步法检验协整关系。但是这些方法存在缺陷,时间序列观察值的长度会影响到检验的效果。观测值的长度越长会使得在协整检验过程中犯第二类错误的概率越小Pedroni(1995)35。对于Johansen的多参数检验也是会有影响的。这些方法对滞后的阶数选择十分敏感。就是在时间序列的观察长度短的情况下,Johansen的多参数检验是不准确的。但是在实际经济环境中会对时间观测值的长度限制很多,我们不可能对每个经济变量都观察到足够长的数据。在时间序列协整检验的样本偏少缺陷下,科学家提出了一系列面板协整检验,这些面板协整检验可以在一定程度上弥补这一点。自从Pedroni 1995年提出面板协整检验方法以来,面板协整的应用在经济学上已经众多的研究成果。Cecilio Tamarit,Marian Camarero(2002)选取1973年到1997年英国、法国、德国、意大利、荷兰等11个欧盟成员国的数据研究西班牙的经济实力和石油价格的关系。通过McCoskey and kao(1998),kao(1999)、Pedroni(1999)三种面板协整检验。发现西班牙的石油价格与利率差分、汇率之间存在协整关系。它们之间存在长期均衡关系。石油价格的提高会导致汇率的下降,而利率差分的提高会导致汇率的上升36。Avik Chakrabarti(2003)选取1982年第三季度到1992年第四季度美国12个SIC 制造业的面板数据。研究制造业的工资、进口价格和就业之间的关系。通过Pedroni(1999)协整检验发现,就业和进口价格之间不存在长期稳定关系。制造也的工资和进口价格之间存在显著的长期稳定关系37。George Hondroyiannis(2005)选取1960年到1998年欧

洲八个国家的面板数据,研究人口变量、实际工资和实际人均产出、年龄抚养率之间的关系。采用完全修正OLS 估计法。发现从长期来看,实际人均产出的提高会带来人口增长的提高,但是实际工资方面的提高会对人口增长带来负面影响38。Roger Kelly, George Mavrotas(2003)通过选取1972年到1994年17个非洲国家的面板数据研究财政部门的发展和私人储蓄之间的关系。通过Pedroni (1999)协整检验,得出了很以往研究不同的结论。结论表明财政部门的发展和私人储蓄之间没有协整关系。再是用Larsson (2001)检验也得出类似结论。这个结论符合Richardian 的等价假设。流动性的约束在大多数的非洲国家中没有发挥至关重要的作用39。

目前面板协整检验方法大体上可以分为两类:

第一类是在Engle-Granger 两步法的基础上进行推广,即利用面板回归方程计算得到残差构造统计量进行检验。它的特点是:适用于检验个体时间序列之间是否存在一个协整关系,忽略了有可能存在的不可观测因素。具体方法可见参考文献Kao (1999)、McCoskey (1998)、Pedroni (1999、2001、2004)、westerlund (2005a 、2005b 、2006a )40 41 42。

第二类是基于Johansen 迹检验的方法发展到面板数据的协整检验,它的优点是可以检验多个变量之间的协整关系,允许面板数据存在空间相关性。具体方法可见参考文献Larsson (2001)、Banerjee (2004)、Breitung (2005)43 44。

在2003年的时候,Gutierrez 用Monte Carlo 模拟检验对Kao (1999)、pedroni (2000)、larsson(2001)三种方法进行了比较。分别对Kao (1999)和Pedroni (2000)采取了所有变量间都是协整的相同假设,对larsson (2001)采取了在全部N 个截面中最多只有R 对协整关系的假设。在Monte Carlo 模拟检验中Gutierrez 得出结论:当T 的值比较大时这三个检验的功效都很高。但是,当T 的值比较小的时候面板数据这三种的检验功效开始降低。他还发现了当T 固定等于10时,伴随随着N 的变大,Kao (1999)检验一直都会比比Pedroni 一直都检验功效高。但是当T 增大时则是Pedroni (2000)检验比Kao (1999)检验功效更好。它们两者的检验功效都会比Larsson 好。

下面是本文运用的Pedroni 方法介绍。Pedroni 方法是建立在下列方程的残差的基础上:

i t i t i t i t i i t y t x αδβε=+++

其中, i=1,2,…,N; t=1,2,…,T; i t y 是()1N

T ??维可观测变量;i t x 是

()N T m ??维可观测变量,m 是回归变量的个数。Pedroni 提出了两类方法的检验其中:第一类分

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析) 面板数据分析方法: 面板单位根检验—若为同阶—面板协整—回归分析 —若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。不是时间序列那种接近0.8为优秀。另外,建议回归前先做stationary。很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。该如何选择呢? 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al.(2002)的改进,提出了检验面板单位根的LLC法。Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。Im et al.(1997)还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T、IPS-W、ADF-FCS、PP-FCS、H-Z分别指Levin,Lin&Chu t*

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项 (面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

协整检验方法

协整检验 协整性的检验方法主要有两个: (一) EG 两步法 以两个变量y 和x 为例。在检验协整性之前,首先要对变量的单整性进行检验,只有当两个变量的单整阶数相同时,才可能存在协整关系。不妨设y 和x 都是一阶单整序列,即y 、x 均)1(~I ,则EG 两步法的具体检验步骤为: 第一步:利用最小二乘法估计模型: t t t x y εββ++=10 (5-1) 并计算相应的残差序列: )??(10t t t x y e ββ+-= 第二步:检验残差序列的平稳性,可以使用的检验方程 有: t m i i t i t t e e e εγδ+?+=?∑=--1 1 (5-2) t m i i t i t t e e e εγδα+?++=?∑=--1 1 (5-3) t m i i t i t t e e t e εγδβα+?+++=?∑=--1 1 (5-4) 如果经过DF 检验(或ADF 检验)拒绝了原假设0:0=δ H , 残差序列是平稳序列,则意味着y 和x 存在着协整关系,称模型(5-1)为协整回归方程;如果接受了存在单位根的原假设,则残差序列是非平稳的,y 和x 之间不可能存在协整关系,模型(5-1)是虚假回归方程。 说明: 1.在检验方程中加上差分的滞后项是为了消除误差项的自相关性,检验也相应称为AEG 检验;其中滞后阶数一般用SIC 或AIC 准则确定,EViews 5中增加了根据SC 等准则自动确定滞后阶数的功能。

2.检验残差序列的平稳性时,可以在检验方程中加上常数项和趋势项,即使用方程(5-3)、(5-4)进行检验,也可以加在原始回归方程(5-1)中,但在两个方程中只能加一次,不能重复加入。 3.在检验残差序列的平稳性时,虽然检验统计量与DF (或ADF )检验中的相同,但是检验统计量的分布已不再是DF 或ADF 分布,所以临界值也发生了变化,而且还与回归方程中变量个数、样本容量和协整检验方程的不同有关。麦金农(Mackinnon )给出了协整检验临界值的计算公式,EViews 软件也可以直接输出Mackinnon 临界值(或伴随概率)。 4.EG 检验也可以用于有多个解释变量的协整关系检验,即第一步的回归方程(5-1)变成: t kt k t t t x x x y εββββ+++++= 22110 第二步仍然是检验残差序列的平稳性。 5.对于一元回归模型,y 与x 之间只可能存在一种协整关系;但是多元回归模型中,y 与解释变量之间、甚至解释变量之间可能会存在多个协整关系;对于多个协整关系的检验,需要使用基于向量自回归模型(VAR )的Johansen 检验方法。 【例5-1】检验上证综合指数SH 、深证综合指数SZZ 和深证成份指数SZC 的协整性。数据取1997年1月2日至2006年9月29日的日收盘价,样本容量为2351。 1.建立工作文件,输入数据 (1)键入CREATE u 2351,建立工作文件; (2)键入DATA SH SZZ SZC ,再从Excel 文件中采用

面板数据的分析步骤

面板数据的分析步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

协整检验步骤

实验三金融数据的平稳性检验实验指导 一、实验目的: 理解经济时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致伪回归问题,掌握为解决伪回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。理解变量之间的因果关系的计量意义,掌握格兰杰因果检验方法。 二、基本概念: 如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间,就称它为平稳的。强调平稳性是因为将一个随机游走变量(即非平稳数据)对另一个随机游走变量进行回归可能导致荒谬的结果,传统的显著性检验将告知我们变量之间的关系是不存在的。这种情况就称为“伪回归”(Spurious Regression)。 有时虽然两个变量都是随机游走的,但它们的某个线形组合却可能是平稳的,在这种情况下,我们称这两个变量是协整的。 因果检验用于确定一个变量的变化是否为另一个变量变化的原因。 三、实验内容及要求: 用Eviews来分析上海证券市场A股成份指数(简记SHA)和深圳证券市场A股成份指数(简记SZA)之间的关系。内容包括: 1.对数据进行平稳性检验 2.协整检验 3.因果检验 4.误差纠正机制ECM 要求:在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法,具体的协整检验过程,掌握格兰杰因果检验方法,以及误差纠正模型方法。 四、实验指导: 1、对数据进行平稳性检验: 首先导入数据,将上海证券市场A股成份指数记为SHA,深圳证券市场A股成份指数记为SZA(若已有wf1文件则直接打开该文件)。 在workfile中按住ctrl选择要检验的二变量,右击,选择open—as group。则此时可在弹出的窗口中对选中的变量进行检验。检验方法有: ①画折线图:“View”―“graph”—“line”,如图3—1所示。 ②画直方图:在workfile中按住选择要检验的变量,右击,选择open,或双击选中的变量,“view”―“descriptive statistic”―“histogram and stats”;注意到图中的J.B.统计量,其越趋向于0,则图越符合正态分布,也就说明数据越平稳。如图3—2和3—3所示。 ③用ADF检验:方法一:“view”—“unit root test”;方法二:点击菜单中的“quick”―“series statistic”―“unit root test”;分析原则即比较值的大小以及经验法则。点击ok,如图3—4和3—6所示。

面板数据协整分析

面板数据的协整检验 一、引言 改革开放以来,随着中国经济的快速增长,城镇居民的人均收入和人均消费均有较大幅度的增长。随着国民经济的迅猛发展,我国城镇居民生活水平不断提高,基本实现了从贫困到小康的历史性跨越。在1991年—2009年中,随着经济的高速增长,中国人均消费水平翻了三番,人均实际收入也翻了4番。但是同西方发达国家相比,中国以及其他一些东亚地区的储蓄率明显偏高而边际消费倾向较低。特别是从20世纪90年代开始,我国出现了持续的消费倾向偏低的现象。而人均收入,却在不断的增长,且区域差异性较大,东西部地区差距也在变大。在这种情形下,有必要研究中国城镇人均消费和人均收入之间的关系。 现代消费理论强调个体家庭的效用最大化,因此在研究城镇人均消费和人均收入之间的关系时,可以从个体角度出发,直接采用微观的家庭数据。但中国还很难得到连贯的家庭消费和收入的数据,常见的处理方法是将全国总量数据视为一个典型的家庭所产生的数据来进行研究。本文选取华北地区为研究对象,运用面板数据的协整分析进行实证研究。 二、国内外研究 西方发达国家在消费和收入方面进行了大量研究,近年来,国内在这方面的研究也开始增多。大概分为三个阶段:第一阶段为线性回归模型阶段。国内一些学者如李子奈(1992)、臧旭恒(1994)等尝试用普通最小二乘回归、序列相关分析、自回归移动平均误差处理和多项式分布滞后模型等方法来研究消费与收入之间的关系,时间大约为20世纪90年代。第二阶段为单纯时间序列建模。如杭斌(2004)、孙慧钧(2004)等开始采用协整模型和误差修正模型来处理非平稳时序数据,从而有效地解决了伪回归问题。第三个阶段为面板数据分析建模。面板数据单位根和协整理论是时间序列的单位根和协整理论研究的继续与发展,它将来自时间序列的信息和来自横截面的信息结合起来,使对单位根和协整关系的推断检验更为直接和精确,从而为人们处理非平稳面板数据提供了良好的计量工具,如苏良军(2006)等研究了中国城乡居民消费和收入之间的关系。 三、居民收入与消费的描述性统计分析 本文选取华北地区五省市(北京、天津、河北、山西、内蒙古)进行统计分析,数据来源于1991年—2009年的中国统计年鉴,人均收入和人均消费的面板数据纵剖面观察分别如图1和图2所示,从横截面观察分别为图3和图4

平稳性检验与协整检验操作步骤

在对时间序列Y、X1进行回归分析时需要考虑Y与X1之间是否存在某种切实的关系,所以需要进行协整检验。 1.1利用eviews创建时间序列Y、X1 : 打开eviews软件点击file-new-workfile,见对话框又三块空白处workfile structure type处又三项选择,分别是非时间序列unstructured/undate,时间序列dated-regular frequency,和不明英语balance panel。选择时间序列dated-regular frequency。在date specification中选择年度,半年度或者季度等,和起始时间。右下角为工作间取名字和页数。点击ok。 在所创建的workfile中点击object-new object,选择series,以及填写名字如Y,点击OK。将数据填写入内。 1.2对序列Y进行平稳性检验: 此时应对序列数据取对数,取对数的好处在于可将间距很大的数据转换为间距较小的数据。具体做法是在workfile y的窗口中点击Genr,输入logy=log(y),则生成y的对数序列logy。再对logy序列进行平稳性检验。 点击view-United root test,test type选择ADF检验,滞后阶数中lag length选择SIC检验,点击ok得结果如下: Null Hypothesis: LOGY has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=1) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -2.75094601716637 0.0995139988900359 Test critical values: 1% level -4.29707275602226 5% level -3.21269639026225 10% level -2.74767611540013当检验值Augmented Dickey-Fuller test statistic的绝对值大于临界值绝对值时,序列为平稳序列。

EViews6.0在面板数据模型估计中的操作

EViews 6.0在面板数据模型估计中的实验操作 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

第七讲_面板数据的协整检验

第七讲面板数据的协整检验 众所周知,时间序列观测数据的长度直接关系到协整关系检验的效果,经济变量的观测数据序列越长,协整检验的功效也就越高,即,协整检验过程中犯第Ⅱ类型错误的概率越小(Pedroni (1995))。然而,由于实际研究环境限制,在许多经济问题研究中,经济变量的时间序列很短。尤其是,转型经济国家宏观经济变量的观测值更是如此。同样,微观经济数据也普遍存在类似问题。所以,它们制约了协整理论的广泛应用。为此,计量经济学者试图综合经济变量源于不同经济个体(国家、区域、产业、企业或个体)的时间序列信息发展协整理论。于是,面板数据的协整检验应运而生。然而,在面板数据模型中,由于个体的异质性、非平衡面板、纵剖面时间序列的相关性(或称为空间相关性)、纵剖面时间序列的协整性(或称为空间协整性)和二维渐近性等问题的存在,使得面板数据协整检验远远复杂于时间序列的协整理论。 面板数据的协整理论研究始于1995年,Pedroni (1995)、Kao与Chen (1995) 、Kao与Chiang (1997)、McCoskey与Kao (1998)、Kao(1999)以及Westerlund (2005a)和Breitung (2005)等等分别研究了面板数据的虚假回归(spurious regressions)和协整检验。Kao (1999)发现面板数据的LSDV估计是超一致估计,但是,回归系数的t 统计量却是发散的,所以,有关回归系数的统计推断是错误的。随着面板单位根检验理论的发展,近十年来面板协整检验理论得到了不断丰富。关于面板协整检验的理论研究文献已有数十篇之多,面板协整检验的应用研究主要集中在购买力平价理论的验证、经济增长收敛性实证分析和国际研发溢出效应的检验等研究,应用研究的文献相当丰富。 综合分析面板协整检验的应用研究文献,近年来,Pedroni (1995)、McCoskey等(1998)、Kao(1999)、 Larsson等(2001)和Groen等(2002)提出的面板协整检验在经济学领域获得了广泛应用。因此,本章将重点介绍这些面板协整检验的理论和应用。 纵观面板协整检验的理论研究文献,首先,按检验方法的基本思路划分,面板协整检验分为两类。 一类是基于面板数据协整回归检验式残差(面板)数据单位根检验的面板协整检验,即,Engle–Granger二步法的推广,这类检验通常称为第一代面板协整检验。第一代面板协整检验的显著特点表现为:(1)忽视了可能存在的不可观测共同因素,或者试图通过退势方法,或者借助于可观测的共同效应克服不可观测的共同效应;(2)通常只适用于在个体时间序

协整检验eviews

四.协整检验的相关应用 一.基本思想及注意要点、适用条件 1.基本思想 尽管一些变量是非平稳的而且是同阶单整的(比如,同为I(1)与I(2)),但有时如果我们对它们之间的关系进行长期观察,会发现它们之间是存在着某种内在的联系的,即它们之间从长期看存在着稳定的均衡关系。比如,两个醉汉,同时从某一个平行的地点出发,尽管如果你单独观察某一个醉汉,会发现它们的走路并无明显的规律可循,而且,随着时间的延长,有偏离其走路均值的幅度越来越大的特点(非平稳),但如果你事前在他们腰间拴一条绳子,而且他们波动的趋势恰好相反,那么,你会发现,从长期来看,他们所走过路,是相对具有某种稳定的关系的,我们通常称这种观察到的现象为所谓的协整关系。也可想一下“一条绳子上拴两个蚂蚱”。 2.注意要点 (1)协整一定是针对于同阶单整的,即两个或多个变量之间一定是同样一个I(n)过程,即大家都必须是经相同阶的差分后才会平稳。 直观的,如果将平稳时间序列数据看作是“正常人”,非平稳时间序列数据看作是“醉汉”,那么,只有“醉汉”之间才可能存在协整关系,而且只有“醉”的程度是一样的,才可能存在协整关系。故要利用协整技术,前提条件就是先判断,你的变量序列是不是“醉汉”。拴一条绳子在两个“醉汉”之间,在数学上可类比于线性组合。 (2)如果存在协整关系,那么表明你在假定模型的时候,认为两个或多个变量之间的关系不是单向的。协整只表明所观察的两个或几个变量之间长期可能存在某种稳定的相对关系,但通常并不能一定认为二者就具有因果关系,这也是为何实证当中,一般是将协整与所谓的格兰杰因果检验同时运用的原因 (3)从上面的比如可知,即使两个变量之间存在协整关系,而且也检验出存在因果关系,但这种因果关系的方向通常并不确定,而且由于协整都是基于原始变量非平稳的,因而,此前的“仪器”一般是失效的,故通常不要试图对协整的分析结果进行乘数等解析。比如,一般不能说x变化多少引起y变化多少。不过,如果样本量比较大,直接运用OLS进行估计,从参数的准确度来说,影响并不大,而且,参数实际会以比一般更快的速度一致的收敛到真实的参数。 (4)协整往往与经济学上的“均衡”概念相联系。如果两个变量之间存在协整关系,那么通常表明两个变量之间具有长期均衡关系。从这一点也决定了,你通常不能对协整估计出来的方程结果进行短期的乘数解释。 (5)在数学上,协整实际上表现为两个或多个变量之间的线性组合是一个平稳的变比量。比如,ax t+by t是一个平稳变量。其中,a、b称作协整系数。从数学表达式也可看出,协整并没有给出x与y的因果关系方向,而且,既然ax t+by t是平稳的,那么显然kax t+kby t 也是平稳的,故由此也可看出,对协整系数进行一般的乘数分析是没有意义的。 (6)eviews7.0给出了两种协整检验的方法:一种是基于单方程的检验法;另一种是基于V AR的检验法。但eviews5.0以前的版本没有第一种方法。故下面仅简单介绍一下后一种方法。特别要注意,如果你用的是eviews7.0版本的基于单方程的检验方法,那么,eviews

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

面板数据分析简要步骤与注意事项 (面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统 计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。

平稳性检验与协整检验操作步骤

平稳性检验与协整检验操作步骤 在对时间序列Y、X1进行回归分析时需要考虑Y与X1之间是否存在某种切实的关系,所以需要进行协整检验。 1.1 利用eviews创建时间序列Y、X1 : 点击file-new-workfile,见对话框又三块空白处 workfile structure 打开eviews软件 type处又三项选择,分别是非时间序列unstructured/undate,时间序列dated-regular frequency,和不明英语balance panel。选择时间序列dated-regular frequency。在date specification中选择年度,半年度或者季度等,和起始时间。右下角为工作间取名字和页数。点击ok。 在所创建的workfile中点击object-new object,选择series,以及填写名字如Y,点击OK。将数据填写入内。 1.2 对序列Y进行平稳性检验: 此时应对序列数据取对数,取对数的好处在于可将间距很大的数据转换为间距较小的数据。具体做法是在workfile y的窗口中点击Genr,输入logy=log(y),则生成y的对数序列logy。再对logy序列进行平稳性检验。 点击view-United root test,test type选择ADF检验,滞后阶数中lag length选择SIC检验,点击ok得结果如下: Null Hypothesis: LOGY has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=1) t-Statistic Prob.* Augmented Dickey-Fuller test

面板数据的计量方法

面板数据的计量方法 1.什么是面板数据? 面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。面板数据是截面数据与时间序列综合起来的一种数据资源,是同时在时间和截面空间上取得的二维数据。 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 2.面板数据的计量方法 利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加估计量的抽样精度。(2)对于固定效应模型能得到参数的一致估计量,甚至有效估计量。(3)面板数据建模比单截面数据建模可以获得更多的动态信息。例如1990-2000 年30 个省份的农业总产值数据。固定在某一年份上,它是由30 个农业总产值数字组成的截面数据;固定在某一省份上,它是由11 年农业总产值数据组成的一个时间序列。面板数据由30 个个体组成。共有330 个观测值。 面板数据模型的选择通常有三种形式:混合估计模型、固定效应模型和随机效应模型 第一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。 第二种是固定效应模型(Fixed Effects Regression Model)。在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。 固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。(1)个体固定效应模型。 个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型。注意:个体固定效应模型的EViwes输

面板数据分析方法步骤全解

面板数据分析方法步骤全解 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序

列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、

相关主题