搜档网
当前位置:搜档网 › 道斯矩阵-5

道斯矩阵-5

道斯矩阵-5
道斯矩阵-5

道斯矩阵

SWOT战略决策

什么是道斯矩阵

道斯矩阵原是企业战略决策的工具,现用于对项目进行战略决策和系统分析。

道斯矩阵的作用

把外界的条件和约束同组织自身的优缺点结合起来,分析企业所处的位置;

可随环境变化做动态系统分析,减少决策风险;

是一种定性的分析工具,可操作性较强;

可以与多米诺法结合直来,针对机遇、挑战、优势、劣势为各战略决策打分。

怎么做

1、列出项目的关键外部机遇、外部挑战、内部优势和内部劣势。填入道斯矩阵表的Ⅰ、Ⅱ、

Ⅲ、Ⅳ区(见下表);

2、将外部机遇和内部优势匹配,制定抓住机会、发挥优势的战略。填入道斯矩阵表的V区

(见下表);

3、将外部机遇和内部劣势匹配,制定利用机会、克服弱点的战略。填入道斯矩阵表的VI

区(见下表);

4、将外部挑战和内部优势匹配,制定利用优势、减少威胁的战略。填入道斯矩阵表的VII

区(见下表);

5、将外部挑战和内部劣势匹配,制定弥补弱点、规避威胁的战略。填入道斯矩阵表的VIII

区(见下表)。

案例:

下页见表--2

道斯矩阵---表2

数据结构实验五矩阵的压缩存储与运算学习资料

数据结构实验五矩阵的压缩存储与运算

第五章矩阵的压缩存储与运算 【实验目的】 1. 熟练掌握稀疏矩阵的两种存储结构(三元组表和十字链表)的实现; 2. 掌握稀疏矩阵的加法、转置、乘法等基本运算; 3. 加深对线性表的顺序存储和链式结构的理解。 第一节知识准备 矩阵是由两个关系(行关系和列关系)组成的二维数组,因此对每一个关系上都可以用线性表进行处理;考虑到两个关系的先后,在存储上就有按行优先和按列优先两种存储方式,所谓按行优先,是指将矩阵的每一行看成一个元素进行存储;所谓按列优先,是指将矩阵的每一列看成一个元素进行存储;这是矩阵在计算机中用一个连续存储区域存放的一般情形,对特殊矩阵还有特殊的存储方式。 一、特殊矩阵的压缩存储 1. 对称矩阵和上、下三角阵 若n阶矩阵A中的元素满足= (0≤i,j≤n-1 )则称为n阶对称矩阵。对n阶对称矩阵,我们只需要存储下三角元素就可以了。事实上对上三角矩阵(下三角部分为零)和下三角矩阵(上三角部分为零),都可以用一维数组ma[0.. ]来存储A的下三角元素(对上三角矩阵做转置存储),称ma为矩阵A的压缩存储结构,现在我们来分析以下,A和ma之间的元素对应放置关系。 问题已经转化为:已知二维矩阵A[i,j],如图5-1, 我们将A用一个一维数组ma[k]来存储,它们之间存在着如图5-2所示的一一对应关系。 任意一组下标(i,j)都可在ma中的位置k中找到元素m[k]= ;这里: k=i(i+1)/2+j (i≥j) 图5-1 下三角矩阵 a00 a10 a11 a20 … an-1,0 … an-1,n-1

k= 0 1 2 3 …n(n- 1)/2 …n(n+1)/2-1 图5-2下三角矩阵的压缩存储 反之,对所有的k=0,1,2,…,n(n+1)/2-1,都能确定ma[k]中的元素在矩阵A中的位置(i,j)。这里,i=d-1,(d是使sum= > k的最小整数),j= 。 2. 三对角矩阵 在三对角矩阵中,所有的非零元素集中在以主对角线为中心的带内状区域中,除了主对角线上和直接在对角线上、下方对角线上的元素之外,所有其它的元素皆为零,见图5-3。 图5-3 三对角矩阵A 与下三角矩阵的存储一样,我们也可以用一个一维数组ma[0..3n-2]来存放三对角矩阵A,其对应关系见图5-4。 a00 a01 a10 a11 a12 … an-1,n-2 an-1,n-1 k= 0 1 2 3 4 … 3n-3 3n-2 图5-4下三角矩阵的压缩存储 A中的一对下标(i,j)与ma中的下标k之间有如下的关系: 公式中采用了C语言的符号,int()表示取整,‘%’表示求余。

南航矩阵论等价关系

Student’s Name: Student’s ID No.: College Name: The study of Equivalence Relations Abstract According to some relative definitions and properties, to proof that if B can be obtained from A by performing elementary row operations on A, ~ is an equivalence relation, and to find the properties that are shared by all the elements in the same equivalence class. To proof that if B is can be obtained from A by performing elementary operations, Matrix S A ∈ is said to be equivalent to matrix S B ∈, and ~A B means that matrix S A ∈ is similar to S B ∈, if let S be the set of m m ? real matrices. Introduction The equivalence relations are used in the matrix theory in a very wide field. An equivalence relation on a set S divides S into equivalence classes. Equivalence classes are pair-wise disjoint subsets of S . a ~ b if and only if a and b are in the same equivalence class.This paper will introduce some definitions and properties of equivalence relations and proof some discussions. Main Results Answers of Q1 (a) The process of the proof is as following,obviously IA=A,therefore ~ is reflexive;we know B can be obtained from A by performing elementary row operations on A,we assume P is a matrix which denote a series of elementary row operations on A.Then ,we have PA=B,(A~B),and P is inverse,obviously we have A=P -1B,(B~A).So ~ is symmetric.We have another matrix Q which denote a series of elementary row operations on B,and the result is C,so we have QB=C.And we can obtain QB=Q(PA)=QPA=C,so A~C.Therefore,~ is transitive. Hence, ~ is an equivalence relation on S . (b) The properties that are shared by all the elements in the same equivalence class are as followings: firstly,the rank is the same;secondly,the relation of column is not changed;thirdly,two random matrices are row equivalent;fourthly,all of the matrices

图的邻接矩阵存储结构建立汇总

课程名称: 《数据结构》课程设计课程设计题目:图的邻接矩阵存储结构建立 姓名:XXX 院系:计算机学院 专业:计算机科学技术 年级:11级 学号:XXXXXXXX 指导教师:XXX 2013年9月28日

目录 1 课程设计的目的 (3) 2需求分析 (3) 3 课程设计报告内容 (3) 3.1 概要设计 (3) 3.2 详细设计 (4) 3.3 调试分析 (5) 3.4 用户手册 (5) 3.5 程序清单 (5) 3.6 测试结果 (10) 4 小结 (12) 5 参考文献 (12)

1.课程设计的目的 (1) 熟练使用 C 语言编写程序,解决实际问题; (2) 了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; (3) 初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; (4) 提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 2.需求分析 问题描述:建立图的邻接矩阵存储结构(图的类型可以是有向图或有向网、无向图或无向网,学生可以任选一种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后给出图的DFS,BFS次序。 要求: ①先任意创建一个图; ②图的DFS,BFS的递归和非递归算法的实现。 3.课程设计报告内容 3.1概要设计 1.函数 ①主函数:main( ) ②创建无向图:CreateGraph( )

③深度优先遍历图:DFS( ) ④广度优先遍历图:BFS( ) 3.2详细设计 1.使用邻接矩阵作为图的存储结构,程序中主要用到的抽象数据类型: typedef struct { char vexs[MAX]; //顶点向量 int arcs[MAX][MAX]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧数}Graph; 2.程序流程图:

矩阵的简单应用1

2.6矩阵的简单应用(1) 学习目标: 1、初步了解高阶矩阵; 2、了解矩阵的简单应用。 活动过程: 活动一:矩阵在数学领域中的简单应用 例1:已知盒子A 中装有3只大小和重量相同的小球,其中2只黑色,1只白色;盒子B 中 装有5只大小和重量相同的小球,其中3只黑色,2只白色。假定A ,B 两个盒子很难分辨,而且可以任取一个,现在要求先取一个盒子,那么从中摸到一只黑色小球的概率有多大? 例2:如图所示的是A ,B ,C 这3个城市间的交通情况,小月想从其中某一个城市出发直 达另一个城市,她可以有几种选择? 小结:网络图,结点,一级路矩阵,二级路矩阵的定义。 例3:已知一级路矩阵???? ??????002001210表示一个网络图,它的结点分别是A ,B ,C ,试画出满足条件的一个网络图。

活动二:矩阵在实际生产、生活中的简单应用 例4:某运动服销售店经销A,B,C,D4种品牌的运动服,其中尺寸分别有S(小号)、M (中号)、L(大号)、XL(特大号)4种,一天内,该店的销售情况如表所示(单位:件): 假设不同品牌的运动服的平均利润是A为20元/件,B为15元/件,C为30元/件,D为25元/件,问:M号的运动服在这天获得的总利润是多少? 活动五:课堂小结与自主检测 1、已知某蛋糕厂生产甲、乙、丙3种蛋糕,其配料用量分别如下表(单位:kg)。已知水 果、奶油、白糖、面粉的单价分别为5,8,2,2.5,(单位:元/kg),试计算甲、乙、丙3

2、写出图示网络表示的一级路矩阵(图(2)的圆圈表示自己到自己有一条路)。 图(1) 3、假设某市的天气分为晴和阴两种状态,若今天晴,则明天晴的概率为43,阴的概率为41 ;若今天阴,则明天晴的概率为31,阴的概率为32 。这些概率可以通过观察某市以往几年 每天天气的变化趋势来确定,通常将用矩阵来表示的这种概率叫做转移概率,对应的矩阵叫做转移矩阵,而将这种以当前状态来预测下一时段状态的概率模型称做马尔可夫链。下面给出的是转移矩阵M 和其对应的马尔可夫变换图。问:如果清晨天气预报报告今天阴的概率为21,那么明天的天气预报会是什么?后天呢? ?? ??? ? = 3 24 13143M 阴 晴阴晴明天今天 (1) (2) 4、现有甲、乙两种细菌,它们会相互突变。每1min ,甲种细菌突变为乙种细菌的概率为0.3,乙种细菌突变为甲种细菌的概率为0.9,而未突变的细菌仍然是原来的细菌。已知开始时有甲种细菌300万个,乙种细菌500万个。 (1)细菌突变的转移矩阵是多少? (2)3min 后,甲种和乙种细菌各是多少? 4 3 32

第五章矩阵分析(改)

第五章 矩阵分析 本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识. §5.1 向量与矩阵的范数 从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用. 一、向量的范数 定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件: 1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有 x =0; 2)齐次性 对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三角不等式 对任意V y x ∈,,有 y x y x +≤+, 则称此函数x (有时为强调函数关系而表示为?) 为V 上的一种向量范数. 例1 对n C 中向量()T n x x x x ,,,21 =,定义 2 22212 n x x x x +++= 则2x 为n C 上的一种向量范数[i x 表示复数i x 的模]. 证 首先,2n x C 是上的实值函数,并且满足

1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有 22||||||kx k x = =; 3)三角不等式 对任意复向量1212(,, ,),(,, ,)T T n n x x x x y y y y ==,有 222 221122||||||||()n n x y x y x y x y +=++++ ++ 2221122()()()n n x y x y x y ≤++++ ++ 2 21 1 1 ||2||||||n n n i i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ 不等式) 222222 2 22||||2||||||||||||(||||||||),x x y y x y ≤++=+ 因此 222||||||||||||x y x y +≤+ 所以 2||||x 确为n C 上的一种向量范数 例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义 112||||||||||n x x x x =+++, 1max i i n x x ∞ ≤≤=, 则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数. 证 仅对后者进行证明. 1)非负性 当0x ≠时,max 0i i x x ∞ =>,又显然有00∞=; 2)齐次性 对任意向量()T n x x x x ,,,21 =及复数k ,

实现图的邻接矩阵和邻接表存储

实现图的邻接矩阵和邻接表存储 1.需求分析 对于下图所示的有向图G,编写一个程序完成如下功能: 1.建立G的邻接矩阵并输出之 2.由G的邻接矩阵产生邻接表并输出之 3.再由2的邻接表产生对应的邻接矩阵并输出之 2.系统设计 1.图的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合 操作结果:按V和VR的定义构造图G DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G InsertVex(&G,v) 初始条件:图G存在,v和图中顶点有相同特征 操作结果:在图G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:图G存在,v和w是G中两个顶点 操作结果:在G中增添弧,若G是无向的则还增添对称弧 …… DFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 2.主程序的流程: 调用CreateMG函数创建邻接矩阵M; 调用PrintMatrix函数输出邻接矩阵M 调用CreateMGtoDN函数,由邻接矩阵M创建邻接表G 调用PrintDN函数输出邻接表G 调用CreateDNtoMG函数,由邻接表M创建邻接矩阵N 调用PrintMatrix函数输出邻接矩阵N 3.函数关系调用图: 3.调试分析 (1)在MGraph的定义中有枚举类型 typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网} 赋值语句G.kind(int)=M.kind(GraphKind);是正确的,而反过来M.kind=G.kind则是错误的,要加上那个强制转换M.kind=GraphKind(G.kind);枚举类型enum{DG,DN,UDG,UDN} 会自动赋值DG=0;DN=1,UDG=2,UDN=3;可以自动从GraphKind类型转换到int型,但不会自动从int型转换到GraphKind类型

简单实用的基于Java的矩阵类

简单实用的Java矩阵基本操作。包括新建、打印、加、减、乘、转置、求逆运算。import java.util.Random; public class Matrix { public int row; public int rank; public double[][] mat; public Matrix(int a, int b) { row = a; rank = b; mat = new double[row][rank]; } public void New(){ Random rand=new Random(); for (int i = 0; i < row; i++) for (int j = 0; j < rank; j++) mat[i][j]=rand.nextInt(100); } public void Output() { System.out.println("Matrix=:"); for (int i = 0; i < row; i++) { for (int j = 0; j < rank; j++) System.out.print(mat[i][j] + " "); System.out.println(); } System.out.println(); } public Matrix Plus(Matrix a) { Matrix c=new Matrix(row,rank); if (a.row == row && a.rank == rank) { for (int i = 0; i < row; i++) for (int j = 0; j < rank; j++) c.mat[i][j] = mat[i][j] + a.mat[i][j]; } else { System.out.println("matrixAdd error!"); } return c; } public Matrix Minus(Matrix a) { Matrix c=new Matrix(row,rank); if (a.row == row && a.rank == rank) {

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

图采用邻接矩阵存储结构

图采用邻接矩阵存储结构 #define TRUE 1 #define FALSE 0 #define MAXV 20 typedef int V ertexType; //用顶点编号表示顶点 typedef struct { // 图的定义 int edges[MAXV][MAXV] ; // 边数组 int n, e; //顶点数,弧数 V ertexType vexs[MAXV]; // 顶点信息 } MGraph; 1、创建具有n个顶点e条边的无向图 void CreateUDG(MGraph &G,int n,int e) { int i,j,u,v; G.n=n;G.e=e; /* printf("请输入%d个顶点的编号:\n",n); for(i=0;i

void CreateDG(MGraph &G,int n,int e) { int i,j,u,v; G.n=n;G.e=e; /* printf("请输入%d个顶点的编号:\n",n); for(i=0;i

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ??+= ??? . Solution 1(1)1σ??= ??? 1/2()0x σ?? = ??? 11/211/2()101 0x ασαβαββ????????+=+= ? ? ??????????? Hence, 11/210A ??= ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ=

矩阵的简单应用 (5)

1.掌握网络图、一级路矩阵、二级路矩阵的定义. 2.了解矩阵的简单应用. [基础·初探] 1.矩阵的相关知识 (1)矩阵的概念及表示方法. (2)矩阵的计算:二阶矩阵与平面列向量的乘法,两个二阶矩阵之间的乘法. (3)常见的几何变换:恒等、伸压、反射、旋转、投影及切变变换,掌握它们的矩阵表示. (4)二阶矩阵对应的几何变换均是线性变换. (5)矩阵的乘法的几何意义在于对应变换的复合. (6)矩阵的乘法满足结合律,但不满足交换律、消去律. (7)逆矩阵的概念:掌握哪些(变换对应的)矩阵是可逆的,投影变换矩阵是重要的不可逆矩阵的例子. (8)利用逆矩阵公式或者行列式法求逆矩阵;从几何变换上分析二元一次方程组的解. (9)特征值与特征向量的概念、求法及其应用. 2.网络图与路矩阵 (1)在数学中,通常把像如图2-6-1这样表示关系的图形称为网络图,其中的交点A,B,C称为结点.

图2-6-1 (2)网络图所对应的反映从一个结点直达另一个结点的交通情况的矩阵叫做一级路矩阵,而从某个结点出发,先经过一个结点,再到达另外一个结点的交通情况的矩阵称为二级路矩阵. (3)一级路矩阵与二级路矩阵的区别在于从一个结点到另一个结点是直达,还是间接到达. 右图对应的一级路矩阵M =, 二级路矩阵N =. 3.求解矩阵应用题的方法及技巧 对于应用题,我们要读懂题意,如果还没弄清题意就去做题,则很容易出错.应用题主要考查分析能力、转化能力及运算能力.因此,我们要加强这方面能力的培养与训练,在解与矩阵有关的应用题时,要学会寻找分析问题和解决问题的突破口,在解题中提高自己的综合能力. 4.种群问题的数学模型 教材P 78例6种群问题的数学模型. ???? ??a n +1b n +1=M ??????a n b n =?? ????a b c d ???? ?? a n b n ,其中{a n },{b n }表示两个相互影响的种群X ,Y 随时间段变化的数量.若起初的种群数量β=?????? a 1 b 1,则经过n 个时段后的种群数量 为??????a n +1b n +1,且??????a n +1b n +1=M n ?????? a 1 b 1 .若矩阵M 的特征值λ1,λ 2对应的特征向量分别为 α1, α2,且β=m α1+k α2,m ∈R ,k ∈R ,则???? ??a n +1b n +1=M n ??????a 1b 1=M n β=M n (m α1+k α2)=

中科院矩阵分析_第五章

第五章 特征值的估计及对称矩阵的极性 本章主要讨论数值代数中的三个特殊理论, 即 特征值的估计 广义特征值问题 实对称矩阵(一般是Hermite 矩阵)特征值的 极小极大原理,其次也涉及到一些特征值 和奇异值的扰动问题,最后简要地介绍矩阵 直积的一些性质及其在线性矩阵方程求解 方面的应用。这几方面的内容,在矩阵的 理论研究与实际应用当中都有着相当重要 的作用。 5.1特征值的估计 一、特征值的界 首先给出直接估计矩阵特征值模的上界的 一些方法 定理5.1 设A=(a rs )∈R n×n ,令 M=||2 1 max ,1sr rs n s r a a -≤≤ λ若表示A 任一特征值,则λ的虚部Im(λ) 满足不等式 2 ) 1(|)Im(|-≤n n M λ |Im(λ)|≤||A -A T ||2 / 2 |Im(λ)|≤||A -A T ||1 ?/2. 证明:设x+i ?y 为对应于λ的A 的特征向量, 则 A(x+i ?y)=(α+β?i)(x+i ?y) 其中λ=α+β?i.显然x,y 为实向量,且x,y 为 线性无关的 向量。 经整理A(x,y)=(x,y)B, 其中B=??? ? ??-αββα 。 从而(x,y)T A(x,y)=(x,y)T (x,y)B 展开有

???? ??Ay y Ax y Ay x Ax x T T T T =α????? ??y y y x y x x x T T T T + β???? ? ? ?--x y y y x x y x T T T T (求等式两边矩阵的对角元之和,可得 α(x T x +y T y )=x T Ax +y T Ay (1) 等式两边矩阵的左上角单元减去右下角单元 可得: β(x T x +y T y )=x T (A -A T )y 1). 记B=A -A T ,则 |x T By|≤||x||2 ?||B||2?||y||2 从而 |β|≤||x||2 ?||B||2?||y||2 /((||x ||2)2 +(||y ||2)2) 利用ab /(a 2+b 2)≤1/2 可得 |β|≤||B||2 /2. 2). 由于|x T By|≤||Bx||1 ?||y||∞≤||B||1?||x||1 ?||y||∞ 从而 |β|≤||B||1 ?||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) 易证明 ||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) /2. (显然,不妨假设(||x ||2)2 +(||y ||2)2=1, 设||y ||∞=t =cos(α), 则y 必为t ? e j 的形式(为什么?), 从而极值转化为求解如下最大值问题: max ||x||1, 满足约束(||x ||2)2=1-t 2 这样有均值不等式||x||1 x ||2 = -t 2)1/2, 从而我们需要求解t (1-t 2)1/2的最大值,设t =cos(α) 可得t (1-t 2)1/2的最大值为1/2. 从而得证。) 因此 |β|≤||B||1 3). 由于b ii =0, i =1,2,…,n , b ij = -b ji , 因此 |x T By|2=| 1 1()n ij i j j i i j i b x y x y -=>??-∑∑|2 ≤(2M )2 2 1||n i j j i i j i x y x y =>??- ??? ∑∑ (利用(a 1+a 2+…+a n )2≤ n ((a 1)2+(a 2)2+…+(a n )2) ≤(2M )2 (n (n -1)/2) 21||n i j j i i j i x y x y =>??- ??? ∑∑

南航矩阵论期中考试参考答案.doc

1) 一组基为q = .维数为3. 3) 南京航空航天大学双语矩阵论期中考试参考答案(有些答案可能有问题) Q1 1解矩阵A 的特征多项式为 A-2 3 -4 4I-A| =-4 2+6 -8 =A 2(/l-4) -6 7 A-8 所以矩阵A 的特征值为4 =0(二重)和/^=4. 人?2 3 由于(4-2,3)=1,所以D| (人)二1.又 彳 人+6=“2+4人=?(人) 4-2 3 、=7人+4=代(人)故(们3),代3))=1 ?其余的二阶子式(还有7个)都包含因子4, -6 7 所以 D? 3)=1 .最后 det (A (/L))=42(人.4),所以 D 3(A)=/l 2 (2-4). 因此矩阵A 的不变因子为d, (2) = d 2(2) = l, d 3 (2) = r (2-4). 矩阵A 的初等因子为人2, 2-4. 2解矩阵B 与矩阵C 是相似的.矩阵B 和矩阵C 的行列式因子相同且分别为9 3)=1 , D 2(/i)=A 2-/l-2 .根据定理:两矩阵相似的充分必要条件是他们有相同的行列式因子. 所以矩阵B 与矩阵c 相似. Q2 2)设k 是数域p 中任意数,a, 0, /是v 中任意元素.明显满足下而四项. (") = (",a) ; (a+月,/) = (",/) + (”,刃;(ka,/3) = k(a,/3) ; (a,a)>0, 当且仅当Q = 0时(a,a) = ().所以(。,/?)是线性空间V 上的内积. 利 用Gram-Schmidt 正交化方法,可以依次求出 ,p 2 =%-(%'5)与= 层=%-(%,弟与一(%,弓)役=

高中数学学案:矩阵的简单应用

高中数学学案:矩阵的简单应用 基础诊断

1. 设数列{a n },{b n }满足a n +1=3a n +2b n ,b n +1=2b n ,且满足?? ????a n +2b n +2=M ?????? a n b n ,则二阶矩阵M =________. 2. 设某校午餐有A,B 两种便当选择,经统计数据显示,今天订A 便当的人,第二天再订A 便当的概率是35;今天订B 便当的人,第二天再订B 便当的概率为4 5,已知星期一有40%的同学订了A 便当,60%的同学订了B 便当,则星期四时订A 便当同学的概率是多少? 范例导航 考向 例1 自然界生物群的成长受到多种条件因素的影响,比如出生率、死亡率、资源的可利用性与竞争、捕食者的猎杀乃至自然灾害等等.因此,它们和周边环境是一种既相生又相克的生存关系.但是,如果没有任何限制,种群也会泛滥成灾.现假设两个互相影响的种群X,Y 随

时间段变化的数量分别为{a n },{b n },有关系式???a n +1=a n +2b n , b n +1=3a n +2b n ,其中a 1=6,b 1=4,试分析20个时 段后,这两个种群的数量变化趋势. 已知矩阵M =?? ????1102,β=???? ?? 31. (1) 求出矩阵M 的特征值和特征向量; (2) 计算M 4β,M 10β,M 100β; (3) 从第(2)小题的计算中,你发现了什么?

考向 例2 某同学做了一个数字信号模拟传送器,经过10个环节,把由数字0,1构成的数字信号由发生端传到接收端.已知每一个环节会把1错转为0的概率为0.3,把0错转为1的概率为0.2,若发出的数字信号中共有10 000个1,5 000个0.问: (1) 从第1个环节转出的信号中0,1各有多少个? (2) 最终接收端收到的信号中0,1个数各是多少?(精确到十位) (3) 该同学为了完善自己的仪器,决定在接收端前加一个修正器,把得到的1和0分别以一定的概率转换为0和1,则概率分别等于多少时,才能在理论上保证最终接收到的0和1的个数与发出的信号相同. 学校餐厅每天供应1 000名学生用餐,每星期一有A,B 两种菜可供选择,调查资料表明,凡是在本周星期一选A 菜的,下周星期一会有20%改选B 菜,而选B 菜的,下周星期一会有30%改选A 菜,若用A n ,B n 分别表示在第n 个星期一选A,B 菜的人数. (1) 若?? ?? ??A n +1B n +1=M ?????? A n B n ,请写出二阶矩阵M ; (2) 若第一周有300人选择A 菜,700人选择B 菜,试判断其变换趋势.

矩阵

特殊矩阵的压缩存储 对称矩阵中的元素关于主对角线对称,因此,让每一对对称元素a ij和a ji(i≠j)分配一个存储空间,则n2个元素压缩存储到n(n+1)/2个存储空间,能节约近一半的存储空间。 不失一般性,假设按“行优先顺序”存储下三角形(包括对角线)中的元素。 设用一维数组(向量)sa[0…n(n+1)/2]存储n阶对称矩阵,如图5-4所示。为了便于访问,必须找出矩阵A中的元素的下标值(i,j)和向量sa[k]的下标值k之间的对应关系。 若i≧j:a i j在下三角形中,直接保存在sa中。a i j之前的i-1行共有元素个数:1+2+…+(i-1)=i?(i-1)/2 而在第i行上,a i j之前恰有j-1个元素,因此,元素a i j保存在向量sa中时的下标值k之间的对应关系是: k=i?(i-1)/2+j-1 i≧j 若i

以主对角线划分,三角矩阵有上三角和下三角两种。 上三角矩阵的下三角(不包括主对角线)中的元素均为常数c(一般为0)。下三角矩阵正好相反,它的主对角线上方均为常数,如图5-5所示。 三角矩阵中的重复元素c可共享一个存储空间,其余的元素正好有n(n+1)/2个,因此,三角矩阵可压缩存储到向量sa[0…n(n+1)/2]中,其中c存放在向量的第1个分量中。 上三角矩阵元素a i j保存在向量sa中时的下标值k与(i,j)之间的对应关系是:下三角矩阵元素a i j保存在向量sa中时的下标值k与(i,j)之间的对应关系是: 3 对角矩阵 矩阵中,除了主对角线和主对角线上或下方若干条对角线上的元素之外,其余元素皆为零。即所有的非零元素集中在以主对角线为了中心的带状区域中,如图5-6所示。 如上图三对角矩阵,非零元素仅出现在主对角(a i i,1≦i≦n)上、主对角线上的那条对角线(a i i+1,1≦i≦n-1) 、主对角线下的那条对角线上(a i+1 i,1≦i≦n-1)。显然,当| i-j |>1时,元素a ij=0。

相关主题