搜档网
当前位置:搜档网 › NEB公司提供的保护碱基序列表

NEB公司提供的保护碱基序列表

NEB公司提供的保护碱基序列表
NEB公司提供的保护碱基序列表

酶切位点保护碱基表

酶切位点保护碱基-PCR引物设计用于限制性内切酶 酶切反应 来源:easylabs 发布时间:2009-11-08 查看次数:12704 本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,A flIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,Eco RI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,Pa cI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 单实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A 260 位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在20°C 条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), , 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。 10 mM MgCl 2 20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切

引物保护碱基列表--百度文库

11月13日 引物合成的详解 4.需要什么级别的引物? 答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。根据实验需要,确定订购引物的纯度级别。 应用引物长度要求纯度级别要求 一般PCR扩增<45 base OPC 一般PCR扩增>45 base PAGE 诊断PCR扩增< 40base OPC, PAGE DNA测序20base左右OPC 亚克隆,点突变等根据实验要求定OPC, PAGE,HPLC 根据实验要求定PAGE 基因构建(全基因合成) 反义核酸根据实验要求定PAGE PAGE, HPLC 修饰引物根据实验要求定 8.如何计算引物的浓度? 答:引物保存在高浓度的状况下比较稳定。引物一般配制成 10-50pmol/ul。一般情况下,建议将引物的浓度配制成50pmol/ul,加水的体积(微升)按下列方式计算:V (微升)= OD数*(乘)33 *(乘)*(乘)20000 / (除) 引物的分子量。引物的分子量可以从合成报告单上获得。如果需要配制成其他浓度,按上述公式换算。 注意:1 OD260= 33 ug/ml. 9.如何计算引物的Tm值? 答:引物设计软件都可以给出Tm,与引物长度、碱基组成、引物使用缓冲的离子强度有关。

长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T) 对于更长的寡聚核苷酸,Tm计算公式为: Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size 公式中,Size = 引物长度。 11.如何溶解引物? 答:干燥后的引物质地非常疏松,开盖前最好离心一下,或管垂直向上在桌面上敲敲,将引物粉末收集到管底。根据计算出的体积加入去离子无菌水或10mM Tris pH7.5缓冲液,室温放置几分钟,振荡助溶,离心将溶液收集到管底。溶解引物用的水一般不要用蒸馏水,因为有些蒸馏水的pH值比较低(pH4-5),引物在这种条件下不稳定。 12.如何保存引物? 答:引物合成后,经过一系列处理和纯化步骤,旋转干燥而成片状物质。引物在溶解前,室温状态下可以长期保存。溶解后的引物-20度可以长期保存。如果对实验的重复性要求较高,合成的OD数较大,建议分装,避免反复冻融。修饰荧光引物需要避光保存。 13.合成的引物5’端是否有磷酸化 答:合成的引物5’为羟基,没有磷酸基团。如果需要您可以用多核苷酸激酶进行5′端磷酸化,或者要求引物合成公司合成时直接在5′或3′端进行磷酸化,需要另外收费。 14.引物片段退火后不能连接到载体上是什么问题? 连接反应需要引物的5’磷酸基团。如果需要将合成的引物退火直接连

保护碱基添加总结

酶切位点保护碱基表6

PCR引物设计原则 信息来源:本站原创更新时间:2004-12-21 0:44:00 PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在这一区域设计引物。现在可以在这一保守区域里设计一对引物。一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。 让我们先看看P1引物。一般引物序列中G+C含量一般为40%~60%。而且四种碱基的分布最好随机。不要有聚嘌呤或聚嘧啶存在。否则 P1引物设计的就不合理。应重新寻找区域设计引物。 同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。 引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特

异性影响不大。但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。 综上所述我们可以归纳十条PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。 ⑩引物3′端要避开密码子的第3位。 PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR 的成功,但遵循某些原则,则有助于引物的设计。

限制性内切酶保护碱基表

PCR设计引物时酶切位点的保护碱基表

ApaI (类型:Type II restriction enzyme )识别序列:5'GGGCC^C 3' BamHI(类型:Type II restriction enzyme )识别序列:5' G^GATCC 3' BglII (类型:Type II restriction enzyme )识别序列:5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme )识别序列:5' G^AATTC 3' HindIII (类型:Type II restriction enzyme )识别序列:5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme )识别序列:5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme )识别序列:5' C^CATGG 3' NdeI (类型:Type II restriction enzyme )识别序列:5' CA^TATG 3' NheI (类型:Type II restriction enzyme )识别序列:5' G^CTAGC 3' NotI (类型:Type II restriction enzyme )识别序列:5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme )识别序列:5' GAGCT^C 3' SalI (类型:Type II restriction enzyme )识别序列:5' G^TCGAC 3' SphI (类型:Type II restriction enzyme )识别序列:5' GCATG^C 3'

保护性碱基集锦

New England Biolabs Technical Literature - Updated 04/04/00 Cleavage Close to the End of DNA Fragments (oligonucleotides) To test the varying requirements restriction endonucleases have for the number of bases flanking their recognition sequences, a series of short, double-stranded oligonucleotides that contain the restriction endonuclease recognition sites (shown in red) were digested. This information may be helpful when choosing the order of addition of two restriction endonucleases for a double digest (a particular concern when cleaving sites close together in a polylinker), or when selecting enzymes most likely to cleave at the end of a DNA fragment. The experiment was performed as follows: 0.1 A 260 unit of oligonucleotide was phosphorylated using T4 polynucleotide kinase and γ-[32P] ATP. 1 μg of 5'[32P]-labeled oligonucleotide was incubated at 20°C with 20 units of restriction endonuclease in a buffer containing 70 mM Tris-HCl (pH 7.6), 10 mM MgCl 2, 5 mM DTT and NaCl or KCl depending on the salt requirement of each particular restriction endonuclease. Aliquots were taken at 2 hours and 20 hours and analyzed by 20% PAGE (7 M urea). Percent cleavage was determined by visual estimate of autoradiographs. As a control, self-ligated oligonucleotides were cleaved efficiently. Decreased cleavage efficiency for some of the longer palindromic oligonucleotides may be caused by the formation of hairpin loops .

各种酶切位点的保护碱基(引物设计必看)

各种酶切位点的保护碱基 酶不同,所需要的酶切位点的保护碱基的数量也不同。一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。在资料上查不到的,我们一般都随便加3个碱基做保护。 寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragments (oligonucleotides) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1 μg 已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH 7.6), 10 mM MgCl2 , 5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

2.双酶切的问题 参看目录,选择共同的buffer。其实,双酶切选哪种buffer是实验的结果,takara公司从1979年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer 完全是依据具体实验结果得到的。 有共同buffer的,通常按照常规的酶切体系,在37℃进行同步酶切。但BamH I在37℃下有时表现出star活性,常用30℃单切。 两个酶切位点相邻或没有共同buffer的,通常单切,即先做一种酶切,乙醇沉淀,再做另一种酶

各种酶切位点的保护碱基引物设计必看

各种酶切位点的保护碱基引物设计必看 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

各种酶切位点的保护碱基酶不同,所需要的酶切位点的保护碱基的数量也不同。一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。在资料上查不到的,我们一般都随便加3个碱基做保护。 寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragments (oligonucleotides) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1 μg 已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCl2 , 5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

2.双酶切的问题 参看目录,选择共同的buffer。其实,双酶切选哪种buffer是实验的结果,takara公司从1979年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer完全是依据具体实验结果得到的。 有共同buffer的,通常按照常规的酶切体系,在37℃进行同步酶切。但BamH I在37℃下有时表现出star活性,常用30℃单切。 两个酶切位点相邻或没有共同 buffer的,通常单切,即先做一种酶切,乙醇沉淀,再做另一种酶切。 3.酶切底物DNA,切不开 1)底物DNA上没有相应的限制酶识别位点,或酶切位点被甲基化。 2)PCR引物的酶切位点前没有保护碱基或引物合成有误,致使没有正确的酶切位点存在。PCR产物酶切前尽量进行精制以更换buffer。由于PCR产物中带入的其它物质,会影响酶切,据报道,通常PCR产物的添加量占总反应体积25%以下没有问题。3)酶切条件的确认,包括反应温度和反应体系等。同样的DNA,同样量,用不同的限制酶切情况可能不同,由于DNA的空间结构造成的。同样的DNA,不同的反应体系,酶切效果也可能不同,由于一些空间因素或不可测因素造成的。

保护性碱基

Cleavage Close to the End of DNA Fragments (oligonucleotides) To test the varying requirements restriction endonucleases have for the number of bases flanking their recognition sequences, a series of short, double-stranded oligonucleotides that contain the restriction endonuclease recognition sites (shown in red) were digested. This information may be helpful when choosing the order of addition of two restriction endonucleases for a double digest (a particular concern when cleaving sites close together in a polylinker), or when selecting enzymes most likely to cleave at the end of a DNA fragment. The experiment was performed as follows: 0.1 A260 unit of oligonucleotide was phosphorylated using T4 polynucleotide kinase and -[32P] ATP. 1 μg of 5′[32P]-labeled oligonucleotide was incubated at 20°C with 20 units of restriction endonuclease in a buffer containing 70 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM DTT and NaCl or KCl depending on the salt requirement of each particular restriction endonuclease. Aliquots were taken at 2 hours and 20 hours and analyzed by 20% PAGE (7 M urea). Percent cleavage was determined by visual estimate of autoradiographs. As a control, self-ligated oligonucleotides were cleaved efficiently. Decreased cleavage efficiency for some of the longer palindromic oligonucleotides may be caused by the formation of hairpin loops.

限制性内切酶酶切位点保护碱基

寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragme nts (oligo nu cleotides)) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列 含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用r[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1卩已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反 应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCI, 5 mM DTT 及适量的NaCI或KCI (视酶的具体要求而定)。20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。 DNA合成,新链的延伸方向是573因此,需要在5端加上酶切位点,因为内切酶除了有特异的识别位点之外,还需多几个无需特异性的碱基提供一个platform让它可以结合上去,否则 会掉下来.引物的结构就是(573):保护碱基+酶切位点+原来的引物序列 首先要看目的基因中是否含有该酶切位点,只有没有的才可以选(小虾米酶切位点分析)。其次,如果需要做表达,需要考虑起始密码子,防止移码突变

DNA合成,新链的延伸方向是5T3因此,需要在5端加上酶切位点,因为内切酶除了有特异的识别位点之外,还需多几个无需特异性的碱基提供一个platform 让它可以结合上去,否则 会掉下来.引物的结构就是(573):保护碱基+酶切位点+原来的引物序列?

全宇宙最全的内切酶保护碱基表

内切酶碱基数目和酶 切活性(%) 1 2 3 4 5 AarI 20-50 50-100 AasI 50-100 AatII 0 0-20 20-50 50-100 Acc65I 0-20 50-100 AdeI 50-100 AjiI 50-100 AluI 0-20 20-50 50-100 Alw21I 50-100 Alw26I 50-100 Alw44I 0 20-50 50-100 ApaI 50-100 BamHI 50-100 BauI 0-20 20-50 50-100 BcnI 20-50 50-100 BclI 0 50-100 BcuI 50-100 BfiI 50-100 BfmI 50-100 BfuI 50-100

BglI 20-50 50-100 BglII 0 50-100 Bme1390I 20-50 50-100 BoxI 0 50-100 BpiI 50-100 Bpu10I 20-50 50-100 Bpu1102I 50-100 BseDI 0 50-100 BseGI 50-100 BseJI 0 50-100 BseLI 0 50-100 BseMI 0-20 50-100 BseMII 50-100 BseNI 0 50-100 BseSI 50-100 BseXI 20-50 50-100 Bsh1236I 50-100 Bsh1285I 0-20 50-100 BshNI 50-100 BshTI 20-50 50-100 Bsp68I 0 50-100

Bsp119I 50-100 Bsp120I 20-50 50-100 Bsp143I 50-100 Bsp1407I 20-50 50-100 BspLI 50-100 BspPI 0 50-100 BspTI 0 0-20 50-100 Bst1107I 0-20 50-100 BstXI 0 50-100 Bsu15I 50-100 BsuRI 0-20 20-50 50-100 BveI 0-20 50-100 CaiI 0 0-20 50-100 CfrI 0 50-100 Cfr9I 20-50 50-100 Cfr10I 20-50 50-100 Cfr13I 50-100 Cfr42I 50-100 CpoI 50-100 CseI 50-100 Csp6I 50-100

酶切位点的保护碱基原则

1 bp 2 bp 3 bp 4 bp 5 bp AciI- + + ++ +++ AgeI+++ +++ +++ +++ +++ AgeI-HF?++ +++ +++ +++ +++ AluI- +++ +++ +++ +++ ApaI+++ +++ +++ +++ +++ AscI+++ +++ +++ +++ +++ AvrII++ ++ +++ +++ +++ Enzyme Back to top Base Pairs from end 1 bp 2 bp 3 bp 4 bp 5 bp BamHI+ ++ +++ +++ +++ BamHI-HF?+ + +++ +++ +++ BglII++ +++ +++ +++ +++ BmtI+++ +++ +++ +++ +++ BmtI-HF?+++ +++ +++ +++ +++ BsaI+++ +++ +++ +++ +++ BsaI-HF?+++ +++ +++ +++ +++ BsiWI++ +++ +++ +++ +++ BsmBI+++ +++ +++ +++ +++ BsrGI+++ +++ +++ +++ +++ BssHII+ +++ +++ +++ +++

1 bp 2 bp 3 bp 4 bp 5 bp ClaI- - + +++ +++ Enzyme Back to top Base Pairs from end 1 bp 2 bp 3 bp 4 bp 5 bp DdeI+++ +++ +++ +++ +++ DpnI- ++ ++ nt nt DraIII+++ +++ +++ +++ +++ DraIII-HF?+++ +++ +++ +++ +++ Enzyme Back to top Base Pairs from end 1 bp 2 bp 3 bp 4 bp 5 bp EagI++ +++ +++ +++ +++ EagI-HF?+ +++ +++ +++ +++ EcoRI+ + ++ ++ +++ EcoRI-HF?+ + ++ +++ +++ EcoRV++ ++ ++ ++ +++ EcoRV-HF?+ ++ ++ ++ +++ Enzyme Back to top Base Pairs from end 1 bp 2 bp 3 bp 4 bp 5 bp FseI+ ++ +++ +++ +++ Enzyme Back to top Base Pairs from end 1 bp 2 3 4 5 bp

NEB保护碱基-各种酶切位点保护碱基

PCR设计引物时酶切位点的保护 酶寡核苷酸序列 切割率% 2 hr20 hr Acc I G GTCGAC C CG GTCGAC CG CCG GTCGAC CGG 0 Afl III C ACATGT G CC ACATGT GG CCC ACATGT GGG >90 >90 >90 >90 Asc I GGCGCGCC A GGCGCGCC T TT GGCGCGCC AA >90 >90 >90 >90 >90 >90 Ava I C CCCGGG G CC CCCGGG GG TCC CCCGGG GGA 50 >90 >90 >90 >90 >90 BamH I C GGATCC G CG GGATCC CG CGC GGATCC GCG 10 >90 >90 25 >90 >90 Bgl II C AGATCT G GA AGATCT TC GGA AGATCT TCC 75 25 >90 >90 BssH II G GCGCGC C AG GCGCGC CT TTG GCGCGC CAA 50 >90 BstE II G GGT(A/T)ACC C010 BstX I AACTGCAGAA CCAATGCATTGG AAAACTGCAG CCAATGCATTGG AA CTGCAGAA CCAATGCATTGG ATGCAT 25 25 50 >90 Cla I C ATCGAT G G ATCGAT C CC ATCGAT GG CCC ATCGAT GGG >90 50 >90 50

EcoR I G GAATTC C CG GAATTC CG CCG GAATTC CGG >90 >90 >90 >90 >90 >90 Hae III GG GGCC CC AGC GGCC GCT TTGC GGCC GCAA >90 >90 >90 >90 >90 >90 Hind III C AAGCTT G CC AAGCTT GG CCC AAGCTT GGG 10 75 Kpn I G GGTACC C GG GGTACC CC CGG GGTACC CCG >90 >90 >90 >90 Mlu I G ACGCGT C CG ACGCGT CG 25 50 Nco I C CCATGG G CATG CCATGG CATG 50 75 Nde I C CATATG G CC CATATG GG CGC CATATG GCG GGGTTT CATATG AAACCC GGAATTC CATATG GAATTCC GGGAATTC CATATG GAATTCCC 75 75 >90 >90 Nhe I G GCTAGC C CG GCTAGC CG CTA GCTAGC TAG 10 10 25 50 Not I TT GCGGCCGC AA ATTT GCGGCCGC TTTA AAATAT GCGGCCGC TATAAA ATAAGAAT GCGGCCGC TAAACTAT AAGGAAAAAA GCGGCCGC AAAAGGAAAA 10 10 25 25 10 10 90 >90 Nsi I TGC ATGCAT GCA CCA ATGCAT TGGTTCTGCAGTT 10 >90 >90 >90 Pac I TTAATTAA G TTAATTAA C CC TTAATTAA GG 0 25 >90

酶切位点保护碱基

本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,AflIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,EcoRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A26单位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在2 0 0°C条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

常用酶切位点的保护性碱基

常用酶切位点的保护性碱基 Enzyme Oligo Sequence Chain % Cleavage Length 2 hr 20 hr AccI G GTCGAC C 8 0 0 CG GTCGAC CG 10 0 0 CCG GTCGAC CGG 12 0 0 AflIII C ACATGT G 8 0 0 CC ACATGT GG 10 >90 >90 CCC ACATGT GGG 12 >90 >90 AscI GGCGCGCC 8 >90 >90 A GGCGCGCC T 10 >90 >90 TT GGCGCGCC AA 12 >90 >90 AvaI C CCCGGG G 8 50 >90 CC CCCGGG GG 10 >90 >90 TCC CCCGGG GGA 12 >90 >90 BamHI C GGATCC G 8 10 25 CG GGATCC CG 10 >90 >90 CGC GGATCC GCG 12 >90 >90 BglII C AGATCT G 8 0 0 GA AGATCT TC 10 75 >90 GGA AGATCT TCC 12 25 >90 BssHII G GCGCGC C 8 0 0 AG GCGCGC CT 10 0 0 TTG GCGCGC CAA 12 50 >90 BstEII G GGT(A/T)ACC C 9 0 10 BstXI AACTGCAGAA CCAATGCATTGG22 0 0 AAAACTGCAG CCAATGCATTGG AA 24 25 50 CTGCAGAA CCAATGCATTGG ATGCAT 27 25 >90 ClaI C ATCGAT G 8 0 0 G ATCGAT C 8 0 0 CC ATCGAT GG 10 >90 >90 CCC ATCGAT GGG 12 50 50 EcoRI G GAATTC C 8 >90 >90 CG GAATTC CG 10 >90 >90 CCG GAATTC CGG 12 >90 >90 HaeIII GG GGCC CC 8 >90 >90

相关主题