搜档网
当前位置:搜档网 › Theoretical Aspects of High Energy Neutrinos and GRB

Theoretical Aspects of High Energy Neutrinos and GRB

Theoretical Aspects of High Energy Neutrinos and GRB
Theoretical Aspects of High Energy Neutrinos and GRB

a r

X

i

v

:a

s t

r o

-

p

h

/

6

5

1

66

v

1

5

M

a

y

2

6

February 5,200811:15Proceedings Trim Size:9in x 6in ebhu THEORETICAL ASPECTS OF HIGH ENERGY NEUTRINOS AND GRB ?P.M ′ESZ ′AROS AND S.RAZZAQUE Department of Astronomy and Astrophysics,Department of Physics,Pennsylvania State University,University Park,PA 16802,USA E-mail:nnp@https://www.sodocs.net/doc/bd7383629.html,,soeb@https://www.sodocs.net/doc/bd7383629.html, Abstract:Neutrinos at energies ranging from sub-TeV to EeV from astrophysical sources can yield interesting physical information about fundamental interactions,about cosmic rays and about the nature of the sources and their environment.Gamma-ray bursts are a leading candidate source,and their expected neutrino emission can address a number of current questions,which may be answered with forthcoming experiments such as IceCube,Auger,ANITA and KM3NeT.1.Introduction The origin of the observed ultrahigh-energy (UHE)cosmic-rays (CRs)above the “ankle”,roughly at EeV (=1018eV)energy,of the CR energy spec-trum is most probably extra-galactic.Any galactic origin at this energy,due to small magnetic de?ections,would result in an anisotropic distribution

of their arrival direction contrary to the observed data.The requirement that they are not attenuated by the cosmic microwave background through photo-meson (pγ)interactions constrains them to have originated within a radius of 50-100Mpc,the so-called “GZK”volume.1,2Two broad classes of models suggested are the “top-down”scenarios,which attribute UHE-CRs to the decay of fossil Grand Uni?cation defects,and the “bottom-up”scenarios,which assume UHECRs are accelerated in astrophysical sources.The observed UHECR energy injection rate into the universe is ~3×1044erg Mpc ?3yr ?1above the ankle.This is similar to the ~0.1-1MeV γ-ray energy injection rate by the local gamma-ray bursts (GRBs)which led to postulating that GRBs are the sources of UHECRs.3,4This coinci-dence has been corroborated using new data and further considerations,5,6,7

February5,200811:15Proceedings Trim Size:9in x6in ebhu

2

making GRBs promising candidates for UHECRs.Other candidates,in the

bottom-up scenario,are active galactic nuclei(AGNs),and cluster accre-

tion shocks.An unavoidable by-product of UHECR acceleration is the

production of UHE neutrinos,via pγand pp,pn interactions.We limit our

discussion to UHE neutrinos from GRBs here.

2.Nature of the High Energy Emission from GRBs

In the most widely accepted GRB model,the?reball shock model,the

promptγ-rays are produced by shocks in the plasma material ejected in

a jet moving relativistically(with a bulk Lorentz factorΓ 100),usually

taken to be(internal shocks),or in other versions an external shock(see,

e.g.,Re

f.[8]).Such jets can arise from the core collapse of massive stars,

convincingly shown to be the progenitor of long GRBs,or from mergers

of compact binary systems(neutron star-neutron star,black hole-neutron

star),which may be implicated in producing short https://www.sodocs.net/doc/bd7383629.html,te time colli-

sion of the jet material with an external medium(external shocks)produce

a long lasting x-ray,UV and optical radiation,collectively known as the

GRB afterglow.

The highly relativistic nature of the out?ows is inferred from and con-strained by the observations of GeV photons which avoid attenuation by

γγ→e±production in situ.The probable mechanism(s)responsible for

the observed photons is/are synchrotron radiation or/and inverse Compton

(IC)scattering by high energy electrons.These electrons are accelerated

by the relativistic shocks via the Fermi mechanism in the tangled magnetic

?eld,resulting in a power-law energy distribution.The high bulk Lorentz

factors result in synchrotron spectra which in the observer frame extend be-

yond100MeV,and IC scattering of such synchrotron photons leads to the

expectation of GeV and TeV spectral components.9While 18GeV pho-

tons have been observed,10TeV photons are likely to be degraded to lower

energies byγγpair production,either in the source itself,11or(unless the

GRB is at very low redshifts)in the intervening intergalactic medium.12,13 GRBs are likely to be more luminous in neutrinos,gravitational waves and cosmic rays compared to sub-GeV electromagnetic channels which com-

prise a small fraction of the burst kinetic energy.A signi?cant amount of

baryons(neutrons and protons)are expected to be present in the GRB jet

along with leptons,each withΓm p c2 100GeV bulk kinetic energy in the

observer frame.Protons are also expected to co-accelerate with electrons

in the internal and external shocks by the same Fermi https://www.sodocs.net/doc/bd7383629.html,ing

February5,200811:15Proceedings Trim Size:9in x6in ebhu

3 the shock parameters inferred from broad-band photon spectral?ts,one

infers that protons can be accelerated to Lorentz factors up to 1011in

the observer frame,i.e.to the GZK energy of E p~1020eV.

3.High Energy Neutrinos

High energy neutrinos,detectable by the neutrino telescopes such as Ice-

Cube in the~100GeV-EeV range,are produced in the GRBs in a way

similar to the beam-dump experiments in particle accelerators.Shock-

accelerated protons interacting with ambient radiation and/or plasma ma-

terial by photonuclear(pγ)and/or inelastic nuclear(pp/pn)collisions pro-

duce charged pions(π±)and neutral pions(π0).Neutrinos are produced

fromπ±decays along with muons and electrons.

Such neutrinos may serve as diagnostics of the presence of relativistic shocks,and as probes of the acceleration mechanism and the magnetic?eld

strength.The?ux and spectrum of EeV neutrinos depends on the density

of the surrounding gas,while the TeV-PeV neutrinos depend on the?reball

Lorentz factor.Hence,the detection of very high energy neutrinos would

provide crucial constraints on the?reball parameters and GRB environ-

ment.Lower energy( TeV)neutrinos originating from sub-stellar shocks,

on the other hand,may provide useful information on the GRB progenitor.

3.1.Neutrinos contemporaneous with the gamma-rays

With an initialΓi=300Γ300and a variability time scaleδt=10?3δt?3

s,internal shocks in the GRB jet take place at a radius r i~2Γ2i cδt~

5×1012δt?3Γ2300cm.The?reball becomes optically thin at a radius r i

allowing observedγ-ray emission.Shock accelerated protons interact dom-

inantly with observed synchrotron photons with~MeV peak energy in the

?reball to produce a?+resonance as pγ→?+.The threshold condi-

tion to produce a?+is E p Eγ=0.2Γ2i GeV2in the observer frame,which

corresponds to a proton energy of E p=1.8×107E?1

γ,MeV Γ2300GeV.The

short-lived?+decays either to pπ0or to nπ+→nμ+νμ→ne+νeˉνμνμwith roughly equal probability.It is the latter process that produces high energy neutrinos in the GRB?reball,contemporaneous with theγ-rays.14 The secondaryπ+receive~20%of the proton energy in such an pγin-teraction and each secondary lepton roughly shares1/4of the pion energy. Thus each?avor(νe,ˉνμandνμ)of neutrino is emitted with~5%of the proton energy,dominantly in the PeV(=1015eV)range,with equal ratios.

The di?use muon neutrino?ux from GRB internal shocks due to proton

February 5,200811:15Proceedings Trim Size:9in x 6in ebhu

4

acceleration and subsequent pγinteractions is shown as the short dashed line in Fig.1.The ?ux is compared to the Waxman-Bahcall limit of cosmic neutrinos from optically thin sources,which is derived from the observed cosmic ray ?ux.15The ?uxes of all three neutrino ?avors (νe ,νμand ντ)are expected to be equal after oscillation in vacuum over astrophysical dis-tances.

13 12

11 10 9 8 7

ν

[

l

o g

1

0(G

e V /c m

s

s r )

]2 E [log10(GeV)]o

p εE 2ν

Φ

ν

?1Figure 1.Di?use νμ?ux arriving simultaneously with the γ-rays from shocks outside the stellar surface in observed GRB (dark short-dashed curve),compared to the Waxman-Bahcall (WB)di?use cosmic ray bound (light long-dashed curves)and the atmospheric neutrino ?ux (light short-dashed curves).Also shown is the di?use muon neutrino pre-cursor ?ux (solid lines)from sub-stellar jet shocks in two GRB progenitor models,with stellar radii r 12.5(H)and r 11(He).These neutrinos arrive 10-100s before the γ-rays from electromagnetically detected bursts (with similar curves for νμ,νe and ντ).

3.2.Neutrinos from the GRB afterglow

The GRB afterglow arises when relativistic jetted plasma material starts being slowed down by the external medium (e.g.the interstellar medium,or ISM),driving a blast wave ahead of the jet.This produces an external forward shock or blast wave,and a reverse shock in the jet.The external shock takes place at a radius r e ~4Γ2e c ?t ~2×1017Γ2250?t 30cm which is well beyond the internal shock radius.15Here Γe ≈250Γ250is the bulk Lorentz factor of the ejecta after the partial energy loss from emitting γ-rays in the internal shocks,and ?t =30?t 30s is the duration of the

February5,200811:15Proceedings Trim Size:9in x6in ebhu

5 GRB jet.Neutrinos are produced in the external reverse shock due to pγ

interactions of shock accelerated protons predominantly with synchrotron

soft x-ray photons produced by electrons.The energy of the neutrinos from

the afterglow would be in the EeV range as more energetic protons interact

with these soft photons to produce?+.The e?ciency of proton to pion

conversion by pγinteractions in the external shocks(afterglow)is typically

smaller than in the internal shocks because r e?r i,implying lower photon

density.

In the case of a massive star progenitor the GRB jet may be expanding into a stellar wind much denser than the typical ISM density of n?1cm?3,

which is emitted by the progenitor prior to its collapse.For a wind with

mass loss rate of~10?5M⊙yr?1and velocity of v w~103km/s,the wind

density at the typical external shock radius would be?104cm?3.The

higher density implies a lowerΓe,and hence a larger fraction of proton

energy lost to pion production.Protons of energy E p 1018eV lose all

their energy to pion production in this scenario producing EeV neutrinos.16

3.3.Precursor neutrinos

In the long duration GRBs,the relativistic jet is expected to be launched

near the central black hole resulting from the collapse of the stellar core,

hence the jet is initially buried deep inside the star.As the jet burrows

through the stellar material,it may or may not break through the stellar

envelope.17Internal shocks in the jet,while it is burrowing through the stel-

lar interior,can produce high energy neutrinos due to accelerated protons,

dominantly below~10TeV,through pp and pγinteractions.18The jets

which successfully penetrate through the stellar envelope result in GRBs

(γ-ray bright bursts),while the jets which choke inside the stars do not

produce GRBs(γ-ray dark bursts).However,in both cases high energy

neutrinos can be produced in the internal shocks,which slice through the

stellar envelope since they interact very weakly with matter.

These neutrinos from the relativistic buried jets are emitted as precur-sors(~10-100s prior)to the neutrinos emitted from the GRB?reball in

case of an electromagnetically observed burst.In the the case of a choked

burst(electromagnetically undetectable)no direct detection of neutrinos

from individual sources is possible.However the di?use neutrino signal is

boosted up in both scenarios.The di?use neutrino?ux from two progenitor

star models are shown in Fig.1,one for a blue super-giant(labeled H)of

radius R?=3×1012cm and the other a Wolf-Rayet type(labeled He)of

February5,200811:15Proceedings Trim Size:9in x6in ebhu

6

radius R?=1011cm.The Waxman-Bahcall di?use cosmic ray bound,19

the atmospheric?ux and the IceCube sensitivity to di?use?ux are also

plotted for comparison.The neutrino component which is contemporane-

ous with the gamma-ray emission(i.e.which arrives after the precursor)is

shown as the dark dashed curve,and is plotted assuming that protons lose

all their energy to pions in pγinteractions in internal shocks.

3.4.Early np decoupling non-thermal neutrinos

Neutrons are expected to be present in considerable numbers in the GRB

jet(n n?n p)because of a neutronized core similar to that in supernovae in

the case of long GRB,and from neutron star material in the case of a short

GRB.In the long GRB,the core collapse neutronization leads to copious

thermal(~10MeV)neutrinos,but due to their low energy,their cross sec-

tion is too small for detection at cosmological distances.However,in both

long and short GRB out?ows,neutrons are present,and are initially cou-

pled to the protons by elastic nuclear scattering.If the initial acceleration

of the?reball is very high,the neutrons can eventually decouple from the

?reball,when the comoving expansion time falls below the nuclear scatter-

ing time.Protons,on the other hand,continue accelerating and expanding

with the?reball as they are coupled to the electrons by Coulomb scattering.

The relative velocity between the protons and neutrons,in such a case,can

get high enough for inelastic interactions(np)above the pion production

threshold of~140MeV,leading to~10GeV neutrinos in the observer’s

frame.20,21,22Highly neutron-enriched(n n~10n p)jet in case of short

GRBs may lead to~50GeV neutrinos,as the relative velocity between

the protons and neutrons increases substantially,which are detectable from

a nearby burst.23

4.GRB-Supernova Connection

A fraction of long GRBs have recently been shown to be associated with

supernovae of type Ib/c.24A GRB jet loaded with baryons would then leave

long-lasting UHE CR,neutrino and photon signatures in those supernova

remnants which were associated with a GRB at the time of their explo-

sion.One example may be the SN remnant W49B which is probably a

GRB remnant.A signature of a neutron component in the relativistic jet

out?ow would be a TeVγ-ray signature due to inverse Compton interac-

tions following neutron decay.25Another example may be some of the HESS

unidenti?ed sources.26Neutron decay would also give rise to TeV neutrinos.

February5,200811:15Proceedings Trim Size:9in x6in ebhu

7 The imaging of the surrounding emission could provide new constraints on

the jet structure of the GRB.

Cosmic-rays accelerated in the GRB remnant,similar to SN remnants which are observed as TeVγ-ray sources such as RX J1713.7-3946,would

also be expected to produce UHE neutrinos.27Expected neutrino andγ-ray

energy,commonly originating from pγand/or pp/pn interactions,would be

higher in case of GRB remnants because of the higher expansion velocity.

5.Neutrino Flavor Astrophysics

High energy neutrinos from astrophysical optically thin sources are ex-

pected to be produced dominantly via pγinteractions.Subsequent decay

ofπ+and neutrino?avor oscillations in vacuum lead to an observed anti-

electron to total neutrino?ux ratio ofΦˉνe:Φν?1:15.28At high energy

this ratio may be lower even,29since the muons su?er signi?cant electro-

magnetic energy loss prior to decay.30In the case of pp/pn interactions,

typically attributed to optically thick sources,π±are produced in pairs and

the corresponding expected?ux ratio on Earth isΦˉνe:Φν?1:6.However

even in the optically thin sources the nominalΦˉνe:Φνratio may be en-

hanced above1:15byγγ→μ±interactions and subsequentμ±decays.31

The targets are usual synchrotron photons and UHE incident photons are

provided by the pγ→pπ0→pγγchannel itself.This mechanism yields an

enhancement ratioΦˉνe:Φν?1:5solely fromμ±decays.

Measurement of theˉνe toν?ux ratios may be possible by IceCube at the Glashow resonant interactionˉνe e→W?→anything at Eν?6.4

PeV.32Any enhancement over the1:15ratio,e.g.,from a single nearby

GRB would then suggest aγγorigin.However,the?ux ofγγneutrinos

depend on the source model such as magnetization,radius etc.We have

plotted theˉνe toν?ux ratio in Fig.2,which includes the contribution

from pγandγγchannels,from a GRB internal shocks with di?erent model

parameters.The solid,dashed,dotted-dash and dotted lines correspond to

the magnetization parameterεB=10?1,10?2,10?3and10?4respectively.

The shocks take place at the photosphere(r ph)and at a radius10r ph.31

Note that the ratio is enhanced from the pγvalue of1/15in the small

energy range whereγγinteractions contribute signi?cantly.This result

then may be used to learn about the GRB model parameters.

February 5,200811:15Proceedings Trim Size:9in x 6in ebhu

8

0.07ph Γ = 316

r = r

ph Γ = 100Γ = 316

r = 10 r ph

Γ = 100

r = 10 r ph log E νNeutrino energy (GeV)

/ΦνΦ

νe

F l

u

x

r a

t

i

o

58735678910

640.060.11

0.080.10

0.09r = r Figure 2.Expected anti-electron to total neutrino ?ux ratio:Φνe /Φνon Earth from a GRB after vacuum oscillations as function of neutrino energy.The ?uxes are both from the pγ→nπ+and γγ→μ+μ?interactions.Depending on the GRB model parameters such as the internal shock radius (at the photosphere r ph and at 10r ph ),bulk Lorentz factor (Γ)and magnetization (εB =10?1,10?2,10?3and 10?4denoted by solid,dashed,dotted-dash and dotted lines respectively),the ?ux ratio may be enhanced from the nominal 1/15value in certain energy ranges.

6.Conclusions

Although ?reball shock model is the leading GRB scenario,there is no strong direct proof so far for the internal shock or the reverse shock origin of the observed radiation.High energy neutrino emission from GRBs would serve as a direct test for this,as well as for “baryonic”jet models,where the bulk of the energy is carried by baryons.On the other hand,an alternative Poynting ?ux dominated GRB jet model would have to rely on magnetic dissipation and reconnection,accelerating electrons and hence also accel-erating protons–but there would be much fewer protons to accelerate and probably to much lower energy.

The Pierre Auger Observatory ,a CR detector currently under construc-tion,will have very large (~3000km 2each for its two location in the South-ern and Northern hemisphere)area.33It will help to disentangle the two scenarios (top-down or bottom-up)and will reveal whether a GZK feature indeed exists by greatly improving the UHECR count statistics.Within the bottom-up scenario,the directional information may either prove or signi?cantly constrain the alternative AGN scenario,and may eventually

February5,200811:15Proceedings Trim Size:9in x6in ebhu

9 shed light on whether GRBs are indeed the sources of UHECRs.

Upcoming experiments such as IceCube,34ANITA,35KM3NeT,36and Auger33are currently being built to detect high energy astrophysical neutri-

nos.They can provide very useful information on the particle acceleration,

radiation mechanism and magnetic?elds,as well as about the sources and

their progenitors.Direct con?rmation of a GRB origin of UHECRs is dif-

?cult but the highest energy neutrinos may indirectly serve that purpose

pointing directly back to their sources.Most GRBs are located at cosmo-

logical distances(with redshift z~1)and individual detection of them by

km scale neutrino telescopes may not be possible.The di?use neutrino?ux

is then dominated by a few nearby bursts.The likeliest prospect for UHE

νdetection is from these nearby GRBs in correlation with electromagnetic

detection.

The prospect for high energy neutrino astrophysics is very exciting, with AMANDA already providing useful limits on the di?use?ux from

GRBs37,38and with IceCube39,40on its way.The detection of TeV and

higher energy neutrinos from GRBs would be of great importance for un-

derstanding the astrophysics of these sources such as the hadronic vs.the

magnetohydrodynamic composition of the jets,as well as the CR acceler-

ation mechanisms involved.High energy neutrinos from GRBs may also

serve as probes of the highest redshift generation of star formation in the

Universe,since they can travel un-attenuated,compared to the conventional

electromagnetic astronomical probes.

Acknowldgements

Work supported by NSF grant AST0307376and NASA grant NAG5-13286.

References

1.K.Greisen,Phys.Rev.Lett.16,748(1966).

2.G.T.Zatsepin and V.A.Kuzmin,JETP Lett.4,78(1966)[Pisma Zh.Eksp.

Teor.Fiz.4,114(1966)].

3.M.Vietri,Astrophys.J.453,883(1995).

4. E.Waxman,Phys.Rev.Lett.75,386(1995).

5. E.Waxman Astrophys.J.,606,988(2004).

6.M.Vietri,D.de Marco and D.Guetta,Astrophys.J.592,378(2003).

7.S.Wick,C.Dermer,A.Atoyan,Astropar.Phys.,21,125(2004)

8.P.M′e sz′a ros,Annu.ReV.Astron.Ap.,40,137(2002).

9.P.M′e sz′a ros,M.J.Rees and H.Papathanassiou,Astrophys.J.432,181(1994).

10.K.Hurley et al.,Nature372,652(1994).

11.S.Razzaque,P.M′e sz′a ros and B.Zhang,Astrophys.J.6131072(2004).

February5,200811:15Proceedings Trim Size:9in x6in ebhu

10

12.P.Coppi and F.Aharonian,1997,Astrophys.J.487,L9(1997).

13.O.C.de Jager and F.W.Stecker,Astrophys.J.566,738(2002).

14. E.Waxman and J.Bahcall,Phys.Rev.Lett.78,2292(1997).

15. E.Waxman and J.N.Bahcall,Astrophys.J.541,707(2000).

16.Z.G.Dai and T.Lu,Astrophys.J.551,249(2001).

17.P.M′e sz′a ros and E.Waxman,Phys.Rev.Lett.87,171102(2001).

18.S.Razzaque,P.M′e sz′a ros and E.Waxman,Phys.Rev.D68,083001(2003).

19. E.Waxman and J.Bahcall,Phys.Rev.D59,023002(1999).

20. E.V.Derishev,V.V.Kocharovsky and VI.V.Kocharovsky,Astrophys.J.

521,640(1999).

21.J.N.Bahcall and P.M′e sz′a ros,Phys.Rev.Lett.85,1362(2000).

22.P.M′e sz′a ros and M.J.Rees,Astrophys.J.541,L5(2000).

23.S.Razzaque and P.M′e sz′a ros,Astrophys.J.(submitted),astro-ph/0601652.

24.M.Della Valle,astro-ph/0504517.

25.K.Ioka,S.Kobayashi and P.M′e sz′a ros,Astrophys.J.613,L171(2004).

26. A.Atoyan,J.Buckley and H.Krawczynski,Astrophys.J,642,L43(2006)

27.J.Alvarez-Muniz and F.Halzen,Astrophys.J.576,L33(2002).

28.J.G.Learned and S.Pakvasa,Astropart.Phys.3,267(1995).

29.T.Kashti and E.Waxman,Phys.Rev.Lett.95,181101(2005).

30.J.P.Rachen and P.M′e sz′a ros,Phys.Rev.D58,123005(1998).

31.S.Razzaque,P.M′e sz′a ros and E.Waxman,Phys.Rev.D(in press),astro-

ph/0509186.

32.L.A.Anchordoqui,H.Goldberg,F.Halzen and T.J.Weiler,Phys.Lett.

B621,18(2005).

33.https://www.sodocs.net/doc/bd7383629.html,/

34.https://www.sodocs.net/doc/bd7383629.html,/

35.https://www.sodocs.net/doc/bd7383629.html,/anita/

36.https://www.sodocs.net/doc/bd7383629.html,/

37.M.Stamatikos et al.,AIP Conf.Proc.727,146(2004).

38.J.Becker et al.,Astropart.Phys.25,118(2006).

39.J.Ahrens et al.,New Astron.Rev.48,519(2004).

40.P.O.Hulth,in NO-VE2006,Neutrino Oscillations in Venice,Italy(astro-

ph/0604374).

能量的转化和转移-初中物理知识点习题集

能量的转化和转移(北京习题集)(教师版) 一.选择题(共5小题) 1.(2016秋?昌平区期末)下列说法中不正确的是 A .发电机工作时,将机械能转化为电能 B .电风扇工作时,扇叶的机械能是由电能转化的 C .在被阳光照射时,太阳能电池将太阳能转化为电能 D .干电池给小灯泡供电时,干电池将电能转化为化学能 2.(2016秋?西城区校级期中)下列生活实例中,只有能量的转化而没有能量的转移的是 A .利用煤气灶将冷水烧热 B .汽车行驶一段路程后,轮胎会发热 C .太阳能水箱中的水被晒热了 D .把冰块放在果汁里,饮用时感觉很凉快 3.(2015秋?东城区校级期中)在能的转化过程中,下列叙述不正确的是 A .木柴燃烧过程中是化学能转化为内能 B .发电机工作时是机械能转化为电能 C .电源是将其它形式的能转化为电能的装置 D .干电池使用时,是把电能转化为化学能 4.(2014秋?北京校级月考)下列现象中,只有能的转移而不发生能的转化的过程是 A .水蒸气会把壶盖顶起来 B .洗衣机工作 C .用锤子打铁件,铁件发热 D .冬天用手摸户外的东西时感到冷 5.(2011秋?西城区校级月考)下列过程中,机械能转化为内能的是 A .锯木头,经过一段时间后,锯条和木头都发热 B .锅里的水沸腾时,水蒸气把锅盖顶起 C .神州号飞船点火后,腾空而起 D .礼花弹在节日的夜空中绽开 二.多选题(共1小题) 6.(2008?宣武区二模)在以下事例中,机械能转化为内能的是 ()()()() ()()

A .流星与空气摩擦,生热发光 B .水壶中的水沸腾后,壶盖被水蒸气顶起 C .反复弯折铁丝,铁丝弯折处温度升高 D .金属汤勺放在热汤中,其温度升高 三.填空题(共3小题) 7.(2016秋?西城区校级期中)如果你去参观中国科技馆四层“挑战与未来” 厅 “新型材料”展区,你就可以看到这种能发电的神奇布料。会发电的衣服是用一种可以利用运动产生电力的新型纤维织造的,当人穿上这种纤维织成的衣物后,在身体运动过程中会产生一些压折,或者遇上一阵微风,就能够形成源源不断的电流,这种发电方式是将人体的 能转化为电能、并加以应用的最简单也最经济的方式。发电纤维与压电陶瓷都是通过压力来产生电力,而使小灯泡发光的。 8.(2013?西城区一模)如图所示是北京郊区官厅风力发电场的巨大的风车。这种装置可以利用风能带动扇叶转动,并把风车的机械能转化为 能。 9.(2012秋?宣武区校级月考)某人使用手机通话时,锂电池此时的能量转化是 。 四.实验探究题(共1小题) 10.(2016秋?海淀区期中)阅读《压电陶瓷》回答问题。 压电陶瓷 打火机是日常生活中常用的物品,最初的打火机是靠拨动齿轮与火石摩擦起火的,而今人们常用的是压电式打火机。这种打火机中装有一块压电陶瓷。使用时只需按压点火开关,利用压电陶瓷的压电效应,在两点火极之间产生 的电压而引起火花,引燃丁烷气(如图甲所示)。 某些物质在沿一定方向上受到外力的作用而变形时,就会在它的两个相对表面上形成一定的电压。当外力去掉后,它又会恢复到不带电的状态,这种现象称为压电效应。这种压电效应不仅仅用于打火机,还应用于煤气灶打火开关、炮弹触发引线、压电地震仪等许多场合。 某种压电陶瓷片外形如图乙所示。它是把圆形压电陶瓷片与金属振动片粘合在一起。当在压电陶瓷片上施加一个压力时,在陶瓷片与金属振动片之间就会产生电压。可用如图丙的方法来观察压电现象并检查压电陶瓷片的质量好坏,即用导线把金属振动片和压电陶瓷片分别与电压表的、接线柱连接,当用拇指与食指挤压压电陶瓷片和金属振动片的两面时,电压表的指针就会偏转,这说明在压电陶瓷片与金属振动片之间产生了电压。 在压力相同的情况下,电压表指针摆幅越大,说明压电陶瓷片的灵敏度越高 。 A --10~20kV +-

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

(完整word版)高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

初中物理能量的转化和守恒教案

《能量的转化和守恒》教案 一、教学目标: 1、知道各种形式的能是可以相互转化的。 2、知道在转化的过程中,能量的总量是保持不变的。 3、列举出日常生活中能量守恒的实例。 4、有用能量守恒的观点分析物理现象的意识。 教学重点:能的转化和守恒定律,强调能的转化和守恒定律是自然科学中最基本定律。 教学难点:运用能的转化和守恒原理计算一些物理习题;运用能的转化和守恒定律对具体的自然现象进行分析,说明能是怎样转化的。 二、资料准备:教材分析: 教材从能量的转化与守恒中,列举出生活中的能量守恒实例来加强教学。 三、教学过程: 环节一:引入新课 我们知道物体的动能和热能,是由物体的机械能运动情况决定的能量,内能跟物体内部分子的热运动和分子间的相互作用情况有关。物体内部分子的热运动,物体的机械运动都是物质运动的形式,由于运动形式不同,与之相联系的能量也不相同。 环节二:进行新课 的事例,说明各种形式的能的转化和转移)。在热传递过程中,高温物体的内能转移到低温物体。运动的甲钢球碰击静止的乙钢球,甲球的机械能转移到乙球。在这种转移的过程中能量形式没有变。 在自然界中能量的转化也是普遍存在的。小朋友滑滑梯,由于摩擦而使机械能转化为内能;在气体膨胀做功的现象中,内能转化为机械能;在水力发电中,水的机械能转化为电能;在火力发电厂,燃料燃烧释放的化学能,转化成电能;在核电站,核能转化为电能;电流通过电热器时,电能转化为内能;电流通过电动机,电能转化为机械能。有关能量转化的事例同学们一定能举出许多,课本图2-17中画出了一些农常用的生活、生产设备。请同学分析在使用图中设备时能量的转化。 (3)在能量转化和转移的过程中,能的总量保持不变。大量事实证明,在普遍存在的能量的转化和转移过程中,消耗多少某种形式的能量,就得到多少其他形式的能量。如在热传递过程中,高温物体放出多少热量(减少多少内能),低温物体就吸收多少热量(增加多少内能);克服摩擦力做了多少功,就有多少机械能转化为能量,但能量的总量不变。就是说某物体损失的能量等于几个物体得到几个物体得到的能量的总和。例如,把烧热的金属块,投到冷水中,冷水,盛水的容器以及周围的空气等,都要吸收热量,它们所吸收的热量总和跟金属块放出的热量相等。再如水电站里,水从高处流下,损失了机械能,一方面由于推动发电机转动而转化为电能,一方面水跟水轮机、管道摩擦而转化为内能。那么水的机械能的损失等于产生的电能和内能的总和。 以上规律是人类经过长期的实践探索,直到19世纪,才确立了这个自然界最普遍的定律棗能量的转化守恒定律。通常把它表述为: 能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

高一物理能量守恒定律测试题

2.3 能量守恒定律第一课时 【素能综合检测】 1.(5分)在利用重物做自由落体运动探索动能与重力势能的转化和守恒的实验中,下列说法中正确的是() A.选重锤时稍重一些的比轻的好 B.选重锤时体积大一些的比小的好 C.实验时要用秒表计时,以便计算速度 D.打点计时器选用电磁打点计时器比电火花计时器要好 【解析】选A.选用的重锤宜重一些,可以使重力远远大于阻力,阻力可忽略不计,从而减小实验误差,故A正确;重锤的体积越大,下落时受空气阻力越大,实验误差就越大,故B 错误;不需用秒表计时,打点计时器就是计时仪器,比秒表计时更为精准,故C错误;电磁打点计时器的振针与纸带间有摩擦,电火花计时器对纸带的阻力较小,故应选电火花计时器,D错误. 3.(5分)如图1是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n点来验证机械能守恒定律.下面举一些计算n点速度的方法,其中正确的是()

4.(4分)在“验证机械能守恒定律”的实验中 (1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的序号填在题后横线上: A.用手提着纸带使重物静止在靠近打点计时器处; B.将纸带固定在重物上,让纸带穿过打点计时器的限位孔; C.取下纸带,在纸带上任选几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度; D.接通电源,松开纸带,让重物自由下落; E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等; F.把测量和计算得到的数据填入自己设计的表格里. 答:_____________. (2)动能值和相应重力势能的减少值相比,实际上哪个值应偏小些? 答:____________. 【解析】(1)实验的合理顺序应该是:BADCFE (2)由于重物和纸带都受阻力作用,即都要克服阻力做功,所以有机械能损失,即重物的动能值要小于相应重力势能的减少值. 答案:(1)BADCFE(2)动能值

高中物理分子动理论、能量守恒定律公式总结

高中物理分子动理论、能量守恒定律公式总结 1、阿伏加德罗常数A N =6.02×1023/mol ;分子直径数量级10-10 米 2、油膜法测分子直径S V d = {V :单分子油膜的体积(m 3),S :油膜表面积(m 2)} 3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4、分子间的引力和斥力(1)0r r <,斥引f f <,分子力F 表现为斥力;(2) 0r r >,斥引f f >, 分子力F 表现为引力;(3) 0r r =,斥引f f =; (4) 010r r >,0≈=斥引f f ,0≈分子力F ,0≈分子势能E 5、热力学第一定律U Q W ?=+{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q :物体吸收的热量(J),U ?:增加的内能(J),涉及到第一类永动机不可造出 6、热力学第二定 律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)、温度是分子平均动能的标志; (3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)、分子力做正功,分子势能减小,在0r 处斥引f f =且分子势能最小; (5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大0>?U ;吸收热量,0>Q (6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)、0r 为分子处于平衡状态时,分子间的距离; (8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

苏科初中物理九下《18.4能量转化的基本规律》word教案 (3)

四、能量转化的基本规律 学习要求 1.知道能量守恒定律。能举出日常生活中能量守恒的实例。有用能量转化与守恒的分析物理现象的意识。 2.初步了解在现实生活中能量的转化与转移有一定的方向性。 3.讨论和分析两个具体的永动机设计方案,说明永动机是不可能的。 学习指导 1.能量守恒定律:能量既不会凭空消灭,也不会凭空产生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化或转移的过程中,其总量保持不变。能量守恒定律是自然界最普遍、最重要的基本定律之一。一切有能量转化或转移的场合,大到宇宙、小到原子核内部,也不论是生物、化学还是物理、地质现象,都遵守能量守恒定律。自然界中能的总量保持不变,但是对于某一物体可能改变。 2.能量转化和转移的方向性:热量只能从高温物体转移到低温物体,不能相反,具有方向性,否则就要消耗其他的能。不是什么能源都可以利用,能源的利用是有条件的,也是有代价的,有的东西能成为能源,有的则不能。虽然能量在转化和转移的过程中是守恒的,但具有方向性,因此我们一定要节约能源。 典型范例 例题市场经济的今天,一些厂商一改过去“酒香不怕巷子深”的做法,纷纷对产品进行广告宣传。可是有些厂商在广告上弄虚作假,夸大其词,欺骗消费者。如某品牌电热水器这样写道:“我厂电热水器功率只有55W,烧开一瓶水只需5min,节钱省电,最适合普通家庭使用。”这则广告可信吗? 精析:电热水器烧开水,是电能转化为热能被水吸收的过程。方法一:根据题意求出电热水器所产生的热能,再利用热量公式,算出这些热量能够烧开多少质量的水,与事实进行比较,判断信息是否可信;方法二:先求出电热电热水器所产生的热能,再估算出烧开一瓶水所需要的热量,两者进行比较,判断信息是否可信,判断的依据是能量守恒定律。 全解:方法一:电热水器产生的热能为W=Pt=55W×5×60s=1.65×104J。 假设一般情况下烧开水是把水从20℃加热到100℃,则这些热量可以烧开的水的质量m= Q c△t = W c△t = 1.65×104J 4.2×103J/(kg·℃×(100℃-20℃)) =0.049kg。

(九年级物理)能量(能量的转移和转化)

能量(能量的转移和转化) 【复习要点】: 要点(40):了解能量及其存在的不同形式,描述各种能量和生产生活的联系; 例题1:关于信息和能源,下列说法正确的是() A.电风扇工作时,电能主要转化为内能 B.目前的核电站是利用核裂变释放的核能工作的 C.煤、石油、风能、天然气等都是不可再生能源 D.能量在转移、转化过程中总是守恒的,我们无需节约能源 要点(41):通过实验,认识能量可以从一个物体转移到另一个物体,不同形式的能量可以互相转化; 例题2:随着智能手机的普及,人们的聊天方式也不断推陈出新,由于智能手机的待机时间很短,因此需要经常充电,当给电池充电时是将能转化成能.当手机正常使用时是将能转化成。将微风扇通电时它可以转动,这是将能转化成能,如果转动微风扇的风叶,还可以使与风扇插头相连的二极管发光,这是将 能转化成能。 要点(42):结合实例,认识功的概念。知道做功的过程就是能量转化或转 移的过程; 例题3:如图,在空气压缩引火仪玻璃筒的底部放一小撮干燥的棉絮,用力 将活塞迅速向下压,棉絮燃烧起来。此实验得到的结论是:对(选 填“棉絮”或“筒内气体”)做功,它的内能会增加,其能量转化情况与 单缸四冲程汽油机的冲程相同,若汽油机的转速是2400r/min,则此汽油机每秒对外做功次。

要点(43):知道动能、势能和机械能。通过实验,了解动能和势能的相互转化。举例说明机械能和其它形式能量的相互转化。 例题4:如图所示是演示点火爆炸的实验装置.按动电火花发生器的按钮,点燃盒内酒精,盒盖被打出去.在汽油机工作的四个冲程中,与此能量转化相同的冲程示意图是() 【反馈练习】: 1.以下说法正确的是() A.太阳能和核能都属于可再生能源 B.发光二极管主要使用的材料是超导体 C.热量不能自发地从低温物体传递给高温物体,说明能量转移具有方向性, D.飞 机的 机翼 做成 上面 凸起,下面平直.是因为流过机翼上方的空气流速大,压强大。 2.周末小明骑自行车去傅家边游玩.自行车下坡的过程中,为了减小车速,他捏紧车闸,这是通过的方法增大摩擦,此时刹车皮会发热,这是通过

人教版高中物理第十二章 电能 能量守恒定律精选试卷专题练习(解析版)

人教版高中物理第十二章电能能量守恒定律精选试卷专题练习(解析版) 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.某位同学用如图甲所示的多用电表测量电阻,要用到选择开关和两个部件.请根据下列步骤完成电阻测量: (1)在使用前,发现多用电表指针如图乙所示,则他应调节__________ (选填或或). (2)正确处理完上述步骤后,他把开关打在欧姆挡,把红黑表笔短接,发现指针如图丙所示,则他应调节__________ (选填或或). (3)正确处理完上述步骤后,他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,则他应采取的措施是①___________________;②____________________. (4)正确处理完上述步骤后,他把红黑表笔接在定值电阻两端,发现指针如图戊所示,则该定值电阻的阻值___________. 【答案】(1)S (2)T (3)①将打到欧姆挡;②将两表笔短接,重新调节,使指针指在欧姆零刻度线处(4) 【解析】 【分析】 【详解】 (1)在使用前,发现多用电表指针如图乙所示,则应机械调零,即他应调节S使针调到电流的零档位. (2)把开关打在欧姆挡,把红黑表笔短接,即欧姆调零,应该调到电阻的零档位,此时要调节欧姆调零旋钮,即T (3)他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,说明待测电阻较小,应该换小挡,即换挡,换挡必调零,所以要重新调零即将两表笔短接,重新调节,使指针指

在欧姆零刻度线处. (4)根据欧姆表读数原则可知欧姆表的读数为 【点睛】 要熟练万用表的使用规则,并且要注意在换挡时一定要欧姆调零. 2.(1)下列给出多种用伏安法测电池电动势和内阻的数据处理方法,其中既能减小偶然误差又直观、简便的是_____ A.测出两组I、U 的数据,代入方程组E=U1+I1r 和E=U2+I2r B.多测几组I、U 的数据,求出几组E、r,最后分别求出其平均值 C.测出多组I、U 的数据,画出U-I 图像,在根据图像求E、r D.多测几组I、U 的数据,分别求出I 和U 的平均值,用电压表测出断路时的路端电压即为电动势E,再利用闭合电路欧姆定律求出内电阻r (2)(多选)用如图甲所示的电路测定电池的电动势和内阻,根据测得的数据作出了如图乙所示的U-I 图像,由图像可知_______ A.电池的电动势为1.40V B.电池内阻值为3.50Ω C.外电路短路时的电流为0.40A D.当电压表示数为1.20V 时,电路电流为0.2A (3)如上(2)中甲图所示,闭合电键前,应使变阻器滑片处在________(填“左”或“右”)端位置上. (4).(多选)为了测出电源的电动势和内阻,除待测电源和开关、导线以外,配合下列哪组仪器,才能达到实验目的_______ A.一个电流表和一个电阻箱 B.一个电压表、一个电流表和一个滑动变阻器 C.一个电压表和一个电阻箱 D.一个电流表和一个滑动变阻器 【答案】C;AD;左;ABC 【解析】 (1) A项中根据两组测量数据可以算出一组E、r值,但不能减少偶然误差;B项中可行,但不符合题目中“直观、简便”的要求,D选项的做法是错误的,故符合要求的选项为C.(2) A项:由图示图象可知,电源U-I图象与纵轴交点坐标值为1.40,则电源的电动势测量值为1.40V,故A正确;

滨州市邹平县初中物理九年级全册14.3能量的转化和守恒练习题

滨州市邹平县初中物理九年级全册14.3能量的转化和守恒练习题 姓名:________ 班级:________ 成绩:________ 一、练习题 (共12题;共25分) 1. (2分)某品牌手机充电宝,上面标有电压为5V,容量为12000mA?h,它充满电后,可以储存的电能是________J,在充电过程中,将电能转化为________能储存. 2. (2分)大量事实证明“永动机”是不可能存在的,因为它违背了________定律。热机的效率总是会________1.(填“大于”“小于”或“等于”) 3. (2分)木材燃烧是将化学能转化为________能,这一过程能量的总量将________(填变大、变小或不变). 4. (3分) 2017年1月5日19时45分,西昌卫星发射中心用长征三号运载火箭,成功发射两颗北斗三号全球组网卫星。预计到22018年底,将有18颗北斗卫星发射升空,服务区覆盖“一带一路”沿线国家及周边国家,长征三号乙运载火箭起飞过程中燃料燃烧释放的内能将转化为火箭的________能,加速上升过程中受到________(选填“平衡力”或“非平衡力”)作用,北斗卫星与地面之间通过________传递信息。 5. (2分)(2020·绵阳模拟) 如图甲所示,小明在吹气球时,被吹大了的气球没能用手握住,呼啸着飞了出去,若他及时捡拾起气球,将会感觉到它喷气的嘴部温度和原来相比________(选填“变高”、“变低”或“没有变化”),发生的能量转化与汽油机的________冲程的能量转化是一致的。 6. (2分)关于热机中的能量转化关系,下列说法中正确的是() A . 热机是将机械能转化为内能的机器 B . 热机是将内能转化为机械能的机器 C . 热机是将燃料的化学能转化为机械能的机器 D . 热机是利用化学能来做功,它是将化学能转化为内能 7. (2分) (2017九上·广州月考) 如图所示,在一个配有活塞的厚壁玻璃筒里放一小团硒化棉布,用力把活塞迅速下压,棉花就会立即燃烧.根据该实验现象,下列结论正确的是()

高二物理学习必备公式:能量守恒定律公式(1)

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; (3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力

减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离;

九年级物理能量的转化与守恒练习题

九年级物理能量的转化与守恒练习题 基础知识训练 1.从能的转化和守恒的观点来看,用热传递来改变物体的内能,实际上是的过程,用做功方法来改变物体的内能,实际上是的过程. 2.英国物理学家法拉第经过10年不懈努力,终于在1831年发现了现象,导致发电机的发明,实现了电能的大规模生产。我国兴建的长江三峡发电机组,是通过能转化为电能。福州市即将兴建的垃圾焚烧电厂,是将垃圾焚烧后获得的能。最终转化为电能。 3.当水壶中的水烧开时,壶盖会被顶起,从能量转化的观点看,这是水蒸气的_________能转化为壶盖的能。 4.能量转化与守恒是自然界的基本规律之一,下列过程中机械能转化为电能的 是()A.干电池放电B.给蓄电池充电 C.风力发电D.电动机带动水泵抽水 5.下列现象中,利用内能做功的是() A.冬天在户外时两手相搓一会儿就暖和B.车刀在砂轮的高速磨擦之下溅出火花 C.在烈日之下柏油路面被晒熔化了D.火箭在“熊熊烈火”的喷射中冲天而起 6.下列说法中错误的是() A.能的转化和守恒定律只适用于物体内能的变化 B.只要有能的转化和转移,就一定遵从能量守恒定律 C.能的转化和守恒定律是人们认识自然和利用自然的有力武器 D.任何一种形式的能在转化为其他形式的能的过程中,消耗多少某种形式的能量,就能得到多少其他形式的能量,而能的总量是保持不变 7.我区大力发展火力发电,火电厂进的是“煤”,出的是“电”,在这个过程中能量的转化是() A.机械能→内能→化学→能电能B.化学能→内能→机械能→电能C.化学能→重力势能→动能→电能D.内能→化学能→机械能→电能综合提高训练 1.指出下列现象中能量的转化和转移情况. (1)气体膨胀做功. (2)植物进行光合作用. (3)燃料燃烧. (4)风吹动帆船前进. 2.如图15-14所示,在试管内装一些水,用软木塞塞住,用 酒精灯加热试管使水沸腾,水蒸气会把软木塞冲出.在水蒸

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

初二物理复习知识点:能量的转化和守恒

初二物理复习知识点:能量的转化和守恒 在一定的条件下,各种形式的能量可以相互转化;摩擦生热,机械能转化为内能;发电机发电,机械能转化为电能;电动机工作,电能转化为机械能;植物的光合作用,光能转化为化学能;燃料燃烧,化学能转化为内能。 能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变能量的转化和守恒练习题 能量既不会______,也不会______,它只会从一种形式______为其他形式,或者从一个物体______到另一个物体,而在转化和转移过程中,______的总量保持不变.这就是能量守恒定律. 克服摩擦或压缩气体做功时,消耗______能,使______能转化为______能,而且消耗多少______能,就得到多少______能,在这个过程中,能量的总量______. “和平”号空间站完成使命后,安全坠入南太平洋海域,当“和平”号进入稠密大气层时,燃起了熊熊大火,这是将______能转化为______能,在“和平”号坠入南太平洋的过程中,它的______能增加,______能减少,而能的总量______. 自然界中各种不同形式的能量都可以相互转化,电动机

可以把______能转化为______能;太阳能电池把______能转化为______能;植物的光合作用可以把______能转化为______能,燃料燃烧时发热,将______能转化为______能. 秋千荡起来,如果不继续用力会越荡越低,甚至停止;皮球落地后,每次弹起的高度都会比原来低.在这两个过程中,机械能______了,转化成了______能.机械能是否守恒______,能的总量是否守恒______.

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

相关主题