搜档网
当前位置:搜档网 › 二倍角公式及其应用

二倍角公式及其应用

二倍角公式及其应用
二倍角公式及其应用

二倍角公式及其应用

郴州综合职业中专

张文汉

教学目的:

引导学生导出二倍角的正弦、余弦以及正切公式并且能够熟练掌握其应用

教学重点:

二倍角的正弦、余弦以及正切公式

教学难点:

二倍角的正弦、余弦以及正切公式的变换及公式的应用,特别是逆应用公式

引入:

回顾正弦、余弦以及正切的和角公式:

()βαβαβαsin cos cos sin sin +=+

()βαβαβαsin sin cos cos cos -=+

()βαβ

αβαtan tan 1tan tan tan -+=+

要求:

掌握三个公式的形式与结构并熟记公式

新授:

一、 二倍角的正弦、余弦以及正切公式的导出

在上述正弦、余弦以及正切的和角公式中

,cos sin 22sin ααααβ=弦以及正切公式如下:

”得二倍角的正弦、余”代“以“

,sin cos cos222ααα-=

,tan 1tan 22tan 2αα

α-=

外两个公式:可得二倍角的余弦的另另外、根据1cos sin 22=+αα

,1cos 22cos 2-=αα

.sin 212cos 2αα-=

二、应用训练

㈠、公式的正用:

().2cos 2sin ,270,180,43

cos 00的值、求已知????∈-=

()

,

413431cos 1sin ,270,180,43cos 2200-

=???? ??---=--=∈-=????所以,解:因为

.

8

514321cos 22cos ,

8

39

43

4132cos sin 22sin 22-=-????

??-

?=-==????

??-????? ??-

?==?????所以,

㈡公式的反用:求下列各式的值

()005.22cos 5.22sin 21 ()0015cos 15sin 2

()15.22cos 2302- ()125sin 2142π

-

().22

45sin )5.222sin(100==?=原式解

()()41

212130sin 2115cos 15sin 221

2000=?===原式解

().22

45cos )5.222cos(300==?=原式解

().

43

23

216cos 216cos 2165cos 21125sin 212142-=?-=-=??? ??-==??? ??

-=ππππ

π原式解

㈢公式的灵活运用:化简或求值

();8cos 228sin 121+++化简: ().

178cos 174cos 172cos 17cos 2π

π

ππ求值:

()().4cos 21

2sin 2sin ,0222tan 32的值,求,且已知??

?

??--+∈=θπθ

θπθθ

()()14cos 2224cos 4sin 21212-+++=原式解 ()4cos 44cos 4sin 222++=

()().4cos 4sin .4cos 24sin 24cos 24cos 4sin 2皆为负与因为,+-=-+-=

()17

sin 2178cos 174cos 172cos 17cos 17sin 2244πππππ

π=原式解 17sin 2178cos 174cos 172cos 172sin 243πππππ=17

sin 2178cos 174cos 174sin 242ππππ= 17sin 2178cos 178sin 24πππ=17sin 21716sin 4ππ=.16117

sin 217sin 17sin 2)17sin(44==-=πππππ (),22tan 1tan 2,222tan 32=-=θθθ所以:因为解 ,02tan tan 22=-+θθ整理得:,2tan 2

2tan -==θθ或解之,得 ;32212

21221tan 1tan sin cos cos sin 22tan 2,0-=+-==+-=+-==??

? ??∈θθθθθθθπθ原式,此时,则若 ,此时,则若2tan ,2-=??

? ??∈θππθ .22312121tan 1tan +=+---=+-=θθ原式 三、课堂练习

求下列各式的值:();5.67cos 5.67sin 100 ().15cos 75sin 200

四、课堂小结:

1、二倍角公式的导出;

2、二倍角公式的熟练应用;

3、二倍角公式的灵活应用.

五、作业:

.

,6.0角的正弦、余弦值求这个等腰三角形的顶底角的正弦值等于已知等腰三角形的一个六、课后思考训练

.cos sin ,2,4,tan 12sin sin 23;tan ,,2,2cos sin 2;78sin 66sin 42sin 6sin 120000的值表示试用、已知求、已知、求值:ααππαααααππααα-??

? ??∈=++??? ??∈=k k

(完整版)三角函数系列二倍角公式测试题含答案.doc

评卷人得分 二倍角公式一、选择题 1.已知 2sin θ +3cosθ =0,则 tan2 θ =() A . B . C . D . 2.已知= ,则 sin2 α +cos (α﹣)等于() A.﹣B.C.D.﹣ 3.若 0<α<,﹣<β< 0,cos (+α) = ,cos (﹣β),则 cos (α +β)=()A.B.﹣C.D.﹣ 5.已知 cos α=, cos (α +β)=﹣,且α、β∈(0,),则cos(α﹣β)=()A.B.C.D. 6.求值: tan42 ° +tan78 °﹣tan42 ° ?tan78 ° =() A.B.C.D. 7.已知 sinx= ﹣,且 x 在第三象限,则tan2x= () A.B.C.D. 8.已知 tan α =4,= ,则则 tan (α +β)=() A.B.﹣C.D.﹣ 9.计算 log 2sin +log 2cos 的值为() A.﹣ 4 B. 4 C. 2 D.﹣ 2 10.若均α,β为锐角,=() A.B.C.D. 11.已知 tan α=, tan β=,则 tan (α﹣β)等于()

12.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则 cos2 θ =()A.﹣B.﹣C.D. 13.已知 sin θ +cos θ=,则tan2θ值为() A.B.C.D. 14.设 tan α, tan β是方程 x 2﹣3x+2=0 的两个根,则tan (α +β)的值为() A.﹣ 3 B.﹣ 1 C. 1 D. 3 15.sin α=,α∈(,π),则cos (﹣α)=() A.B.C.D. 16.已知 sin α +cos α =﹣,则 sin2 α =() A.B.C.D. 17.已知,那么cosα=() A.B.C.D. 18.设α﹑β为钝角,且 sin α=, cos β =﹣,则α +β的值为() A.B.C.D.或 19.若 tan (α﹣β) = , tan β=,则 tan α等于() A.﹣ 3 B.﹣C. 3 D. 20. =() A.B.C.D. 21.若角 A为三角形 ABC的一个内角,且 sinA+cosA= ,则这个三角形的形状为() A.锐角三角形B.钝角三角形

二倍角公式的应用,推导万能公式

课题十:二倍角公式的应用,推导万能公式 教学第一环节:衔接阶段 回收上次课的教案,检查学生的作业,做判定。 了解家长的反馈意见 通过交流,了解学生思想动态,稳定学生的学习情绪 了解学生上次学习的情况,查漏补缺,为后面的备课方向提供依据 教学第二个环节:教学内容 一、解答本章开头的问题: 令AOB = , 则AB = a cos OA = a sin ∴S 矩形ABCD = a cos ×2a sin = a 2sin2 ≤a 2 当且仅当 sin2 = 1, 即2 = 90, = 45时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式:在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1在 α-=α2sin 212cos 中,以代2,2 α代 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2在 1cos 22cos 2-α=α 中,以代2,2 α代 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3以上结果相除得:α +α-=αcos 1cos 12tan 2 注意:1左边是平方形式,只要知道2 α角终边所在象限,就可以开平方。 2公式的“本质”是用角的余弦表示2 α角的正弦、余弦、正切 3上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 4 还有一个有用的公式:α α-=α+α=αsin cos 1cos 1sin 2tan (课后自己证) 三、万能公式 B C a A O D

二倍角公式练习题含答案

1.若sin 2α ,则cos α=( ) A .-2 3 B .-13 C.13 D.2 3 2. 47 17 30 17sin sin cos cos ??? ?-的值是( ). A .-2 B .-1 2 C. 12 D. 2 3.若sin cos sin cos αα αα+-=1 2,则tan2α=( ). A .-3 4 B.3 4 C .-4 3 D.4 3 4.已知()1 cos 03??π=-<<,则sin 2?=( ) A.9 B.9- C.9 D.9- 5 .已知cos 2θ=44sin cos θθ-的值为( ) A . 1811 D. 2 9- 6.已知3 cos 5α=,则2cos 2sin αα+的值为( ) A. 925 B. 18 25 C. 2325 D. 34 25 7.已知(,0)2πα∈-,3 cos 5α=,则tan 2α=( ) A.247 B.247- C.-724 D.24 7 8.4sin 2,(,)544ππ αα=-∈-,则sin 4α的值为( ) A. 24 25 B. -2425 C. 4 5 D. 725 9. 已知2 sin 3α=,则cos(2)πα-=

A . B .19- C .19 D 10.已知α为第二象限角,3sin 5 α= ,则sin 2α= . 11.已知tan 2α=,则sin cos 3sin 2cos αααα +=-________; 12.已知α是第二象限的角,且53sin =α,则α2tan 的值是 ;

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 答案第1页,总1页 参考答案 1.C 2.C 3.B 4.D 5.B 6.A 7.D 8.B 9.B 10.2524 - 11.3 4 12.24 7-

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

高中数学北师大版高一必修4试题 3.3.1二倍角公式及其应用

1.函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12 C.12 D .1 解析:f (x )=12sin 2x ∈ [-12,12 ]. 答案:B 2.已知sin ????π2+α=13 ,则cos(π+2α)的值为( ) A .-79 B.79 C.29 D .-23 解析:∵sin(π2+α)=13,∴cos α=13 . 则cos(π+2α)=-cos 2α=1-2cos 2α =1-29=79. 答案:B 3.已知等腰三角形底角的余弦值为23 ,则顶角的正弦值是( ) A.459 B.259 C .-459 D .-259 解析:令底角为α,顶角为β,则β=π-2α, ∵cos α=23 ,0<α<π, ∴sin α=53 . ∴sin β=sin(π-2α)=sin 2α=2sin αcos α =2×23×53=459 . 答案:A 4.已知θ是第三象限角,若sin 4θ+cos 4θ=59 ,则sin 2θ等于( ) A.223 B .-223 C.23 D .-23 解析:∵sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2 (sin θcos θ)2=59 , ∴(sin θcos θ)2=29 . ∵θ为第三象限角,∴sin θ<0,cos θ<0, ∴sin θcos θ>0,∴sin θcos θ=23 .

∴sin 2θ=2sin θcos θ=223 . 答案:A 5.已知α为第二象限角,sin α=35 ,则tan 2α=______. 解析:由于α为第二象限角,且sin α=35 , ∴cos α=-45.∴tan α=-34 , ∴tan 2α=2tan α1-tan 2α=2×(-34)1-(-34)2=-321-916 =-247. 答案:-247 6.已知0<α<π2,sin α=45,则sin 2α+sin 2αcos 2α+cos 2α =________. 解析:∵0<α<π2,sin α=45 , ∴cos α=35 . ∴sin 2α+sin 2αcos 2α+cos 2α=sin 2α+2sin αcos α3cos 2α-1 =(45)2+2×45×353×925 -1=20. 答案:20 7.已知sin α=cos 2α,α∈(0,π2 ),求sin 2α的值. 解:∵sin α=1-2sin 2α,即2sin 2α+sin α-1=0, ∴sin α=-1或sin α=12 . 又∵α∈(0,π2),∴sin α=12,α=π6. ∴cos α=32.∴sin 2α=2sin αcos α=2×12×32=32 . 8.在△ABC 中,若cos A =13,求sin 2B +C 2 +cos 2A 的值. 解:sin 2 B + C 2+cos 2A =1-cos (B +C )2+cos 2A =1+cos A 2+2cos 2A -1 =12+12×13+2×(13)2-1=-19.

倍角公式练习题

1.若[]0,θπ∈, ) A .7 D 2.已知α为第二象限角,5 4sin = α,则=-)2sin(απ A .2425- B .2425 C .1225 D .1225- 3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上则cos 2θ等于( ) A 4) A 5,则α2cos 的值为( ) A 6.【原创】在△ABC 中,若sin (A+B-C )=sin (A-B+C ),则△ABC 必是( ) (A )等腰三角形 (B )直角三角形 (C )等腰或直角三角形 (D )等腰直角三角形 7.【原创】x y 2sin 2=的值域是( ) A .[-2,2] B .[0,2] C .[-2,0] D .R ) (A ))()2(x f x f =-π (B ))()2(x f x f =+π (C ))()(x f x f -=- (D ))()(x f x f =- 9,则sin2=α( ) 10( ) A 2- D .2 11则sin 2θ=( )

A.1 B.3 C 12则x4 cos的值等于() 13.若(0,) απ ∈,且,则cos2α=() (A (B (C (D 14.已知α 是第二象限角,且,则tan2α的值为() A 15 ,则x 2 sin的值为() A 16 17的值为. 18上的最大值是. 19 20___________ 21 22 23.若tanα=2,则sinα·cosα的值为. 24的最大值是. 25的最大值是. 26.已知函数log(1)3 a y x =-+,(0 a>且1) a≠的图象恒过点P,若角α的终边经过点P,则2 sin sin2 αα -的值等于_______.

二倍角公式教案

二倍角公式教案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二 倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学方法: 讨论式教学+练习 五、教学过程 1 复习引入 前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。 2 公式推导 在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。(让学生做5分钟) (1)提问: sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式? 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α

高一数学二倍角公式讲解

在高中数学中同学们感到吃力的一部分是三角函数的学习,在这一部分有大量的公式需要同学们熟练记忆,并且在使用的时候不能够混淆。为了方便同学们能够清楚掌握这部分内容,在考试中能够取得好成绩,下面小编给大家整理了高中书序中二倍角公式推导讲解。 正弦二倍角公式: sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2 余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2] 2.Cos2a=1-2Sina^2 3.Cos2a=2Cosa^2-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cosA^2-sinA^2=2cosA^2-1 =1-2sinA^2

正切二倍角公式: tan2α=2tanα/[1-tanα^2] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tanA^2] 降幂公式: cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 tanA^2=[1-cos2A]/[1+cos2A] 变式: sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4) 以上就是关于高中数学二倍角公式的分享,对于这些公式同学们要掌握他们的推到过程,认真对应三角图形,参考推导过程进行熟练记忆。最后要强调同学们还是要进行适当的习题训练,加强公式记忆。

二倍角公式专项练习

二倍角公式专项练习 一、选择题 1.(2011福建厦门模拟)已知tan α=-43,则tan ????π4-α的值为( ). A .-7 B .7 C .-17 D .17 2.(2011北京东城模拟)已知sin θ=45 ,sin θ-cos θ>1,则sin 2θ=( ). A .-2425 B .-1225 C .-45 D .2425 3.已知α为第二象限角,3 3cos sin =+αα,则=α2cos ( ) A .35 B .95- C .95 D .35- 4.若sin θ-cos θ=-51,且π<θ<2π,则cos2θ等于( ) A. 257 B.-257 C.±257 D.-25 12 5.已知向量a =????sin ????α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ? ???α+4π3=( ). A .-34 B .-14 C .34 D .14 6.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ为( ). A .k π,(k ∈Z ) B .k π+π6,(k ∈Z ) C .k π+π3,(k ∈Z ) D .-k π-π3 ,(k ∈Z ) 7.cos 275°+cos 215°+cos75°cos15°的值等于( ) A.26 B.23 C.4 5 D.1+43 8.(2010年大同模拟)函数f (x )=sin 2(x +π4)-sin 2(x -π4 )是( ) A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为π的偶函数 9.若1sin( )34πα-=,则cos(2)3πα+=( ) A .78- B .14- C .14 D .78 10.已知2 10cos 2sin ,=+∈αααR ,则=α2tan ( ) A .34 B .43 C .43- D .3 4- 二、填空题 1. 已知cos ????π2+θ=45 ,则cos2θ=________.-725 2. 设sin ????π4+θ=13 ,则sin2θ=________.-79

最新中职数学授课教案:二倍角公式数学

15.2 二倍角公式 教学案 【学习目标】 1.会推导二倍角的正弦、余弦公式 2.熟记二倍角的正弦、余弦公式及变形公式 3.能够正确应用公式进行简单的三角函数化简,求值等。 【学习重点】:熟记公式并灵活应用 【学习难点】:抓住公式的结构特点,凑配公式形式 【学习过程】: (一)课前检测 化简下列各式(做题前请写出本题可能用到的公式)(5分钟) 1、cos440 cos760-sin440cos140 2、2cos200-2sin200 (二)新知探究 二倍角公式: ____;__________2sin =α ______________________________________________2cos ===α; 由二倍角的正弦、余弦公式可得变形公式: .______________cos ____;__________sin 22==ααsin cos αα= 1cos2α+= ;1cos2α-= ;1sin2α+= ;1sin2α-= ; 1.若3sin ,(,)52 πααπ=∈,则sin2α= ;cos2α= ;tan2α= ; 2.sin22?30/cos22?30/=__________________; 3.22 cos 112π-=_________________; 4.8cos 2π 8sin 2π -=____________________; 小结:1.倍角公式的正用与逆用;2.理解“二倍角”的广义含义即两个角之间二

倍关系如24364824284 αααααααααααα与;与;与;与;与;与分别都是二倍角的关系 (三)能力提升 1、=-2sin 2cos 44 αα32,则cos α=( ) A. 32 B.-3 2 C.35 D.-35 2、已知180°<2α<270°,化简αα2sin 2cos 2-+=( ) A 、-3cosα B 、3cos α C 、-3cos α D 、3sin α-3cos α 3、已知4sin(2),cos45απα-==则 4、已知4sin ,(8,12)85ααππ=-∈,求 sin ,cos ,tan 444ααα的值。 5、已知13cos()cos sin()sin ,( ,2)32παββαββαπ+++=∈,求cos(2)4πα+的值 6.已知5cos 13α=-,4cos 5β=,且(,)2παπ∈,(0,)2 πβ∈,求sin(2)αβ-的值。 小结:1.准确理解二倍角的广义含义;2.灵活与用公式;3.掌握统一角的思想。 (四) 学后反思与总结 本节课你学到了哪些知识?还有哪些困惑?你掌握了哪些题型及解决的方法?

二倍角的三角函数公式 测试题

必修4 第三章 二倍角的三角函数公式 制卷:王小凤 学生姓名 (1—7题,每小题5分,共70分;8—10题,每题10分,共30分。) 1.计算下列各式的值:(写出变换过程) (1)1515sin cos o o = (2)22 12 12 cos sin π π -= (3)=-π 18 cos 22 (4)115sin 22 -?= (5)=ππππ12 cos 24cos 48cos 48sin 8 (6)=π -ππ+π)12 5cos 125)(sin 125cos 125(sin (7)=α -α2 sin 2cos 44 (8)215115tan tan -o o = 2 ) A .cos10? B .cos10sin10?-? C .sin10cos10?-? D . (cos10sin10)±?-? 3 .已知sin 5 α=,则44 sin cos αα-的值为( ) A .15 - B .35 - C . 15 D . 35 4.4cos 2sin 22+-的值等于( ) A.sin2 B.-cos2 C.3 cos2 D.-3cos2 5.2 (sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 6.若1 sin cos 5 θθ+= ,则sin 2θ的值是 . 7.函数2 ()2cos sin 2f x x x =+的最小值是 . 8.已知α为第二象限的角,3sin 5α=,β为第一象限的角,5 cos 13 β=. 求tan(2)αβ-的值. 9.3sin cos 4sin sin 1044x x x x ππ???? =-+ ? ????? 已知,求的值 10.已知5 1cos sin ,02 = +<<- x x x π . (I )求sin x -cos x 的值; (Ⅱ)求2 23sin 2sin cos cos 2222 x x x x -+的值.

二倍角公式

求三角函数最小正周期的五种方法 一、定义法:直接利用周期函数的定义求出周期。 例1.求函数y m x =-cos()56 π (m ≠0)的最小正周期。 解:因为y m x =-cos( )56 π =-+=+-cos( )cos[()] m x m x m 5625106π πππ 所以函数y m x =-cos( )56π(m ≠0)的最小正周期T m =10π || 例2.求函数y x a =cot 的最小正周期。 解:因为y x a x a a x a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最小正周期为T a =||π。 二、公式法:利用下列公式求解三角函数的最小正周期。 1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T = 2π ω|| 。2. y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T = π ω|| 。3.y x y x ==|sin ||cos |ωω或的最小正周期T = π ω|| 。4.y x y x ==|tan ||cot |ωω或的最小正周期T = π ω|| ……….例4.求函数y n m x =-cot()3π的最小正周期。 解:因为T n m = =-πωωπ ||||而,所以函数y n m x =-cot()3π的最小正周期为

T n m m n = -=ππ|| ||。 三、转化法:对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型, 再用公式法求解。 例5.求函数y x x =+sin cos 66的最小正周期。 解:因为y x x =+sin cos 66 =+-+(sin cos )(sin sin cos cos )224224x x x x x x =+-=-=--=+(sin cos )sin cos sin cos cos 222222313 4 213414238458 x x x x x x x · 所以函数y x x =+sin cos 66的最小正周期为T = =22 πωπ ||。 例6.求函数f x x x x ()sin cos cos =+422 ·的最小正周期。 解:因为f x x x x ()sin cos cos =+422 · =++=++2221521 sin cos sin()x x x φ 其中sin cos φφ= =1525 ,,所以函数f x x x x ()sin cos cos =+422 ·的最小正周期为T = =2π ωπ|| 。 四、最小公倍数法:由三角函数的代数和组成的三角函数式,可先找出各个加函数的最

二倍角公式的应用推导万能公式

教材:续二倍角公式的应用,推导万能公式 目的:要求学生能推导和理解半角公式和万能公式,并培养学生综合分析能力。 过程: 一、解答本章开头的问题:(课本 P3) 令∠AOB = θ , 则AB = a cos θ OA = a sin θ ∴S 矩形ABCD = a cos θ×2a sin θ = a 2sin2θ≤a 2 当且仅当 sin2θ = 1, 即2θ = 90?,θ = 45?时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式 在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α -= αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1?在 α-=α2sin 212cos 中,以α代2α,2 α 代α 即得: 2s i n 21c o s 2α-=α ∴2 cos 12sin 2α-=α 2?在 1cos 22cos 2-α=α 中,以α代2α,2 α 代α 即得: 12 c o s 2c o s 2-α=α ∴2cos 12cos 2α+= α 3?以上结果相除得:α +α -=αcos 1cos 12tan 2 注意:1?左边是平方形式,只要知道2 α 角终边所在象限,就可以开平方。 2?公式的“本质”是用α角的余弦表示2 α 角的正弦、余弦、正切 3?上述公式称之谓半角公式(大纲规定这套公式不必记忆) 4?还有一个有用的公式:α α -= α+α=αsin cos 1cos 1sin 2tan (课后自己证) B C a θ A O D

三、万能公式 例二、求证:2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan 2sin 2 222α -α =αα+α-=αα+α= α 证:1?2tan 12tan 22cos 2sin 2cos 2sin 21 sin sin 2 22α+α=α+ααα= α=α 2?2tan 12tan 12cos 2sin 2sin 2cos 1 cos cos 2 2 2222α+α-=α+αα-α= α=α 3?2 tan 12tan 22sin 2cos 2cos 2sin 2cos sin tan 2 22α-α=α-ααα= α α=α 注意:1?上述三个公式统称为万能公式。(不用记忆) 2?这个公式的本质是用半角的正切表示正弦、余弦、正切 即:)2(tan α f 所以利用它对三角式进行化简、求值、证明, 可以使解题过程简洁 3?上述公式左右两边定义域发生了变化,由左向右定义域缩小 例三、已知 5cos 3sin cos sin 2-=θ-θθ +θ,求3cos 2θ + 4sin 2θ 的值。 解:∵5cos 3sin cos sin 2-=θ-θθ +θ ∴cos θ ≠ 0 (否则 2 = - 5 ) ∴53tan 1 tan 2-=-θ+θ 解之得:tan θ = 2 ∴原式57 2 122421)21(3tan 1tan 24tan 1)tan 1(32 22222=+??++-=θ+θ?+θ+θ-= 四、小结:两套公式,尤其是揭示其本质和应用(以万能公式为主) 五、作业:《精编》P73 16 补充: 1.已知sin α + sin β = 1,cos α + cos β = 0,试求cos2α + cos2β的值。(1)

二倍角公式练习题--有答案

二倍角正弦、余弦与正切公式练习题 一 选择题 1.已知34sin ,cos 2525 αα==-则α终边所在的象限是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 2.已知sin tan 0x x < =( ) A x B x x D x 3.若1tan 2α=则sin 22cos 24cos 24sin 2αααα +=-( ) A 114 B 114- C 52 D 52- : 4.0022log sin15log cos15+的值是( ) A 1 B -1 C 2 D -2 5.若53( ,)42 ππθ∈ 的结果是( ) A 2sin θ B 2cos θ C 2sin θ- D 2cos θ- 6.已知3sin(),sin 245 x x π-=的值为( ) A 725 B 1425 C 1625 D 1925 二 填空题 001tan 22.5tan 22.5- = 00 1tan 22.5tan 22.5+=__________ 【 8. 已知1sin 2x =则sin 2()4 x π-=____________ 9.计算0000sin 6sin 42sin 66sin 78=__________ 10.已知(cos )3cos 22x f x =+则(sin )8f π=__________ 三 解答题 11. 化简 (1sin cos )(sin cos )αα αα++-(2)παπ<< >

12. 已知(0,)4x π∈且5sin()413x π-=求cos 2cos()4 x x π+的值 < $ 13. 已知tan 2x =- 22x ππ<< 求2 2cos sin 12)4 x x x π --+的值 . 14. 已知223sin 2sin 1,3sin 22sin 20αβαβ+=-=且,αβ都是锐角,求证22παβ+= |

运用二倍角公式解题的六技巧

运用二倍角公式解题的五技巧 二倍角公式变化多姿,在求值以及恒等变换中应用很广。若熟练掌握二倍角公式以及变通公式并能灵活运用,则往往能出奇制胜,获得新颖别致的解法。 一、二倍角公式的直接运用 例1 若1 sin cos 3 αα+=,0απ<<,求sin 2cos 2αα+的值。 分析:由条件式两边平方,可求得sin 2α的值。注意到22 cos 2cos sin ααα=- (cos sin )(cos sin )αααα=+-,还需求c o s s i n α α-的值,于是先求22(cos sin )(sin cos )4sin cos αααααα-=+-的值, 然后开方,从而要进一步界定α的范围。 解:由1 sin cos 3 αα+= 两边平方得112sin cos 9αα+=,所以4sin cos 9αα=-。又 0απ<<,所以sin 0α>,cos 0α<,所以α为钝角。所以8 sin 22sin cos 9 ααα==-, cos sin αα-= 3 ==- ,所以22cos 2cos sin ααα=-(cos sin )(cos sin )αααα=+ -1(3=?=,从 而sin 2cos 2αα+=。 点评:挖掘隐含得到α 为钝角是解题的一个重要环节。注意导出公式 21sin 2(sin cos )ααα±=±。 二、二倍角公式的逆用 例2 求tan cot 8 8 π π -的值。 解:tan cot 8 8 π π -sin cos 88cos sin 8 8 πππ π =-2 2sin cos 8 8cos sin 88 π π ππ -= cos 41sin 24 π π-= 2cot 24π=-=-。 点评:本题通分后逆用正弦与余弦的二倍角公式,从而转化为特殊角函数的求值问题。 三、二倍角公式的连用 例3 求cos12cos 24cos 48cos96 的值. 分析:242 12=? ,48224=? ,96248=? ,联想二倍角的正弦公式αααcos sin 22sin =,若逐步逆用将是一条通途. 解:cos12cos 24cos 48cos96 sin12cos12cos 24cos 48cos96sin12 = sin19216sin12= sin12116sin1216 -==- 。 点评:对形如αααα1 2cos 4cos 2cos cos -n 的求值问题可考虑此法.若逆用诱导公式ααπcos )2sin(=±可知74cos 72cos 7cos πππ14 5sin 143sin 14sin π ππ-=,即对于正弦之 积或正弦余弦混合积的求值问题先利用诱导公式转化为余弦之积的形式利用此法求解. 四、整体配对使用二倍角公式 例4.求值: 78sin 66sin 42sin 6sin 分析:本题可按例2的点评部分所说的方法处理,这里介绍整体构造法.

二倍角公式练习题(可编辑修改word版)

1+ cos 2x 2 2 2 2 二倍角公式练习题 1、已知 s i n = 3 ,c o s = - 4 ,则角α终边所在的象限是( ) 2 5 2 5 (A)第一象限(B)第二象限(C)第三象限(D)第四象限 2、已知 s i n x t a n x <0 ,则 等于 ( ) (A) c o s x (B)- c o s x (C) s i n x (D)- s i n x 3、若 tan α= - 1 ,则 2 sin 2 + 2 c os 2 的值是 ( ) 4 cos 2- 4 sin 2 (A) 1 (B)- 1 (C) 5 (D) - 5 14 14 2 2 4、l og 2s i n 150+l og 2c o s 150 的值是 ( ) (A)1 (B)-1 (C)2 (D)-2 5、若θ∈( 5 , 3 ),化简: 1+ sin 2+ 1- sin 2 的结果为 ( ) 4 2 (A)2s i n θ (B)2c o s θ (C)- 2s i n θ (D)-2c o s θ 6. c os cos 9 2 cos 9 3 cos 9 4的值等于 。 9 7.s i n 2230’c o s 2230’= 8. 2 cos 2 π - 1 = 8 9. sin 2 π - cos 2 π = 8 8 10.8sin π cos π cos π cos π = 48 48 24 12 11. (sin 5π + cos 5π)(sin 5π - cos 5π ) = 12 12 12 12 12. cos 4 α - sin 4 α = 2 2 13. 已知函数 y = sin 2 x + 2sin x cos x + 3cos 2 x , x ∈ R ,那么 (Ⅰ)函数的最小正周期是什么?(Ⅱ)函数在什么区间上是增函 数?

二倍角公式的两个特殊变式及应用

高考数学复习点拨:二倍角公式的两个 特殊变式及应用 二倍角公式的两个特殊变式及应用 浙江周宇美 一、变式 变式1:sin2=sin2(+)-cos2(+) =2sin2(+)-1 =1-2cos2(+). 变式2:cos2=2sin(+) cos(+)=2sin(+) sin(-). 以上两个变式的形式与二倍角正、余弦形式恰相反,角度变为(+).其实证明只需运用诱导公式再结合倍角公式即可解决.由sin2=-cos(2+)=-cos2(+),及cos2= sin2(+),再用倍角公式即可. 二、应用 变式1、2主要用于题中含有2与±问题的转化. 例1 已知cos(+)=,求. 分析:本题只需将sin2及sin(-),运用变式及诱导公式转化成cos(+)形式即可解决问题. 解:∵cos(+)=,由变式1,得 sin2=1-2cos2(+)=. sin(-)=cos(+)=.

∴ 原式=. 例2 已知sin(+x)sin(-x)=,x∈(,),求sin4x的值. 分析:本题只需求cos2x即可,又由变式2并结合题意即可 解决. 解:由变式2,得 cos2x=2sin(+x)sin(-x)=,又2x∈(,2), ∴ sin2x=-=-. ∴ sin4x=2sin2xcos2x=-. 例3 已知x∈(-,),且sin2x=2sin(x-),求x的值. 分析:将角2x与x-统一即可,又运用变式1即可达到目的.解:由变式1,原方程可化为 1-2cos2(x+)=-cos(x+). 解得cos(x+)=1或cos(x+)=-. 又x∈(-,), ∴x+=0或x+=, ∴ x=-或x=-.

三角形的2倍角公式

三角形二倍角公式 复习两角和与差的正弦、余弦、正切公式 如何求得sin 2α? 二倍角的正弦公式: sin2A =2sinAcosA 二倍角的余弦公式: cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A 二倍角的正切公式: tan2A = 22tan A 1tan A - 例1、求值: (1)00sin 2230'cos2230' (2)00sin15sin75 (3)22sin cos 88π π - (4)20 01tan 75tan 75 - (5)sin cos cos cos 48482412πππ π (6)22cos 18π-

例2、口答: cos__sin__24sin )1(=α __sin __cos 2cos )2(22-=α __ tan 1tan__23tan )3(2-=α 对公式的再认识: (1) 适用范围:二倍角的正切公式有限制条件: A ≠kπ+2π且A ≠k 2π+4 π (k ∈Z ); (2) 公式特征:二倍角公式是两角和的正弦、余弦和正切公式之特例;二倍角关系是相对的。 (3) 公式的灵活运用:正用、逆用、变形用。 例3、设α∈(2 π,π),sin α=1213, 求2α的正弦、余弦和正切。

例4、试用完全平方式表示下列各式 (1)1sin 2α+ (2)1sin 2α- (3)1cos 2α+ (4)1cos 2α- 例5、化简: (1) 1cos 1cos αα+- (2) α∈(-2π,0) (3) α∈(π,32π) (4) α∈(32 π,2π) 小结:

两角和与差、二倍角的三角函数公式练习题

两角和与差、二倍角的三角函数公式 课时作 业 题号 1 2 3 4 5 6 答案 4 ,则t an(α-β)等于( ) 1.若tan α=3,tan β= 3 A .-3 B.-1 3 1 3 C.3 D. ππππ -sin +sin 2.求值:c os 12 cos 12 12 12 =( ) A .- 3 2 B.- 1 2 1 2 C. D. 3 2 3.已知α∈π ,π,sin α=3 ,则 t an α+ 2 5 π 等于( ) 4 A. 1 7 B.7 C.-1 7 D.-7 4.已知sin(α-β)cos α-cos(α-β)sin α=3 5 ,那么cos 2β的值为( ) A. 7 25 18 25 B. C.- 7 25 D.- 18 25 1 ,则 c os 2α的值为( ) 5.已知0<α<π,sin α+cos α= 2 A. 7 4 B.- 7 4 7 C.± 4 D.- 3 4 6.已知α,β为锐角且c os α=1 ,cos β= 10 1 ,则 α+β的值等于________. 5 7 已知α,β∈3π ,π,sin(α+β)=- 4 3 π12 ,sin β-=,则c os α+ 5 4 13 π =________. 4 8 已知α,β均为锐角,且s in α-sin β=-1 1 ,cos α-cosβ=,则c os(α-β)=________. 2 3 9.2002 年在北京召开的国际数学家大会,

会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一 个小正方形拼成的一个大正方形(如右图).如果小正方形的面积 为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于________. 10 已知cos(α+β)=4,cos(α-β)=-4 ,且 5 5 3 2 π<α+β<2π, π 2<α-β<π,分别求cos 2α和 cos 2β的值. 11 已知函数f(x)=sin x+sin(x+π ),x∈R. 2 (1) 求f(x)的最小正周期; (2) 求f(x)的最大值和最小值,并求出取得最值时的x 的值; 3 ,求sin 2α的值. (3) 若f(α)= 4 12 设f( x)=6cos 2x-3sin 2x. (1) 求f(x)的最大值及最小正周期; 4 (2) 若锐角α满足f(α)=3-2 3,求tan α的值. 5

相关主题