搜档网
当前位置:搜档网 › 基于局部区域信息的医学图像分割及偏移场矫正方法

基于局部区域信息的医学图像分割及偏移场矫正方法

基于局部区域信息的医学图像分割及偏移场矫正方法
基于局部区域信息的医学图像分割及偏移场矫正方法

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

图像分割区域生长法

江苏科技大学 数字图像处理 图像分割——区域生长法专题 1 图像分割简介 图像分割( image segmentation) 就是把图像分成各具特征的区域并提取出感兴趣目标的技术和过程。这里特征可以是象素的灰度、颜色、纹理等, 预先定义的目标可以对应单个区域也可以对应多个区域。图像分割是图像处理到图像分析的关键步骤, 在图像工程中占据重要的位置。一方面, 它是目标表达的基础, 对特征测量有重要的影响。另一方面, 因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能。 图像分割是一种重要的图像处理技术, 它不仅得到人们的广泛重视和研究, 在实际中也得到大量的应用。图像分割包括目标轮廓、阈值化、图像区分或求差、目标检测、目标识别、目标跟踪等技术。 从大的方面来说,图像分割方法可大致分为基于区域的方法、基于边缘的方法、区域与边缘相结合的方法,以及在此基础上的采用多分辨率图像处理理论的多尺度分割方法。 其中基于区域的方法采用某种准则,直接将图像划分为多个区域。而基于边缘的方法则通过检测包含不同区域的边缘,获得关于各区域的边界轮廓描述,达到图像分割的目的,而区域与边缘相结合的方法通过区域分割与边缘检测的相互作用,得到分割结果。 图像分割中基于区域的方法主要有直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等。本文主要讨论基于区域分割的区域生长法。区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多

医学图像分割方法汇总

医学图像分割方法汇总 本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。 1阈值法分割 1-1 简单阈值分割 简单的阈值处理是图像分割中最为简单基础的一种分割方法。对于一副灰度图像,使用给定的阈值。图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图1.2是利用五个不同的阈值对脑部图像(图 1.1)的分割结果。(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。 图1.1原始脑部图像

图1.2 使用不同阈值分割后的结果 从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。 1-2 otsu阈值分割法 Otsu阈值分割法又称大津阈值分割法。它的原理是对图像所有的像素围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。 原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。 假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

简单区域扩张法实施图像的区域分割

6、采用简单区域扩张法对下图实施图像的区域分割。自行选定起始种子像素灰及灰度间隔度。 原理:以图像的某个像素为生长点,比较相邻像素的特征,将特征相似的相邻像素合并为同一区域;以合并的像素为生长点,继续重复以上操作,最终形成具有相似特征的像素的最大连通集合。该法称简单(单一型)区域扩张法。 基于区域灰度差的方法主要有如下步骤: (1)对图像进行逐行扫描,找出尚没有归属的像素; (2)以该像素为中心检查它的邻域像素,如果灰度差小于预先确定的阈值,将它们合并; (3)以新合并的像素为中心,重复步骤(2),检查新像素的邻域,直到区域不能进一步扩张; (4)返回到步骤(1),继续扫描直到不能发现没有归属的像素,则结束整个生长过程。 下图给出已知种子点进行区域生长的一个示例。图(a)给出需分割的图像,设已知种子像素(标为灰色方块),现要进行区域生长。设这里采用的生长判断准则是:如果所考虑的像素与种子像素灰度值差的绝对值小于某个门限T,则将该像素包括进种子像素所在区域。图(b)给出T=3时的区域生长结果,整幅图被较好地分成2个区域;图(c)给出T=2时的区域生长结果,有些像素无法判定;图(d)给出T=6时的区域生长结果,整幅图都被分在一个区域中了。 程序为:(一) I=imread('p5-06.tif'); subplot(2,2,1),imshow(I),title('原始图像'); Ic=imcomplement(I) ; BW=im2bw(Ic,graythresh(Ic)) ; subplot(2,2,2),imshow(BW),title('阈值截取分割后图像'); se=strel('disk',6); BWc=imclose(BW,se); BWco=imopen(BWc,se);

医学图像的分割

第六章医学图像分割 医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。 第一节医学图像分割的意义、概念、分类和研究现状 医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。 所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。一般说来,有意义的图像分割结果中至少存在一个包含感兴趣目标的区域。

图像分割技术在医学图像处理中的应用研究

2007年3月第期 3TAIYU ANSCI-TECH 图像分割是指将图像分割成各具特征的区域并提取出感兴趣的目标的技术和过程,是图像处理到图像分析的关键步骤。在医学领域中,图像分割常常用于病变区域提取,特定组织测量以及实现三维重建研究,因此研究图像分割技术在医学图像处理过程中具有十分重要的意义。 1基于区域的分割方法 基于区域的分割方法是利用区域内的特征的相 似性把图像划分为一系列有意义的区域。 1.1阈值法 阈值法是一种最常用的并行区域技术,阈值是 用于区分不同目标的灰度值。阈值分割方法的结果依赖于阈值的选取,确定阈值是阈值分割的关键,阈值分割实质上就是按照某个准则求出最佳阈值的过程。 阈值法的优点是计算简单、运算速度快,特别是不同物体或结构之间有较大的强度对比时,能够得到很好的分割效果,此分割方法通常是交互式的,由于阈值法能实现实时操作,所以它更易于建立在用户视觉估计的基础上。 阈值法的缺陷是:最简单形式的阈值法只能产 生二值图像来区分两个不同的类别。此外,阈值法在考虑像素本身灰度值的同时并不考虑图像的空间分布,这样其分割结果就对噪声很敏感。针对它的不足,一些学者提出了许多经典的算法,如局部阈值、模糊阈值,随机阈值等方法。阈值分割对于 CT图像的效果较好,但在选取阈值时需要用户依 经验判断,或者先做多次尝试性分割后再对阈值进行调整,直至用户满意为止。Kim等用多次阈值分割法检测螺旋CT图像中的肺结性病变,共检测了 24例病人的827张图像,检测结果灵敏度为96%, 并且没有出现假阳性结果[1]。 1.2区域生长法 区域生长法是根据预先定义的标准,提取图像 中相连接的区域的一种分割方法。采用区域生长法的关键在于种子点的位置选择、生长准则和生长顺序。 区域生长法对面积不大的区域进行分割时,效果显著,如果对面积较大的区域进行分割,则计算速度就会减慢。另外,对于图像中不相邻而灰度值相同或相近的区域,不能一次分割出来,只能一次分割一个区域。 2基于边界的分割方法 基于边界的分割方法是利用不同区域间像素灰 度不连续的特点检测出区域间的边缘,从而实现图像分割。根据边缘检测方法的不同,通常把边缘检测方法分成串行边缘检测和并行边缘检测两大类。 2.1串行边缘检测法 串行边缘检测法首先要检测出一个边缘起始 点,然后根据某种相似性准则寻找与前一点同类的 边缘点,这种确定后续相似点的方法称为跟踪。根据跟踪方法的不同,这种串行边缘检测方法又可分为轮廓跟踪、光棚跟踪和全向跟踪3种。 图像分割技术在医学图像处理中的 应用研究 马春梅1,刘贵如2,王陆林3 文章编号:1006-4877(2007)03-0064-02 收稿日期:2007-01-19;修回日期:2007-02-10 作者简介:马春梅(1978-),女,山西朔州人。2005年9月就 读于山西大学,攻读硕士学位,助教。 (1.山西忻州师范学院数学系,山西 忻州 034000;2.云南师范大学计算机科学与信息技术学院,云南 昆明650092; 3.西南交通大学,四川 成都 610031) 摘 要:图像分割是图像处理、图像分析的关键步骤,而医 学图像分割是图像分割的一个重要的应用领域,也是一个经典难题。从应用的特定角度,论述了医学图像处理中图像分割的几种算法,对近年来医学图像分割的新方法或改进算法进行了阐述,并简要介绍了每种算法的特点及应用。关键词:图像分割;医学图像处理;边缘检测中图分类号:TP391.41 文献标识码:A 应用技术

医学图像分割综述

医学图像分割综述 郭爱心 安徽大学 摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。 关键字:医学图像分割意义方法评估标准发展前景 A Review of Medical Image Segmentation Ai-Xin Guo Anhui University Abstract:Image segmentation is the key of image processing and analysis.With the development of medical image,image segmentation is of great significance in medical applications.From the perspective of medical applications,this paper made a simple review of the medical image segmentation on it’s significance、methods、evaluation standards and development prospects. Key words:medical image,segmentation,significance,methods,evaluation standards,development prospects 1.医学图像分割的意义 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超声)及其它医学影像设备所获得的图像[2]。医学图像分割是将原始的2D或3D图像划分成不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来[1]。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。 医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,由于人与人之间有很大的差别,且人体组织结构形状复杂。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 2.医学图像分割的方法 2.1.基于区域的分割方法 基于区域的分割方法有阈值法,区域生长和分裂合并,分类器与聚类和基于随机场的方法等。 阈值分割是最常见的并行直接检测区域的图像分割方法。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开[2]。阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围

基于区域生长的图像分割

安康学院 学年论文﹙设计﹚ 题目基于区域生长法的图像分割 学生姓名周东阳 2012020081 所在院(系)电子与信息工程系 专业班级电子信息工程2012级2班 指导教师余顺园 2015年6月25日

基于区域生长法的图像分割 作者:周东阳 安康学院电子与信息工程系电子信息工程专业12级,陕西安康 725000 指导教师:余顺园 【摘要】图像分割的目的是将图像划分为不同的区域,基于区域生长是以直接找寻区域为基础的分割技术。区域生长是一种根据事先定义的准则将像素或子区域聚合成为更大的区域的过程。基本方法是以一组“种子”点开始,将与种子点性质相似(诸如灰度级等)的相邻像素附加到生长区域的每个种子上。 区域生长的一个问题是用公式描述一个终止规则。基本上,在没有像素满足加入某个区域的条件时,区域生长就会停止。在此次课程设计中,在算法的设计上充分反映了这一点。在遍历图像的过程中调用函数testnei,测试i,j点处的邻域满足条件的像素。将每次新增长的种子点作为下次遍历的中心点,直到区域不再生长。 【关键词】区域生长种子点分割像素 Image segmentation based on region growing arithmetic Author:ZhouDongyang Grade three ,Class two,Major Electronic and Information Engineering ,Dept.,Ankang University,Ankang 725000,Shaanxi Directed by YuShunyuan Abstract:Image segmentation aims to divide the image into different areas, based on region growing is to find region-based segmentation techniques. Criteria defined in advance by the region growing is a pixel or sub-regional aggregate into bigger regional process. Basic method is based on a set of "seed" point, with seeds similar in nature (such as grayscale) adjacent pixels on each attach to the growth region of the seed. Region growing is one of the problems with formulas describing a termination rule. Basically, no pixels when you meet the conditions for joining a regional, regional growth will stop. In the design of this course, in algorithm design fully reflects that. Traverse the image function is called during testneitesting i,j

医学图像分割方法综述

医学图像分割方法综述 随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。文章针对近年来提出的图像分割方法进行了总结。 标签:图像分割;区域生长;聚类;水平集;图割 1 概述 图像分割是图像处理和计算机视觉领域的基础。分割结果直接影响着后续任务的有效性和效率[1]。图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。 2 图像分割方法分类 医学图像有各种成像模态,比如CT、MRI、PET、超声等。由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。 2.1 聚类法 聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。 K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下: 其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x 表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。显然,J越小表明聚类效果越好。 K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中隨机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上

图像分割技术的研究背景及意义

图像分割技术的研究背景及意义 1概述 2图像分割技术的研究背景及意义 2.1阈值分割方法 2.2基于边缘的分割方法 2.3基于区域的分割方法 2.4 结合特定理论工具的分割方法 1概述 图像的研究和应用中,人们往往对图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单一区域,也可以对应多个区域),称之为目标或前景;而其他部分称为图像的背景。为了辨识和分析目标,需要把目标从一幅图像中孤立出来,这就是图像分割要研究的问题。 2图像分割技术的研究背景及意义 图像分割是图像处理中的一项关键技术,也是一经典难题,发展至今仍没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,对近几年来出现的图像分割方法作了较为全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研人员具有一定的启发作用。 图像分割是图像分析的第一步,图像分割接下来的任务,如特征提取、目标识别等的好坏,都取决于图像分割的质量如何。由于该课题的难度和深度,进展比较缓慢。图像分割技术自20世纪70年代起一直受到人们的高度重视,虽然研究人员针对各种问题提出了许多方法,但迄今为止仍然不存在一个普遍适用的理论和方法。另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述,并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法4类。

2.1阈值分割方法 阈值分割方法的历史可追溯到近40前,现已提出了大量算法。阈值分割法就是简单的用一个或几个阈值将图像的直方图分成几类,图象中灰度值在同一个灰度类内的像素属于同一个类。它是一种PR法。其过程是决定一个灰度值,用以区分不同的类,这个灰度值就叫阈值。它可以分为全局阈值分割和局部阈值分割。所谓全局阈值分割是利用整幅图像的信息来得到分割用的阈值,并根据该阈值对整幅图像进行分割;而局部阈值分割是根据图像中的不同区域获得对应的不同区域的阈值,利用这些阈值对各个区域进行分割,即一个阈值对应一个相应的子区域,这种方法也叫称为适应阈值分割。可以看出,确定一个最优阈值是分割的关键。现有的大部分算法都是集中在阈值确定的研究上。阈值分割方法根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松驰法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。 目前提出了许多新方法,如严学强等人提出了基于量化直方图的最大熵阈值处理算法,将直方图量化后采用最大熵阈值处理算法,使计算量大大减小。薛景浩、章毓晋等人提出基于最大类间后验交叉熵的阈值化分割算法,从目标和背景的类间差异性出发,利用贝叶斯公式估计象素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。这种方法结合了基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能,取得很好的通用性和有效性,该算法也容易实现二维推广,即采用二维统计量(如散射图或共生矩阵)取代直方图,以提高分割的准确性。俞勇等人提出的基于最小能量的图像分割方法,运用了能量直方图来选取分割阈值。任明武等人提出的一种基于边缘模式的直方图构造新方法,使分割阈值受噪声和边缘的影响减少到最小。程杰提出的一种基于直方图的分割方法,该方法对Ostu准则的内在缺陷进行了改进,并运用对直方图的预处理及轮廓追踪,找出了最佳分割阈值。此方法对红外图像有很强的针对性,付忠良提出的基于图像差距度量的阈值选取方法,多次导出Ostu方法,得到了几种与Ostu类似的简单计算公式,使该方法特别适合需自动产生阈值的实时图像分析系统。陈向东、常文森等人提出了基于小波变换的图像分数维计算方法,利用小波变换计算图像的分数维准确性高的特性。结果表明计算出的图像分数维准确,而且通过应用快速小波变换可以满足实时计算的要求,为实时场景分析提供有效的方法。建立在积分几何和随机集论基础之上的数学形态学以其一整套变换、概念和算法为数学工具,提供了并行的、具有鲁棒性的图像分割技述。它不仅能得到图像中各种几何参数的间接测量,反映图像的体视特性,而

医学图像分割综述

龙源期刊网 https://www.sodocs.net/doc/b313296896.html, 医学图像分割综述 作者:王益东 来源:《健康必读(上旬刊)》2018年第04期 【摘要】医学图像分割是指在医学图像中,利用计算机视觉技术,根据区域内像素的相 似特性(纹理等)以及区域间的不同特性,将图像中感兴趣的区域(ROI)提取出来,获取有关人体组织器官的有效信息,反馈给医生以及学者作为诊断依据。随着计算机技术的日新月异和医疗设备的快速发展,医疗图像分割技术在影像医学中的作用日益增大。本文首先介绍了医学图像分割的背景及其应用。接着,详细分析了相关图像分割算法。最后,总结了医疗图像分割技术在目前面临的困难与挑战,并提出了展望。 【关键词】医学影像;图像分割 【中图分类号】TP391.41 【文献标识码】A 【文章编号】1672-3783(2018)04-0281-01 1 引言 近几年来,随着计算机视觉技术和磁共振成像技术(MRI)、正电子放射层析成像技术(PET)、计算机断层成像(CT)、单光子辐射断层摄像(SPECT)、超声(Ultrasound)等医学影像设备的飞速发展,医学图像分割技术在影像医学中所发挥的作用越来越大。医学图像分割技术则是把医学图像分割成若干个具有不同特性的区域,区域内保持一定的相似性,区域间有一定的相异性,从而提取出感兴趣的部分。 医学图像分割在临床诊断中发挥着重要作用,如: (1)生物医学图像分析:解剖结构的测量、心脏运动跟踪等。 (2)组织、器官定量分析:通过对人体器官或是病变器官容积的定量检测,为医生的临床诊断提供依据。 (3)医学图像3D重建:用于外科手术的仿真、药物治疗的评估等。 目前,医学图像分割技术的发展仍然面临一些困境,主要原因在于医学图像的多样性、复杂性及其采集的困难性。由于人体器官位置的特殊性,医学图像采集较为困难,图形容易受到组织运动等问题的影响,所采集的医学图像相交于普通图像而言,噪声较大。并且人体间存在个体差异,不同人体的组织和器官差异较大。因此,针对医学图像对图像分割技术进行研究,显得尤为重要。 2 医学图像分割算法

医学图像处理技术

医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。 2.2关键技术: 图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自

医学图像分割综述

医学图像分割综述 楼琼,11106109 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像处理的意义越来越重大,其一般流程如下图: 而图像分割技术是图像分析环节的关键技术,其在影像医学中发挥着越来越大的作用 [1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析, 诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开,这些区域是互相不交叉 的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中(,)g x y 0_x Max x ≤≤,0y Max y _≤≤,进行分割就是将图像划分为满足如下条件的子区域:

a) ,即所有子区域组成了整幅图像。 1(,)(,)N k k g x y g x y ==∪b) 是连通的区域。 k g c) (,)(,)k j g x y g x y φ=∩,即任意两个子区域不存在公共元素。 d) 区域满足一定的均一性条件。其中均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 k g 如果连通性的约束被取消,那么对像素集的划分就称为分类,每一个像素集称为类。简便起见,在下面的叙述中将经典的分割和像素分类通称为分割。 医学图像分割至今仍然没有获得很好的解决,其中一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,人体组织结构形状复杂,而且人与人之间有很大的差别。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论、偏微分方程理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程、水平集方法等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中的新方法或对原有方法的新改进。 2.基于区域的分割方法 图像分割通常会用到不同对象间特征的不连续性和同一对象内部特征的相似性。基于区域的算法侧重于利用区域内特征的相似性。 2.1 阈值法 阈值分割是最常见的并行直接检测区域的分割方法[5]。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开。 阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。 阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围有较大重叠的图像分割问题难以得到准确的结果。另外,由于它仅仅考虑了图像的灰度信息而不考虑图像的空间信息,阈值分割对噪声和灰度不均匀很敏感。针对阈值分割方法的缺点,不少学者提出了许多改进方法,如基于过渡区的方法[6],还有利用像素点空间位置信息的变化阈值法[7],结合连通信息[8]的阈值方法。 对于多目标的图像来讲,如何选取合适的阈值实在是基于阈值分割方法的困难所在。至

医学图像分割文献综述

前言 随着科学技术的发展,生物切片图像在生命科学、医学、农业等领域得到越来越广泛的应用。通过对切片图像进行图形、图像处理,可以从图像中提取有意义的目标.并重建出三维模型.为人们提供便利。与其他图像相比,生物切片图像具有颜色相近、灰度不均匀、边缘复杂等特点,增加了图像分割的难度。 常用的图像分割方法有阈值法、基于边缘的方法、基于区域生长的方法等。对于生物切片图像,传统的分割技术或失败,或需要特殊的处理技术?。新兴的数学形态学技术在滤波去噪、保持轮廓信息等方面有着明显的优势。因此, 形态学常与分割方法相结合,如用形态学改进边缘检测效果,应用于生物组织的纹理分割I,以及生物切片的交互式区域分割等。本文探讨形态学与阈值方法相结合的模板法。以实现医学病理切片图像中真皮区域分割 2.2医学图像分割概述算法应用与研究 图像分割是图像处理中的关键问题,分布的区域,得到的图像称为分割图像, 可以给出如下图像分割的定义[1】:它把图像分成若干个按照一个或几个特征均匀表示的是区域信息。借助集合概念对图像分割令集合R代表整个图像区域,对R的分割可以看着将R分成N个满足以下五个条件的非空子集;Ⅳ ①lJRi=R f=l ②Rin母=a,对所有的i和j,f≠J ③P(Ri)=TRUE,i--1,2一·N ④P(RiA母)=FALSE,i≠J ⑤Rf是连通的区域,i=l,2···N 条件①指出在对一幅图像的分割应将图像中的每个像素都分进某个子区域中;条件②指出在分割结果中各个子区域是互补重叠的;条件③指出在分割结果中每个子区域都有独特的特性;条件④指出在分割结果中,各个子区域具有不同的特性,没有共同元素;条件⑤指出分割结果中同一个子区域内的像素应该是连通的。 医学图像中包含的内容很多,有些是临床诊断所关心的有用区域,称之为感兴趣区域(Region Of Interest,ROI),有些是不感兴趣的周围环境区域,称之为不感兴趣区域(Region Of Uninterested,ROU)。为了识别和分析医学图像感兴趣区域,就必须将这些区域分离出来。在医学图像处理中,自动识别有特定意义的图像成分,解剖结构和其他感兴趣的区域,是图像分割技术的一个根本任务。图像分割技术极大的推动了可视化和特定组织结构处理的发展。而这往往是决定着整个临床和研究分析结果的关键一步。 图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分

第7章 图象分割与区域提取

第 7 章 图象分割与区域提取
图像分割就是将图像中不同性质的区域分开,将相同性质且相邻的像素分在同一区域, 以便提取感兴趣的目标区域,识别图像的背景和主体,分析其颜色、纹理、形状、位置、大 小等特征。如果把图像看成是像素的集合,则图像分割可用数学方法做如下定义:
令集合 R 代表整个图像区域,对 R 的分割可看作将 R 分成若干个满足以下 5 个条件的 非空的子集(子区域)R1, R2, …, Rn:
n
(1) Ri ? R ;
i ?1
(2) 对所有的 i 和 j, i ? j ,有 Ri ? Rj ? ? ;
(3) 对 i = 1, 2,…, n,有 P(Ri ) = TRUE;
? ? (4) 对 i ? j ,有 P Ri ? Rj ? FALSE ;
(5) 对 i = 1, 2, …, n,Ri 是连通的区域。 其中 P(Ri)是对所有在集合 Ri 中元素的逻辑谓词, ? 是空集。 图像分割所依据的像素的性质可以是多方面的,如颜色(灰度)、纹理、位置、变换等 方面的性质。在人们识别图像中的物体时,对图像的区域分割和物体的形状判断,综合利用 了像素的各种性质、物体形状的先验知识和逻辑推理等,包括分析像素的颜色和邻域位置关 系,检测与判断物体的边缘,利用形状模板对边缘轮廓连接,物体的结构、组成和空间关系 等。人类复杂的心理活动计算机很难模拟,因此图像分割一直是图像处理、图像分析和计算 机视觉等领域经典的研究难题之一。 目前,图像分割的方法主要有三类:基于边缘的图像分割、基于像素聚类的图像分割 和基于区域的图像分割。基于边缘的分割是利用对象与背景的明显边缘来提取对象的边缘轮 廓,由闭合边缘线围成的区域就是对象的轮廓区域。基于边缘的分割方法有微分算子、边缘 拟合、边界跟踪等,比较适合于分割边缘明显的图像,如卡通图、图形等。这类方法定位准 确,但对噪声敏感,提取的边缘线常常不能闭合。 基于像素聚类的分割是利用图像中像素的共性(如颜色、邻域内的纹理特性、分形维 数等)进行聚类,形成具有形似性质的像素聚类区域。同一对象的像素应该聚类为同一区域, 从而实现对象的区域分割。这类方法应该是图像区域分割的理想方法,但实现的困难在于如 何选择像素的性质,有时难以对对象的像素性质进行抽象和描述。目前用于聚类的像素性质 主要有像素的颜色、邻域内的纹理、分形维数等,像素聚类的方法主要有阈值法、K-均值法、 ISODATA 聚类法、基于模糊 C-均值聚类的彩色图像分割等。 基于区域的图像分割是对图像中性质上相似、空间上相连的像素聚合形成分离的区域, 也是一种像素聚类过程。常用的方法有区域生长法、分裂合并法和松弛迭代法等。这类方法 的难点也是在于确定像素聚类的规则和起始、终止条件,比较适用于颜色缓慢变化的大面积 区域分割,如电脑生成的颜色渐变区域分割、自然界中的蓝天白云分割等。 此外,还有基于模型的图像分割,如基于Snake模型的图像分割、基于组合优化模型的 图像分割、基于目标模型的图像分割和基于Markov随机场的图像分割等。 像分割是图象分析与识别的基础,是图像处理与计算机视觉等研究领域的经典难题之 一。目前还没有一种完善的分割方法,对于广泛领域的图像可以按照人们的意愿准确地分割, 而且分割结果的好坏或正确与否,也没有统一的评价标准,主要从主观感觉或实际应用的效
1

相关主题