搜档网
当前位置:搜档网 › 研究生院_膜蛋白seminar2013-12-9-柳振峰

研究生院_膜蛋白seminar2013-12-9-柳振峰

细胞膜蛋白质

膜结构中含有蛋白质早已证实,但有兴趣的问题是膜中蛋白质究以何种形式存在。70年代以前,多数人主张蛋白质是平铺在脂质双分子层的内外两侧,后来证明,蛋白质分子是以а-螺旋或球形结构分散镶嵌在膜的脂质双分子层中。膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线盘旋,形成每一圈约含3.6个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接。膜结构中的蛋白质,具有不同的分子结构和功能。生物膜所具有的各种功能,在很大程度上决定于膜所含的蛋白质;细胞和周围环境之间的物质、能量和信息交换,大都与细胞膜上的蛋白质分子有关。由于脂质分子层是液态的,镶嵌在脂质层中的蛋白质是可移动的,即蛋白质分子可以在膜脂分子间横向漂浮移位;不同细胞膜中的不同蛋白质分子的移动和所在位置,存在着精细的调控机制。例如,骨骼肌细胞膜中与神经肌肉间信息传递有关的通道蛋白质分子,通常都集中在肌细胞膜与神经未梢分布相对应的那些部分;而在肾小管和消化管上皮细胞,与管腔相对的膜和其余部分的膜中所含的蛋白质种类大不相同,说明各种功能蛋白质分子并不都能在所在的细胞膜中自由移动和随机分布,而实际存在着的有区域特性的分布,显然同蛋白质完成其特殊功能有关。膜内侧的细胞骨架可能对某种蛋白质分子局限在膜的某一特殊部分起着重要作用。

(完整版)苏教版高中生物必修知识点总结

1、蛋白质的基本单位氨基酸,其基本组成元素是C H、ON 2、氨基酸的结构通式:__________ 肽键:__________________ 3、肽键数=脱去的水分子数=_氨基酸数_ —__肽链数__________ 4、多肽分子量=氨基酸分子量x_氨基酸数一水分子数_x18 5、核酸种类:_____ DNA__和—RNA _ 基本组成元素: C,H,O,N,P ____________ 6、DNA的基本组成单位:脱氧核苷酸;RNA的基本组成单位_核糖核苷酸。 7、核苷酸的组成包括:1分子、1分子、1分子。 & DNA主要存在于__细胞核中,含有的碱基为_A,T,G,C ; RNA 主要存在于__细胞质中,含有的碱基为ACGU 9、细胞的主要能源物质是__糖类_____,直接能源物质是__ATP 10、葡萄糖、果糖、核糖属于单糖; 蔗糖、麦芽糖、乳糖属于二糖;淀粉、纤维素、糖原属于多糖。 11、脂质包括:脂肪、磷脂和固醇 12、大量元素:C、H O IN P、S、K、Ca、Mg (9 种) 微量元素:Fe、Mn B、Zn、Cu、Mo (6 种) 基本元素:C H O N_ (4种) 最基本元素:C (1种) 主要元素:C H O N P、S (6种) 13、水在细胞中存在形式:自由水、结合水 14、细胞中含有最多的化合物:水干细胞中含量最多的有机物:蛋白质 15、血红蛋白中的无机盐是:Fe2+,叶绿素中的无机盐是:Mg+ 16、被多数学者接受的细胞膜模型叫流动镶嵌模型 17、细胞膜的成分:磷脂、蛋白质和少量糖类。细胞膜的基本骨架是磷脂双份子层。 18、细胞膜的结构特点是:流动性;功能特点是:选择透过性 19、具有双层膜的细胞器:线粒体、叶绿体; 不具膜结构的细胞器:核糖体、中心体; 有“动力车间”之称的细胞器是_线粒体_; 有“养料制造车间”和“能量转换站”之称的是叶绿体; 有“生产蛋白质的机器”之称的是_核糖体; 有“消化车间”之称的是溶酶体; 存在于动物和某些低等植物体内、与动物细胞有丝分裂有关的细胞器是中心体。与植物细胞细胞壁形成有关、与动物细胞分泌蛋白质有关的细胞器是—高尔基体。 20、细胞核的结构包括:核膜、核仁和染色质。细胞核的功能:是遗传物质贮存和复制的场所,是细胞代谢和遗传的控制中心。 21、原核细胞和真核细胞最主要的区别:有无以核膜为界限的细胞核 22、物质从高浓度到低浓度的跨膜运输方式是:简单扩散和协助扩散需要载体的运输方式是:协助运输和主动运输;需要消耗能量的运输方式是:主动运输; 23、酶的化学本质:多数是蛋白质,少数是RNA 24、酶的特性:高效性、专一性 25、ATP的名称是三磷酸腺苷,结构式是:A—P~P~P ATP 是各项生命活动的直接能源,被称为能量“货币”

细胞膜及其表面123节答案

第五章细胞膜及其表面 (第1-3节) 一、填空 A-五-1.细胞膜的最显著特性是不对称性和流动性。 A-五-2.生物膜脂在正常生理温度下以液晶态存在,随着温度的上升或下降可发生状态的改变,这种变化称相变。 A-五-3. 生物膜的化学组成主要有膜脂、膜蛋白、膜糖。 A-五-4.动物细胞连接有封闭连接、锚定连接、通讯连接__等几类,其中通讯连接具有细胞通讯作用。 A-五-5.按照膜蛋白与膜脂的结合方式以及膜蛋白存在的位置,可分为膜内在蛋白、膜周边蛋白、脂锚定蛋白三种。 B-五-6.在正常生理温度下,膜脂呈液晶态,具有一定的流动性,影响膜脂流动性的因素中,脂肪酸链的饱和程度越高,膜脂的流动性越小(大或小)。 B-五-7.细胞膜中所含有的主要脂类为磷脂、胆固醇、糖脂,它们都是双亲性分子。 B-五-8. 质膜中磷脂、胆固醇和糖脂等成分是具有双亲性的分子。 C-五-9.真核细胞膜中有四种主要的磷脂分子:磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和鞘磷脂。C-五-10.膜脂的分子运动方式包括:旋转运动、侧向扩散运动、 内、外层翻转运动和弯曲运动。

C-五-11.点状桥粒的主要结构包括:①__桥粒斑__; ②____钙黏蛋白___;③__中间丝___。 D-五-12.改变溶液温度或离子强度就可以从细胞膜上分离下来的膜蛋白是膜周边蛋白,用去垢剂处理才能从细胞膜上分离下来的膜蛋白是膜内在蛋白。 二、选择题 (一)单项选择题 A-五-1.生物膜的主要化学成分是( C )。 A 蛋白质和水 B 蛋白质和糖类 C 蛋白质和脂类 D 脂类和糖类 A-五-2.膜脂中最多的是( C )。 A 脂肪 B 糖脂 C 磷脂 D 胆固醇 ?A-五-3. 下列哪种结构不是单位膜( C )。 A 细胞膜 B 内质网膜 C 细胞外被 D 线粒体外膜 A-五-4.细胞膜性结构在电镜下都呈现出较为一致的三层结构,即内外两层电子致密层中夹一层疏松层,称为( C )。 A 生物膜 B 质膜 C 单位膜 D 板块模型 A-五-5. 下列关于细胞膜的叙述哪项有误( D ) A 镶嵌蛋白以各种形式镶嵌于脂质双分子层 B 含胆固醇 C 含糖脂 D外周蛋白在外表面 A-五-6.磷脂分子在细胞膜中的排列规律是( A ) A 极性头部朝向膜的内、外两侧,疏水尾部朝向膜的中央 B 极性头部朝向膜的外侧,疏水尾部朝向膜的内侧 C 极性头部朝向膜的内侧,疏水尾部朝向膜的外侧 D 极性头部朝向膜的中央,疏水尾部朝向膜的内、外两侧 A-五-7.生物膜是指( D ) A 单位膜 B 蛋白质和脂质二维排列构成的液晶态膜

植物细胞跨膜离子运输

第四章植物细胞跨膜离子运输 第一节生物膜的化学组成与生物膜的主要理化特性 第二节细胞膜结构中的跨膜运输蛋白 第三节植物细胞的离子跨膜运输机制 第四节高等植物K+、Ca+的跨膜运输机制研究进展 [主要内容]:介绍植物细胞膜的化学组成和理化特性,膜上运输蛋白的类型、离子跨膜运输机制及K+、Ca+跨膜运输机制研究进展。 [教学要求]:要求学生了解细胞离子跨膜运输的意义,生物膜的理化特性,掌握膜上运输蛋白的类型、特性及离子跨膜运输的机理,了解K+、Ca+的跨膜运输机制研究 进展。 [教学重点]:离子跨膜运输蛋白的种类、特性,离子跨膜运输机理。 [教学难点]: [授课时数]:3学时 引言(3 min) 高等植物的生长发育有赖于构成植物个体的活细胞不断从土壤、大气、水体等环境中吸收利用各种矿质元素。在植物细胞水平上对营养元素的吸收利用过程是植物不断吸收营养元素的基础。植物细胞质膜是细胞与环境之间的空间界限,活细胞对各种营养元素的吸收就是这些元素的跨膜运输过程。植物所必需的各种矿质元素大部分是以带电离子的形式被吸收的,因此本章的主要内容是“植物细胞跨膜离子运输”。 植物细胞与动物微生物细胞跨膜离子运输机制有许多相似之处,也有不同之处,但作为物质运动的一种形式,都遵循物理化学的基本规律。以下先介绍离子跨膜运输的基本知识,在此基础上讨论各种离子的运输过程。 第一节生物膜的化学组成和物理化学性质(8分) 细胞最外层是质膜,它是外界物质进入的屏障,质膜控制着细胞与环境的物质交流,维持了细胞内环境的相对稳定。质膜是由双磷脂层与蛋白质构成。磷脂结构:胆碱、磷酸、甘油、脂肪酸(饱和,不饱和)。 与磷脂相联的蛋白质分两类:内在蛋白(Integral)、外在蛋白(Peripheral) 内在蛋白插入双层脂中,常常是跨膜的。 外在蛋白通过非共价键,如氢键,附着在膜上。 所以磷脂表现出亲水和亲脂的性质。 为研究生物膜对溶质的通透性,常用人工双层脂膜和生物膜进行比较研究: 结果表明: 对于非极性(O2)和极性小分子(如H2O、CO2、甘油)二者的通透性类似。 对于离子和大的极性分子(如糖)二者表现出较大差异。天然生物膜比人工膜通透性大

高中生物蛋白质知识点总结

高中生物蛋白质知识点总结 蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组 成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%, 最重要的还是其与生命现象有关。下面是小编整理的高中生物蛋白质知识点 总结,供参考。 1.蛋白质基本含义蛋白质是由氨基酸以“脱水缩合”的方式组成的多肽链经 过盘曲折叠形成的具有一定空间结构的物质。蛋白质中一定含有碳、氢、氧、 氮元素。蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条 或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是 构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用, 可以说没有蛋白质就没有生命活动的存在。2.原子数由m个氨基酸,n条肽 链组成的蛋白质分子,至少含有n个—COOH,至少含有n个—NH2,肽键 m-n个,O原子m+n个。分子质量设氨基酸的平均相对分子质量为a,蛋白 质的相对分子质量=ma-18(m-n)基因控制基因中的核苷酸6信使RNA中的核 苷酸3蛋白质中氨基酸13.蛋白质组成及特点蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。这些元素在蛋白质中的组成百分比约为: 碳50%氢7%氧23%氮16%硫0~3%其他微量。(1)一切蛋白质都含N元素, 且各种蛋白质的含氮量很接近,平均为16%;(2)蛋白质系数:任何生物样品中 每1g元N的存在,就表示大约有100/16=6.25g蛋白质的存在,6.25常称为 蛋白质常数(3)蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子 上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质 具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。

多次跨膜

粗面内质网的功能——蛋白质转运 粗面内质网的主要功能是帮助膜结合核糖体合成的蛋白质转运。膜结合核糖体上合成的蛋白质与游离核糖体上合成的蛋白质去向是不同的,表9-5列出了这两类核糖体合成的某 些蛋白。 表9-5 真核细胞中膜结合核糖体和游离核糖体合成的某些蛋白 由于粗面内质网上合成的蛋白质包括膜蛋白、内膜结构的腔池蛋白和分泌到细胞外的蛋白,所以必须有极好的运输机制进行分选定位,这就是信号肽假说。 ■信号序列的发现和证实 ● 微粒体实验 在George Palade用离心技术分离到有核糖体结合的微粒体,即发现膜结合核糖体(membrane-bounded ribosome)之后,科学家推测:膜结合核糖体合成的蛋白质首先要进入内质网的腔,然后通过选择性的分泌过程输出到细胞外,而游离核糖体上合成的蛋 白质则留在细胞内使用。 为了研究内质网上合成的蛋白质是否进入了内质网的腔,Colvin Redman 和David Sabatini用分离的RER小泡(微粒体)进行无细胞系统的蛋白质合成,证明了膜结合核 糖体上合成的蛋白质进入了微粒体的腔。

如何利用微粒体在无细胞蛋白质合成系统中的合成实验证明膜结合核糖体合成的蛋白 质进入了微粒体的腔 ● Günter Blobel等的建议 为什么有些核糖体合成蛋白质时不同内质网结合,有些正在合成蛋白质的核糖体要同内质网结合,并将合成的蛋白质插入内质网?对此,美国洛克菲勒大学的Günter Blobel、David Sabatini 和Bernhard Dobberstein 等于1971年提出两点建议: ①分泌蛋白的N-端含有一段特别的信号序列(signal sequence),可将多肽和核糖体引导到ER膜上;②多肽通过ER膜上的水性通道进入ER的腔中,并推测多肽是在合成 的同时转移的。 ● 信号序列存在的直接证据 1972年,César Milstein和他的同事用无细胞系统研究免疫球蛋白(IgG)轻链合成时获得了信号序列存在的直接证据,证明Blobel等的建议是正确的。他们用分离纯化的核糖体在无细胞体系中用编码免疫球蛋白轻链的mRNA指导合成多肽,发现合成的多肽比分泌到细胞外的成熟的免疫球蛋白在N端有一段多出的肽链,它有20个氨基酸,他们推测,这段肽具有信号作用,使IgG得以通过粗面内质网并继而分泌到细胞外。 ● 信号序列的进一步证实 G.Blobel、B.Dobberstein、P.Walter和他们的同事在上述发现的基础上用分离的微 粒体和无细胞体系进行了大量的实验,进一步证实了信号序列的存在及其作用。 加与不加RER小泡,产物不同当将分泌蛋白的mRNA在无细胞体系中进行翻译时,如果不加粗面内质网(微粒体),获得的翻译产物比从细胞中分泌出来的蛋白要长,若添加RER小泡,翻译的产物长度与从活细胞分泌的蛋白相同。因此推测信号序列在引导蛋白进入内质网后被切除了,所以成熟的蛋白的N-端没有信号序列(图9-16)。

细胞膜的研究发展

(1)膜脂 磷脂、胆固醇、糖脂,每个动物细胞质膜上约有109个脂分子,即每平方微米的质膜上约有5x106个脂分子。 (2)膜蛋白 细胞膜蛋白质(包括酶)膜蛋白质主要以两种形式同膜脂质相结合:分内在蛋白和外在蛋白两种。内在蛋白以疏水的部分直接与磷脂的疏水部分共价结合,两端带有极性,贯穿膜的内外;外在蛋白以非共价键结合在固有蛋白的外端上,或结合在磷脂分子的亲水头上。如载体、特异受体、酶、表面抗原。占20%~30%的表面蛋白质(外周蛋白质)以带电的氨基酸或基团——极性基团与膜两侧的脂质结合;占70%~80%的结合蛋白质(内在蛋白质)通过一个或几个疏水的α-螺旋(20~30个疏水氨基酸吸收而形成,每圈3.6个氨基酸残基,相当于膜厚度。相邻的α-螺旋以膜内、外两侧直链肽连接)即膜内疏水羟基与脂质分子结合。理论上,镶嵌在脂质层中的蛋白质是可以横向漂浮移位的,因而该是随机分布的;可实际存在着的有区域性的分布;(这可能与膜内侧的细胞骨架存在对某种蛋白质分子局限作用有关),以实现其特殊的功能:细胞与环境的物质、能量和信息交换等。(Frye和Edidin1970年用发红光的碱性芯香红标记人细胞同用发绿光荧光素标记膜蛋白抗体标记离体培养的小鼠细胞一起培养,然后使它们融合,从各自分布,经过37℃40min后变为均匀分布。光致漂白荧光恢复法,微区监测) 细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。通道蛋白与与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。 (3)膜糖 膜糖和糖衣:糖蛋白、糖脂 细胞膜糖类主要是一些寡糖链和多糖链,它们都以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白;这些糖链绝大多数是裸露在膜的外面(非细胞质)一侧的。(多糖-蛋白质复合物,细胞外壳cell coat)单糖排序上的特异性作为细胞或蛋白质的“标志、天线”—抗原决定簇(可识别,与递质、激素等结合。ABO血型物质即鞘氨醇上寡糖链不同。131AA+100糖残基)。 细胞膜的基本特征与功能 细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动。此外,细胞所必需的养分的吸收和代谢产物的排出都要通过细胞膜。所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性。这是细胞膜最基本的一种功能。如果细胞丧失了这种功能,细胞就会死亡.。

高中生物知识点总结(史上最全)

高三复习生物知识结构网络 第一单元生命的物质基础和结构基础 (细胞中的化合物、细胞的结构和功能、细胞增殖、分化、癌变和衰老、生物膜系统和细胞工程)1.1 1.2生物体中化学元素的组成特点

1.4细胞中的化合物一览表 1.5蛋白质的相关计算 设构成蛋白质的氨基酸个数m,构成蛋白质的肽链条数为n, 构成蛋白质的氨基酸的平均相对分子质量为a,蛋白质中的肽键个数为x, 蛋白质的相对分子质量为y,控制蛋白质的基因的最少碱基对数为r, 则肽键数=脱去的水分子数,为n m x- =……………………………………①蛋白质的相对分子质量x ma y18 - =…………………………………………② 或者x a r y18 3 - =…………………………………………③

1.8生物大分子的组成特点及多样性的原因 1.9生物组织中还原性糖、脂肪、蛋白质和DNA 的鉴定 1.10水 被选择的离子和小分子 其它离子、小分子和大分子

1.11细胞膜的物质交换功能 1.12线粒体和叶绿体共同点 1、具有双层膜结构 2、进行能量转换 3、含遗传物质——DNA 4、能独立地控制性状 5、决定细胞质遗传 6、内含核糖体 7、有相对独立的转录翻译系统 8、能自我分裂增殖 1.13真核生物细胞器的比较 1.14细胞有丝分裂中核内DNA 、染色体和染色单体变化规律 亲脂小分子 高浓度——→低浓度 不消耗细胞能量(A TP ) 离子、不亲脂小分子 低浓度——→高浓度 需载体蛋白运载 消耗细胞能量(ATP )

注:设间期染色体数目为2N 个,未复制时DNA 含量为2a 。 1.15理化因素对细胞周期的影响 注:+ 表示有影响 1.16细胞分裂异常(或特殊形式分裂)的类型及结果 1.17细胞分裂与分化的关系 1.18已分化细胞的特点 1.19分化后形成的不同种类细胞的特点 1.20分化与细胞全能性的关系 G 分化程度越低全能性越高,分化程度越高全能性越低 分化程度高,全能性也高 分化程度最低(尚未分化),全能性最高

植物膜蛋白提取方法的研究(2D电泳用)

植物膜蛋白提取试剂盒(2D电泳用) 货号:BB-31841 V2.16 试剂盒组成: 产品组成 BB-31841-1 BB-31841-2 组份编号 规格 50T 100T 试剂A:植物膜蛋白提取液A 25ml 50ml 31841A 试剂B:植物膜蛋白提取液B 250ul 500ul 31841B 试剂C:膜蛋白溶解液C 10ml 20ml 31841C 试剂D:蛋白酶抑制剂混合物 100ul 200ul 31841D 使用说明书 1 1 知识产权: 贝博TM BBproExtra TM试剂盒及其使用方法包含专有技术。 产品简介: 膜蛋白承担各种生物功能,扮演重要角色。膜蛋白样品的制备需要充分考虑到与下游的胶分析及质谱分析等应用配套,因此膜蛋白样本制备成为一个难以逾越的挑战。传统制备膜蛋白样品的方法是使用去污剂和表面活性剂增溶。去污剂处理会使膜蛋白丧失其天然结构,因而妨碍了膜蛋白的功能研究。 贝博TM BBproExtra TM植物膜蛋白提取试剂盒(二维电泳用)是一种基于化学方法的高产膜蛋白提取试剂盒。植物膜蛋白提取试剂盒可以从各种植物中提取膜蛋白,可用于纯化膜蛋白的粗品制备及膜蛋白制备。提取过程简单方便。该试剂盒含有蛋白酶抑制剂混合物和磷酸酶抑制剂混合物,阻止了蛋白酶对蛋白的降解,为提取高质量的蛋白提供了保证。 本试剂盒提取的蛋白用于双向电泳。如需要用于报告基因检测、SDS-PAGE电泳检测、Western blotting、凝胶阻滞实验、免疫共沉淀、酶活分析等下游实验的试剂盒,请联系贝博,选用其它产品号的产品。 使用方法: 1、试剂准备: 每500ul膜提取液A中加入2ul蛋白酶抑制剂混合物,充分混匀后置冰上备用。 2、取洗净擦干后并去除叶梗和粗脉的200mg植物组织样本用手术剪刀尽可能剪碎,加 入500ul提取液A,用组织匀浆机/匀浆器充分匀浆。 3、匀浆或研磨后加入500ul提取液A,混匀后于一个干净离心管中在2-8℃振荡1小时。 4、将提取液在2-8℃条件下12000g离心5分钟,取上清。 5、在上清中加入5ul提取液B,充分混匀。 6、在37℃水浴10分钟。 7、在37℃ 1000g离心3分钟。 8、此时液体分为2层,小心移除上层部分,吸取下层管底部大约50ul液体。 9、用50-150μl冷的膜蛋白溶解液C溶解下层溶液,即得膜蛋白样品。

一种跨膜蛋白_闭锁蛋白的研究现状_邵立健

04 M cIntosh JC,M ervi n Blake S ,Conner E,e t al .Surfactant pro tein A protects grow i ng cells and reduces T NF alpha activity from L PS s timulated macrophages [J].Am J Physiol,1996,271(2Pt 1):L 310 319. 05 Kumar AR,Snyder JM.Differential regulati on of S P A1and SP A2gen es by cAM P,glucocorti coids,an d insulin [J].Am J Physi ol,1998,275(6Pt 1):L1078 1088. 06 Yano T,M ason RJ,Pan T ,et al .KGF regulates pulmonary ep ithelial proliferation and surfactant protei n gene expression i n adult rat lung [J].Am J Physiol Lung Cell M ol Physiol,2000,279(6):L 1146 1158. 07 Vayrynen O,Glumoff V,Hal lman M .Regulation of surfactant proteins by LPS and proinflammatory cytok i nes i n fetal and new born lung [J].Am J Physiol Lung Cell M ol Physiol,2002,282(4):L803 810. 08 Korfhagen TR.S urfactant Protein A (SP A) M ediated Bacterial Clearance .SP A and Cys tic Fibrosis [J].Am J Respir C ell M ol Biol,2001,25(6):668 672. 09 Aw asth i S,Coalson JJ ,Crouch E,et al .Surfactant proteins A an d D i n premature baboons with chronic lung injury (Bronchopul monary dysplasia).Evidence for an inhibition of secretion[J].Am J Respir Crit Care M ed,1999,160(3):942 949. 10 T akahashi H,Kuroki Y,Tanaka H,et al .Serum levels of surfac tant proteins A an d D are useful biomarkers for interstitial lung disease in patients w ith progres sive systemic sclerosi s [J ].Am J Respir Crit Care M ed,2000,162(1):258 263. 11 Goss KL,Kumar AR,Snyder JM.S P A2gene expression in hu man fetal lung airw ays[J].Am J Respir Cell M ol Biol,1998,19(4):613 621. 12 Dutton JM ,Goss KL,Khubchandani KR ,et al .S urfactant pro tein A in rabbit sinus an d middle ear mucosa [J].Ann Otol Rhinol Laryngol,1999,108(10):915 924. 13 Eliakim R,Goetz GS ,Rubio S,e t al .Isol ation and characteriza tion of s urfactant like particles in rat and human colon [J].Am J Physiol,1997,272(3Pt 1):G425 434. 14 M adsen J,Tornoe I,Nielsen O,et al .Expression and Localiza tion of Lung Surfactant Protei n A in Human Tissues [J].Am J Respir Cell M ol Biol,2003,29(5):591 597. 15 Alcorn JL,Hammer RE,Graves KR,et al .Analysis of genomic regi ons involved in regulation of the rabbi t surfactant protein A gene in transgenic m i ce [J].Am J Physiol,1999,277(2Pt 1):L349 361. 16 Hills BA,M onds M K.Deficiency of lubricating surfactant lini ng the articular surfaces of replaced hips and knees [J].Br J Rheuma tol,1998,37(2):143 147. 17 M acNeill C,Umstead TM ,Phelps DS,et al .Surfactant protein A,an innate immune factor,is expressed in the vaginal mucosa and is present in vagi nal lavage fluid [J].Immunol ogy,2004,111(1):91 99. 一种跨膜蛋白 闭锁蛋白的研究现状 邵立健 综述 朱清仙 审校 (江西医学院人体解剖学教研室,江西南昌330006) 摘要:紧密连接存在于上皮细胞的连接复合体中,有屏障功能和保持细胞极性的作用,已证实闭锁蛋白、Claudin 和JA M 位于紧密连接处,其中闭锁蛋白在维持紧密连接的功能方面有重要作用。闭锁蛋白与质膜下蛋白有密切的联系,其功能受到多方面因素的调控。 关键词:紧密连接; 闭锁蛋白; 上皮细胞; ZO 1; ZO 2 中图分类号:R318.04 文献标识码:A 文章编号:1001 1773(2004)03 0263 04 紧密连接主要存在于上皮细胞、内皮细胞间的连接复合体中,使相邻细胞膜紧靠在一起,形成环绕细胞的物理屏障结构,具有封闭上皮细胞间隙,防止可溶性物质从细胞一侧扩散到另一侧的屏障功能,同时它把上皮细胞分成顶侧的脂质成分和基侧的蛋白质 成分两个不同的功能区。紧密连接形成的屏障在不同上皮细胞间通透性不一,且这种屏障功能受到多种方式的调控,这与紧密连接的分子结构密切相关。近年来,几种紧密连接蛋白成分相继被证实,如闭锁蛋白、Claudin 和紧密连接粘附分子(JAM )等,但对于它 收稿日期:2003 11 18 修回日期:2004 02 25 作者简介:邵立健(1974 )男,汉族,都昌县人,江西医学院在读博士,主要从事肠粘膜屏障结构和功能的研究。 第24卷第3期2004年6月 国外医学 生理、病理科学与临床分册 Foreign M edical Sciences Section of Pathophysiology and Clinical M edicine Vol.24 No.3 Jun. 2004

植物干旱诱导蛋白研究进展

植物干旱诱导蛋白研究进展 张宏一,朱志华 (中国农业科学院作物品种资源研究所/农业部作物品种资源监督检验测试中心,北京 100081) 摘要:植物在干旱环境下会产生干旱诱导蛋白。干旱诱导蛋白与干旱诱导基因是当前植物逆境生理学研究的热点之一。 根据近年的研究进展,本文就干旱诱导蛋白的类型、特性、功能作了简要综述。 关键词:植物;干旱诱导蛋白 收稿日期:2004204220 修回日期:2004206201 作者简介:张宏一(19782),男,山东青州市人,在读硕士,主要从事作物抗逆性研究 通信作者:朱志华(19522),研究员,Tel :010********* R esearch Progress in Drought 2induced Proteins in Plants ZHAN G Hong 2yi ,ZHU Zhi 2hua (The S upervision and Testing Center f or Crop Germ plasm Resources ,Minist ry of A griculture/Institute of Crop Germ plasm Resources ,Chinese Academy of A gricultural Sciences ,Beijing 100081) Abstract :Drought 2induced proteins are produced in plants on response to drought stress.Drought 2induced proteins and drought 2induced genes were one of the hot fields in plant stress physiology.The present paper de 2scribed characteristics 、classification and function of drought 2induced protein in plants. K ey w ords :Plant ;Drought 2induced protein 植物在生长发育过程中,会受到干旱、低温、盐渍等多种逆境环境的影响。为了抵御或适应各种逆境胁迫,植物体内会发生一系列的生理生化变化。植物在受到逆境胁迫时,原来一些蛋白的合成受到抑制,体内总蛋白的合成速率下降,与此同时,又合成一些新的蛋白质,这就是干旱诱导蛋白。干旱诱导蛋白在植物对逆境的适应过程中起重要的保护作用,可以提高植物对干旱的耐胁迫能力。随着分子生物学理论与技术的进一步发展,干旱诱导蛋白的研究已有了很大进展,一些编码干旱蛋白的基因以及与逆境抗性相关的蛋白激酶基因已被分离测序。研究表明,在水分亏缺造成植物的各种损伤出现之前,植物就对水分胁迫做出包括基因表达在内的适应性调节反应,这是植物自身的保护性选择。因此对干旱诱导蛋白的研究也成为解释植物适应干旱逆境基因表达机制的热点。本文即对干旱诱导蛋白的研究进展进行简要的综述。 1 植物干旱诱导蛋白的类型 干旱诱导蛋白是指植物在受到干旱胁迫时新合 成或合成量增加的一类蛋白质。根据干旱诱导蛋白基因表达的信号途径与脱落酸(ABA )的关系,可将其分为3类:第一类是只能被干旱诱导;第二类是既能被干旱诱导,又能被ABA 诱导;第三类是只能被ABA 诱导[1]。按其功能可分为两大类:第一大类是功能蛋白,其在细胞内直接发挥保护作用,主要包括离子通道蛋白、L EA (Late 2embryenesis abundant )蛋白、渗调蛋白、代谢酶类等;另一大类是调节蛋白,其参与水分胁迫的信号转导或基因的表达调控,间接起保护作用,主要包括蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素、转录因子和一些信号因子等[2]。111 L EA 蛋白 L EA (胚胎发育晚期丰富)蛋白是种子发育后期产生的一类小分子特异多肽,它是伴随着种子成熟过程而产生的。后来研究认为这类蛋白与植物耐脱水性密切相关,受植物的发育阶段、ABA 和脱水信号等调节,在植物的许多组织器官中都有表达[3]。L EA 蛋白相对分子质量较小,约10000~30000。L EA 蛋白富含甘氨酸、赖氨酸等亲水氨基酸,而疏水氨基酸含量很少,具有很高的亲水性和热稳定性, 植物遗传资源学报2004,5(3):268~270Journal of Plant G enetic Resources

P0033 细胞膜蛋白与细胞浆蛋白提取试剂盒

细胞膜蛋白与细胞浆蛋白抽提试剂盒 产品简介: 碧云天的细胞膜蛋白与细胞浆蛋白抽提试剂盒(Membrane and Cytosol Protein Extraction Kit)提供了一种比较简单、方便地从培养细胞或组织中抽提细胞膜蛋白和细胞浆蛋白的方法。抽提的膜蛋白不仅包括质膜上的膜蛋白,也包括线粒体膜、内质网膜和高尔基体膜等上的膜蛋白。 本试剂盒通过匀浆适度破碎细胞,经低速离心去除细胞核和少数未破碎的细胞产生的沉淀,随后取上清高速离心获得细胞膜沉淀和含有细胞浆蛋白的上清,然后通过优化的膜蛋白抽提试剂从沉淀中抽提获取膜蛋白。 约90分钟即可完成培养细胞或组织的细胞膜蛋白与细胞浆蛋白的分离和抽提。抽提得到的蛋白可以用于SDS-PAGE,Western、酶活性测定等后续实验。 膜蛋白抽提试剂中含有蛋白酶抑制剂、磷酸酯酶抑制剂和EDTA等,后续不适合用于蛋白酶、磷酸酯酶等受这些抑制剂影响的酶的活性测定,但抽提获得的膜蛋白或细胞浆蛋白适合用于检测蛋白的磷酸化水平。 本试剂盒按照本说明书的操作步骤可以抽提100个细胞或组织样品。 保存条件: -20℃保存,一年有效。 注意事项: 需自备PMSF。PMSF一定要在抽提试剂加入到样品中前2-3分钟内加入,以免PMSF在水溶液中很快失效。 PMSF(ST506)可以向碧云天订购。 使用本试剂盒抽提到的细胞膜蛋白与细胞浆蛋白均可直接用碧云天生产的BCA法蛋白浓度测定试剂盒(P0009/P0010/P0010S/P0011/P0012/P0012S)测定蛋白浓度。抽提获得的细胞膜蛋白不适合用Bradford法测定蛋白浓度。 为了您的安全和健康,请穿实验服并戴一次性手套操作。 使用说明: 1.准备试剂:室温融解并混匀膜蛋白抽提试剂A和B,融解后立即置于冰浴上。取适量的膜蛋白抽提试剂A和B备用,在 使用前数分钟内加入PMSF,使PMSF的最终浓度为1mM。 2.准备细胞或组织样品: a. 对于细胞 (1) 收集细胞 对于贴壁细胞:培养约2000-5000万细胞,用PBS洗一遍,用细胞刮子刮下细胞或用含有EDTA但不含胰酶的细胞消化液处理细胞使细胞不再贴壁很紧,并用移液器吹打下细胞。离心收集细胞,吸除上清,留下细胞沉淀备用。尽量避免用胰酶消化细胞,以免胰酶降解需抽提的目的膜蛋白。 对于悬浮细胞:培养约2000-5000万细胞,直接离心收集细胞,吸除上清,留下细胞沉淀备用。 (2) 洗涤细胞:用适量冰浴预冷的PBS轻轻重悬细胞沉淀,取少量细胞用于计数,剩余细胞4℃,600g离心5分钟沉淀 细胞。弃上清,随后4℃,600g离心1分钟,以沉淀离心管管壁上的残留液体并进一步沉淀细胞,尽最大努力吸尽残留液体。 (3) 细胞预处理:把1毫升临用前添加了PMSF的膜蛋白抽提试剂A加入至2000-5000万细胞中,轻轻并充分悬浮细胞, 冰浴放置10-15分钟。 b. 对于组织: 取约100毫克组织,用剪刀尽量小心剪切成细小的组织碎片。加入1毫升临用前添加了PMSF的膜蛋白抽提试剂A,轻轻悬浮组织碎片,冰浴放置10-15分钟。注:如果组织样品比较少,也可以使用更少的组织量,例如30-50mg,后续试剂的用量及操作步骤不变;组织用量较少时,最后获得的膜蛋白也较少。

高考生物 必背知识点 蛋白质重难点

2013年高考生物知识点:蛋白质重难点 摘要:小编为大家整理了高中各科知识点,此文章为2013年高考生物知识点:蛋白质重难点。介绍了2013年高考生物知识点:蛋白质重难点,希望大家在查看知识点的时候注意多加练习。 一个通式-两个标准-三个数量关系--四个原因--五大功能 (1)一个通式:是指组成蛋白质的基本单位氨基酸;氨基酸的通式只有1个,即 (形象记忆:碳周围有四个邻居,三个固定邻居即-H、-COOH、-NH2,一个变动邻居即-R 基)。不同的氨基酸分子,具有不同的-R基。 (2)两个标准:是指判断组成蛋白质的氨基酸必须同时具备的标准有2个:一是数量标准,即每种氨基酸分子至少都含有一个氨基(-NH2)和一个羧基(-COOH);二是位置标准,即都是一个氨基和一个羧基连接在同一个碳原子上。 (3)三个数量关系:是指蛋白质分子合成过程中的3个数量关系(氨基酸数、肽键数或脱水分子数、肽链数),它们的关系为:当m个氨基酸缩合成一条肽链时,脱水分子数为(m-1),形成(m-1)个肽键,即脱去的水分子数=肽键数=氨基酸数-1;当m个氨基酸形成n条肽链时,肽键数=脱水分子数=m-n。 (4)四个原因:是指蛋白质分子结构多样性的原因有4个: ①组成蛋白质的氨基酸分子的种类不同; ②组成蛋白质的氨基酸分子的数量成百上千; ③组成蛋白质的氨基酸分子的排列次序变化多端; ④蛋白质分子的空间结构不同。 (5)五大功能:是指蛋白质分子主要有5大功能(由分子结构的多样性决定): ①有些蛋白质是构成细胞和生物体的重要物质,如人和动物的肌肉主要是蛋白质; ②有些蛋白质有催化作用,如参与生物体各种生命活动的绝大多数酶; ③有些蛋白质有运输作用,如细胞膜上的载体、红细胞中的血红蛋白; ④有些蛋白质有调节作用,如胰岛素和生长激素都是蛋白质,能够调节人体的新陈代谢和生长发育; ⑤有些蛋白质有免疫(包括细胞识别)作用,如动物和人体的抗体能清除外来蛋白质对身体生理功能的干扰,起着免疫作用。 1

植物水分胁迫诱导蛋白研究进展

植物水分胁迫诱导蛋白研究进展 施俊凤1,孙常青2  (1.山西省农业科学院农产品贮藏保鲜研究所,山西太原030031;2.山西省农业科学院作物遗传研究所,山西太原030031) 摘要 干旱是影响植物正常生长发育的一种最主要的逆境因子,研究发现了大量的植物应答水分胁迫的蛋白。笔者综述了这些蛋白的特性和功能,以提高人们对于植物抗旱机理的认识。关键词 水分胁迫;功能蛋白;调节蛋白;植物中图分类号 S311 文献标识码 A 文章编号 0517-6611(2009)12-05355-03P rogress in P roteins R esponding to W ater Stress in P lants SHI Jun 2feng et al (Institute of Farm Products S torage ,Shanxi Academ y of Agricultural Sciences ,T aiyuan ,Shanxi 030031)Abstract Drought is an im portant stress factor ,which im pacts the grow th and developm ent of plants.At present ,a series of proteins responding to water -stress in plants have been reported.T he study summ arizes the characters and functions of these proteins for enhancing integrated understanding to the m echanism of proteins inv olved in the tolerance to water stress in plants.K ey w ords W ater stress ;Functional protein ;Regulatory protein ;Plant 作者简介 施俊凤(1977-),女,山西代县人,助理研究员,从事抗旱 分子研究。 收稿日期 2009202206 干旱在我国是影响区域最广、发生最频繁的气象灾害。植物在遭受干旱胁迫时,会做出各种反应来避免或减轻缺水对其细胞的伤害。随着分子生物学技术和理论的发展,抗旱相关基因不断被克隆,现已证明一些基因表达产物可增强植物的抗逆性。根据其功能,可分为调节蛋白和功能蛋白两大类。 1 调节蛋白 调节蛋白在逆境胁迫信号转导和功能基因表达过程中起调节作用。目前,已发现的主要有转录因子、蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素和一些信号因子等。 1.1 转录因子 转录因子对水分胁迫的响应非常迅速,一 般数分种即可达最高水平,转录因子C BF1、C BF2、C BF3、C BF4和DRE B1a 、DRE B1b 、DRE B1c 、DRE B2通过与顺式作用元件 CRT/DRE 结合,引起一组含顺式作用元件CRT/DRE 的抗旱 功能基因表达。在拟南芥等多种植物中,DRE 顺式作用元件普遍存在于干旱胁迫应答基因的启动子中,对干旱胁迫诱导基因的表达起调控作用。 转录因子A BF 和bZIP 可与顺式作用元件A BRE 特异结合,通过依赖A BA 的信号转导途径调控植物对冷害、干旱和高盐碱等环境胁迫的反应 [1] ;MY B 和MY C 可与MY BR 和 MY CR 特异结合,引起相应抗旱功能基因的表达;WRKY 调控 的目标基因启动子是具有W 框的顺式元件,在拟南芥中约有100个WRKY 成员,存在于根、叶、花序、脱落层、种子和维管组织中,参与植物胁迫反应的很多生理过程 [2] 。 1.2 蛋白激酶 目前已知的植物干旱应答有关的蛋白激酶 主要有受体蛋白激酶(RPK )、促分裂原活化蛋白激酶 (M APK )、转录调控蛋白激酶(TRPK )等。RPK 与感受发育和 环境胁迫信号相关;M APK 与植物对干旱、高盐、低温等反应的信号传递有关;TRPK 主要参与细胞周期、染色体正常结构维持等的基因表达[3]。 M AP 激酶级联信号转导途径由M AP 激酶(M APK )与M AP 激酶激酶(M APKK )和M AP 激酶激酶激酶(M APKKK )组 成。植物细胞感受环境胁迫(如损伤、干旱、低温等)后,通过受体蛋白激酶、M APK 4、蛋白激酶C 和G 蛋白等上游激活子顺次激活M APKKK 、M APKK 和M APK 。M APK 被激活后进入细胞核,通过激活特定转录因子引起功能基因的表达或停留在胞质中激活其他酶类如蛋白激酶磷酸酶、脂酶等,最终引起植物细胞对内外刺激的生理生化反应。目前已经在植物中鉴定出多个由干旱胁迫所诱导的与M APK 信号通路有关的蛋白激酶,如A T MPK3、A T MEKK1和RSK 等。利用酵母双杂交系统,M iz oguchi 等证明A T MEKK1参与拟南芥对干旱、高盐、低温和触伤胁迫信号传递的M APK 级联途径[4]。 最近,T aishi 等报道,在拟南芥中有一种蛋白激酶SRK 2C 可响应干旱胁迫诱导,将该基因敲除后的突变体srk2c 对干旱极敏感[5]。另外,用花椰菜病毒的35S 强启动子构建超表达SRK 2C 的转基因植株,其抗旱性也明显增强。 1.3 与第二信使生成有关的蛋白酶 P LC 是主要的磷酸二 酯酶,水解磷酸二酯键,根据水解的磷脂不同,可产生IP3、 DAG 、PA 等。IP3可提高细胞质溶质中的C a 2+浓度,诱导抗 性相关基因的表达[6]。DAG 和PA 可通过诱导活性氧(ROS )的产生,引起相关抗性基因的表达,从而增强植物抗旱性。 C a 2+是最受关注的第二信使,在保卫细胞中,干旱信号 导致C a 2+浓度增加,引起气孔关闭。C a 2+与其受体蛋白钙调素结合发生构象变化,通过C a 2+/C aM 依赖性蛋白激酶 (C DPK )起作用,使蛋白质的S er 或Thr 磷酸化,引起下游信号 传递,使抗旱相关基因表达。 2 功能蛋白 功能蛋白往往是整个水分胁迫调控通路的终 端产物,直接在植物的各种抗旱机制中起作用。当植物遭受水分胁迫时,其本身作为一个有机整体能从各方面进行防御。K azuk o 等将植物水分胁迫功能蛋白分为渗透调节相关蛋白、膜蛋白、毒性降解酶、大分子保护因子和蛋白酶5大类[7]。 2.1 渗透调节相关蛋白 当植物遭受渗透胁迫时,会积累 大量渗透调节物质,如脯氨酸、甘露醇、甜菜碱、可溶性糖和一些无机离子等。这些物质可使植物在胁迫条件下保持吸收水分或降低水分散失,维持一定的细胞膨压,保持细胞生长、气孔开放和光合作用等正常生理过程。现已发现很多渗 安徽农业科学,Journal of Anhui Agri.Sci.2009,37(12):5355-5357,5385 责任编辑 胡剑胜 责任校对 况玲玲

相关主题