搜档网
当前位置:搜档网 › Gravitational Waves from a Binary Black Hole Merger

Gravitational Waves from a Binary Black Hole Merger

Gravitational Waves from a Binary Black Hole Merger
Gravitational Waves from a Binary Black Hole Merger

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P.Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received21January2016;published11February2016)

On September14,2015at09:50:45UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.The signal sweeps upwards in frequency from35to250Hz with a peak gravitational-wave strain of1.0×10?21.It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.The signal was observed with a matched-filter signal-to-noise ratio of24and a false alarm rate estimated to be less than1event per203000years,equivalent to a significance greater

than5.1σ.The source lies at a luminosity distance of410t160

?180Mpc corresponding to a redshift z?0.09t0.03

?0.04

.

In the source frame,the initial black hole masses are36t5?4M⊙and29t4?4M⊙,and the final black hole mass is

62t4?4M⊙,with3.0t0.5

?0.5M⊙c2radiated in gravitational waves.All uncertainties define90%credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems.This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI:10.1103/PhysRevLett.116.061102

I.INTRODUCTION

In1916,the year after the final formulation of the field equations of general relativity,Albert Einstein predicted the existence of gravitational waves.He found that the linearized weak-field equations had wave solutions: transverse waves of spatial strain that travel at the speed of light,generated by time variations of the mass quadrupole moment of the source[1,2].Einstein understood that gravitational-wave amplitudes would be remarkably small;moreover,until the Chapel Hill conference in 1957there was significant debate about the physical reality of gravitational waves[3].

Also in1916,Schwarzschild published a solution for the field equations[4]that was later understood to describe a black hole[5,6],and in1963Kerr generalized the solution to rotating black holes[7].Starting in the1970s theoretical work led to the understanding of black hole quasinormal modes[8–10],and in the1990s higher-order post-Newtonian calculations[11]preceded extensive analytical studies of relativistic two-body dynamics[12,13].These advances,together with numerical relativity breakthroughs in the past decade[14–16],have enabled modeling of binary black hole mergers and accurate predictions of their gravitational waveforms.While numerous black hole candidates have now been identified through electromag-netic observations[17–19],black hole mergers have not previously been observed.

The discovery of the binary pulsar system PSR B1913t16 by Hulse and Taylor[20]and subsequent observations of its energy loss by Taylor and Weisberg[21]demonstrated the existence of gravitational waves.This discovery, along with emerging astrophysical understanding[22], led to the recognition that direct observations of the amplitude and phase of gravitational waves would enable studies of additional relativistic systems and provide new tests of general relativity,especially in the dynamic strong-field regime.

Experiments to detect gravitational waves began with Weber and his resonant mass detectors in the1960s[23], followed by an international network of cryogenic reso-nant detectors[24].Interferometric detectors were first suggested in the early1960s[25]and the1970s[26].A study of the noise and performance of such detectors[27], and further concepts to improve them[28],led to proposals for long-baseline broadband laser interferome-ters with the potential for significantly increased sensi-tivity[29–32].By the early2000s,a set of initial detectors was completed,including TAMA300in Japan,GEO600 in Germany,the Laser Interferometer Gravitational-Wave Observatory(LIGO)in the United States,and Virgo in https://www.sodocs.net/doc/bb2230051.html,binations of these detectors made joint obser-vations from2002through2011,setting upper limits on a variety of gravitational-wave sources while evolving into a global network.In2015,Advanced LIGO became the first of a significantly more sensitive network of advanced detectors to begin observations[33–36].

A century after the fundamental predictions of Einstein and Schwarzschild,we report the first direct detection of gravitational waves and the first direct observation of a binary black hole system merging to form a single black hole.Our observations provide unique access to the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution3.0License.Further distri-bution of this work must maintain attribution to the author(s)and the published article’s title,journal citation,and DOI.

properties of space-time in the strong-field,high-velocity regime and confirm predictions of general relativity for the nonlinear dynamics of highly disturbed black holes.

II.OBSERVATION

On September14,2015at09:50:45UTC,the LIGO Hanford,W A,and Livingston,LA,observatories detected the coincident signal GW150914shown in Fig.1.The initial detection was made by low-latency searches for generic gravitational-wave transients[41]and was reported within three minutes of data acquisition[43].Subsequently, matched-filter analyses that use relativistic models of com-pact binary waveforms[44]recovered GW150914as the most significant event from each detector for the observa-tions reported here.Occurring within the10-ms

intersite FIG.1.The gravitational-wave event GW150914observed by the LIGO Hanford(H1,left column panels)and Livingston(L1,right

column panels)detectors.Times are shown relative to September14,2015at09:50:45UTC.For visualization,all time series are filtered with a35–350Hz bandpass filter to suppress large fluctuations outside the detectors’most sensitive frequency band,and band-reject filters to remove the strong instrumental spectral lines seen in the Fig.3spectra.Top row,left:H1strain.Top row,right:L1strain.

GW150914arrived first at L1and6.9t0.5

?0.4

ms later at H1;for a visual comparison,the H1data are also shown,shifted in time by this amount and inverted(to account for the detectors’relative orientations).Second row:Gravitational-wave strain projected onto each detector in the35–350Hz band.Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914[37,38]confirmed to99.9%by an independent calculation based on[15].Shaded areas show90%credible regions for two independent waveform reconstructions.One(dark gray)models the signal using binary black hole template waveforms [39].The other(light gray)does not use an astrophysical model,but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets[40,41].These reconstructions have a94%overlap,as shown in[39].Third row:Residuals after subtracting the filtered numerical relativity waveform from the filtered detector time series.Bottom row:A time-frequency representation[42]of the strain data,showing the signal frequency increasing over time.

propagation time,the events have a combined signal-to-noise ratio(SNR)of24[45].

Only the LIGO detectors were observing at the time of GW150914.The Virgo detector was being upgraded, and GEO600,though not sufficiently sensitive to detect this event,was operating but not in observational mode.With only two detectors the source position is primarily determined by the relative arrival time and localized to an area of approximately600deg2(90% credible region)[39,46].

The basic features of GW150914point to it being produced by the coalescence of two black holes—i.e., their orbital inspiral and merger,and subsequent final black hole ringdown.Over0.2s,the signal increases in frequency and amplitude in about8cycles from35to150Hz,where the amplitude reaches a maximum.The most plausible explanation for this evolution is the inspiral of two orbiting masses,m1and m2,due to gravitational-wave emission.At the lower frequencies,such evolution is characterized by the chirp mass[11]

M?em1m2T3=5

12

1=5

?

c3

G

5

96

π?8=3f?11=3_f

3=5

;

where f and_f are the observed frequency and its time derivative and G and c are the gravitational constant and speed of light.Estimating f and_f from the data in Fig.1, we obtain a chirp mass of M?30M⊙,implying that the total mass M?m1tm2is?70M⊙in the detector frame. This bounds the sum of the Schwarzschild radii of the

binary components to2GM=c2?210km.To reach an orbital frequency of75Hz(half the gravitational-wave frequency)the objects must have been very close and very compact;equal Newtonian point masses orbiting at this frequency would be only?350km apart.A pair of neutron stars,while compact,would not have the required mass,while a black hole neutron star binary with the deduced chirp mass would have a very large total mass, and would thus merge at much lower frequency.This leaves black holes as the only known objects compact enough to reach an orbital frequency of75Hz without contact.Furthermore,the decay of the waveform after it peaks is consistent with the damped oscillations of a black hole relaxing to a final stationary Kerr configuration. Below,we present a general-relativistic analysis of GW150914;Fig.2shows the calculated waveform using the resulting source parameters.

III.DETECTORS

Gravitational-wave astronomy exploits multiple,widely separated detectors to distinguish gravitational waves from local instrumental and environmental noise,to provide source sky localization,and to measure wave polarizations. The LIGO sites each operate a single Advanced LIGO detector[33],a modified Michelson interferometer(see Fig.3)that measures gravitational-wave strain as a differ-ence in length of its orthogonal arms.Each arm is formed by two mirrors,acting as test masses,separated by L x?L y?L?4km.A passing gravitational wave effec-

tively alters the arm lengths such that the measured difference isΔLetT?δL x?δL y?hetTL,where h is the gravitational-wave strain amplitude projected onto the detector.This differential length variation alters the phase difference between the two light fields returning to the beam splitter,transmitting an optical signal proportional to the gravitational-wave strain to the output photodetector. To achieve sufficient sensitivity to measure gravitational waves,the detectors include several enhancements to the basic Michelson interferometer.First,each arm contains a resonant optical cavity,formed by its two test mass mirrors, that multiplies the effect of a gravitational wave on the light phase by a factor of300[48].Second,a partially trans-missive power-recycling mirror at the input provides addi-tional resonant buildup of the laser light in the interferometer as a whole[49,50]:20W of laser input is increased to700W incident on the beam splitter,which is further increased to 100kW circulating in each arm cavity.Third,a partially transmissive signal-recycling mirror at the output

optimizes FIG. 2.Top:Estimated gravitational-wave strain amplitude from GW150914projected onto H1.This shows the full bandwidth of the waveforms,without the filtering used for Fig.1. The inset images show numerical relativity models of the black hole horizons as the black holes coalesce.Bottom:The Keplerian effective black hole separation in units of Schwarzschild radii (R S?2GM=c2)and the effective relative velocity given by the post-Newtonian parameter v=c?eGMπf=c3T1=3,where f is the gravitational-wave frequency calculated with numerical relativity and M is the total mass(value from Table I).

the gravitational-wave signal extraction by broadening the bandwidth of the arm cavities [51,52].The interferometer is illuminated with a 1064-nm wavelength Nd:Y AG laser,stabilized in amplitude,frequency,and beam geometry [53,54].The gravitational-wave signal is extracted at the output port using a homodyne readout [55].

These interferometry techniques are designed to maxi-mize the conversion of strain to optical signal,thereby minimizing the impact of photon shot noise (the principal noise at high frequencies).High strain sensitivity also requires that the test masses have low displacement noise,which is achieved by isolating them from seismic noise (low frequencies)and designing them to have low thermal noise (intermediate frequencies).Each test mass is suspended as the final stage of a quadruple-pendulum system [56],supported by an active seismic isolation platform [57].These systems collectively provide more than 10orders of magnitude of isolation from ground motion for frequen-cies above 10Hz.Thermal noise is minimized by using low-mechanical-loss materials in the test masses and their suspensions:the test masses are 40-kg fused silica substrates with low-loss dielectric optical coatings [58,59],and are suspended with fused silica fibers from the stage above [60].To minimize additional noise sources,all components other than the laser source are mounted on vibration isolation stages in ultrahigh vacuum.To reduce optical phase fluctuations caused by Rayleigh scattering,the pressure in the 1.2-m diameter tubes containing the arm-cavity beams is maintained below 1μPa.

Servo controls are used to hold the arm cavities on resonance [61]and maintain proper alignment of the optical components [62].The detector output is calibrated in strain by measuring its response to test mass motion induced by photon pressure from a modulated calibration laser beam [63].The calibration is established to an uncertainty (1σ)of less than 10%in amplitude and 10degrees in phase,and is continuously monitored with calibration laser excitations at selected frequencies.Two alternative methods are used to validate the absolute calibration,one referenced to the main laser wavelength and the other to a radio-frequency

oscillator

(a)

FIG.3.Simplified diagram of an Advanced LIGO detector (not to scale).A gravitational wave propagating orthogonally to the detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening the other during one half-cycle of the wave;these length changes are reversed during the other half-cycle.The output photodetector records these differential cavity length variations.While a detector ’s directional response is maximal for this case,it is still significant for most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth).Inset (a):Location and orientation of the LIGO detectors at Hanford,WA (H1)and Livingston,LA (L1).Inset (b):The instrument noise for each detector near the time of the signal detection;this is an amplitude spectral density,expressed in terms of equivalent gravitational-wave strain amplitude.The sensitivity is limited by photon shot noise at frequencies above 150Hz,and by a superposition of other noise sources at lower frequencies [47].Narrow-band features include calibration lines (33–38,330,and 1080Hz),vibrational modes of suspension fibers (500Hz and harmonics),and 60Hz electric power grid harmonics.

[64].Additionally,the detector response to gravitational waves is tested by injecting simulated waveforms with the calibration laser.

To monitor environmental disturbances and their influ-ence on the detectors,each observatory site is equipped with an array of sensors:seismometers,accelerometers, microphones,magnetometers,radio receivers,weather sensors,ac-power line monitors,and a cosmic-ray detector [65].Another~105channels record the interferometer’s operating point and the state of the control systems.Data collection is synchronized to Global Positioning System (GPS)time to better than10μs[66].Timing accuracy is verified with an atomic clock and a secondary GPS receiver at each observatory site.

In their most sensitive band,100–300Hz,the current LIGO detectors are3to5times more sensitive to strain than initial LIGO[67];at lower frequencies,the improvement is even greater,with more than ten times better sensitivity below60Hz.Because the detectors respond proportionally to gravitational-wave amplitude,at low redshift the volume of space to which they are sensitive increases as the cube of strain sensitivity.For binary black holes with masses similar to GW150914,the space-time volume surveyed by the observations reported here surpasses previous obser-vations by an order of magnitude[68].

IV.DETECTOR VALIDATION

Both detectors were in steady state operation for several hours around GW150914.All performance measures,in particular their average sensitivity and transient noise behavior,were typical of the full analysis period[69,70]. Exhaustive investigations of instrumental and environ-mental disturbances were performed,giving no evidence to suggest that GW150914could be an instrumental artifact [69].The detectors’susceptibility to environmental disturb-ances was quantified by measuring their response to spe-cially generated magnetic,radio-frequency,acoustic,and vibration excitations.These tests indicated that any external disturbance large enough to have caused the observed signal would have been clearly recorded by the array of environ-mental sensors.None of the environmental sensors recorded any disturbances that evolved in time and frequency like GW150914,and all environmental fluctuations during the second that contained GW150914were too small to account for more than6%of its strain amplitude.Special care was taken to search for long-range correlated disturbances that might produce nearly simultaneous signals at the two sites. No significant disturbances were found.

The detector strain data exhibit non-Gaussian noise transients that arise from a variety of instrumental mecha-nisms.Many have distinct signatures,visible in auxiliary data channels that are not sensitive to gravitational waves; such instrumental transients are removed from our analyses [69].Any instrumental transients that remain in the data are accounted for in the estimated detector backgrounds described below.There is no evidence for instrumental transients that are temporally correlated between the two detectors.

V.SEARCHES

We present the analysis of16days of coincident observations between the two LIGO detectors from September12to October20,2015.This is a subset of the data from Advanced LIGO’s first observational period that ended on January12,2016.

GW150914is confidently detected by two different types of searches.One aims to recover signals from the coalescence of compact objects,using optimal matched filtering with waveforms predicted by general relativity. The other search targets a broad range of generic transient signals,with minimal assumptions about waveforms.These searches use independent methods,and their response to detector noise consists of different,uncorrelated,events. However,strong signals from binary black hole mergers are expected to be detected by both searches.

Each search identifies candidate events that are detected at both observatories consistent with the intersite propa-gation time.Events are assigned a detection-statistic value that ranks their likelihood of being a gravitational-wave signal.The significance of a candidate event is determined by the search background—the rate at which detector noise produces events with a detection-statistic value equal to or higher than the candidate event.Estimating this back-ground is challenging for two reasons:the detector noise is nonstationary and non-Gaussian,so its properties must be empirically determined;and it is not possible to shield the detector from gravitational waves to directly measure a signal-free background.The specific procedure used to estimate the background is slightly different for the two searches,but both use a time-shift technique:the time stamps of one detector’s data are artificially shifted by an offset that is large compared to the intersite propagation time,and a new set of events is produced based on this time-shifted data set.For instrumental noise that is uncor-related between detectors this is an effective way to estimate the background.In this process a gravitational-wave signal in one detector may coincide with time-shifted noise transients in the other detector,thereby contributing to the background estimate.This leads to an overestimate of the noise background and therefore to a more conservative assessment of the significance of candidate events.

The characteristics of non-Gaussian noise vary between different time-frequency regions.This means that the search backgrounds are not uniform across the space of signals being searched.To maximize sensitivity and provide a better estimate of event significance,the searches sort both their background estimates and their event candidates into differ-ent classes according to their time-frequency morphology. The significance of a candidate event is measured against the background of its class.To account for having searched

multiple classes,this significance is decreased by a trials factor equal to the number of classes [71].

A.Generic transient search

Designed to operate without a specific waveform model,this search identifies coincident excess power in time-frequency representations of the detector strain data [43,72],for signal frequencies up to 1kHz and durations up to a few seconds.

The search reconstructs signal waveforms consistent with a common gravitational-wave signal in both detectors using a multidetector maximum likelihood method.Each event is ranked according to the detection statistic ηc ????????????????????????????????????

2E c =e1tE n =E c Tp ,where E c is the dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms,and E n is the dimensionless residual noise energy after the reconstructed signal is subtracted from the data.The statistic ηc thus quantifies the SNR of the event and the consistency of the data between the two detectors.

Based on their time-frequency morphology,the events are divided into three mutually exclusive search classes,as described in [41]:events with time-frequency morphology of known populations of noise transients (class C1),events with frequency that increases with time (class C3),and all remaining events (class C2).

Detected with ηc ?20.0,GW150914is the strongest event of the entire search.Consistent with its coalescence signal signature,it is found in the search class C3of events with increasing time-frequency evolution.Measured on a background equivalent to over 67400years of data and including a trials factor of 3to account for the search classes,its false alarm rate is lower than 1in 22500years.This corresponds to a probability <2×10?6of observing one or more noise events as strong as GW150914during the analysis time,equivalent to 4.6σ.The left panel of Fig.4shows the C3class results and background.

The selection criteria that define the search class C3reduce the background by introducing a constraint on the signal morphology.In order to illustrate the significance of GW150914against a background of events with arbitrary shapes,we also show the results of a search that uses the same set of events as the one described above but without this constraint.Specifically,we use only two search classes:the C1class and the union of C2and C3classes (C 2tC 3).In this two-class search the GW150914event is found in the C 2tC 3class.The left panel of Fig.4shows the C 2tC 3class results and background.In the background of this class there are four events with ηc ≥32.1,yielding a false alarm rate for GW150914of 1in 8400years.This corresponds to a false alarm probability of 5×10?6equivalent to 4.4σ

.

FIG.4.Search results from the generic transient search (left)and the binary coalescence search (right).These histograms show the number of candidate events (orange markers)and the mean number of background events (black lines)in the search class where GW150914was found as a function of the search detection statistic and with a bin width of 0.2.The scales on the top give the significance of an event in Gaussian standard deviations based on the corresponding noise background.The significance of GW150914is greater than 5.1σand 4.6σfor the binary coalescence and the generic transient searches,respectively.Left:Along with the primary search (C3)we also show the results (blue markers)and background (green curve)for an alternative search that treats events independently of their frequency evolution (C 2tC 3).The classes C2and C3are defined in the text.Right:The tail in the black-line background of the binary coalescence search is due to random coincidences of GW150914in one detector with noise in the other detector.(This type of event is practically absent in the generic transient search background because they do not pass the time-frequency consistency requirements used in that search.)The purple curve is the background excluding those coincidences,which is used to assess the significance of the second strongest event.

For robustness and validation,we also use other generic transient search algorithms[41].A different search[73]and a parameter estimation follow-up[74]detected GW150914 with consistent significance and signal parameters.

B.Binary coalescence search

This search targets gravitational-wave emission from binary systems with individual masses from1to99M⊙, total mass less than100M⊙,and dimensionless spins up to 0.99[44].To model systems with total mass larger than 4M⊙,we use the effective-one-body formalism[75],which

combines results from the post-Newtonian approach [11,76]with results from black hole perturbation theory and numerical relativity.The waveform model[77,78] assumes that the spins of the merging objects are aligned

with the orbital angular momentum,but the resulting

templates can,nonetheless,effectively recover systems

with misaligned spins in the parameter region of

GW150914[44].Approximately250000template wave-

forms are used to cover this parameter space.

The search calculates the matched-filter signal-to-noise

ratioρetTfor each template in each detector and identifies

maxima ofρetTwith respect to the time of arrival of the signal

[79–81].For each maximum we calculate a chi-squared statisticχ2r to test whether the data in several different

frequency bands are consistent with the matching template [82].Values ofχ2r near unity indicate that the signal is consistent with a coalescence.Ifχ2r is greater than unity,ρetTis reweighted as?ρ?ρ=f?1teχ2rT3 =2g1=6[83,84].The final step enforces coincidence between detectors by selecting

event pairs that occur within a15-ms window and come from

the same template.The15-ms window is determined by the

10-ms intersite propagation time plus5ms for uncertainty in

arrival time of weak signals.We rank coincident events based

on the quadrature sum?ρc of the?ρfrom both detectors[45]. To produce background data for this search the SNR maxima of one detector are time shifted and a new set of coincident events is computed.Repeating this procedure ~107times produces a noise background analysis time equivalent to608000years.

To account for the search background noise varying across

the target signal space,candidate and background events are

divided into three search classes based on template length.

The right panel of Fig.4shows the background for the

search class of GW150914.The GW150914detection-

statistic value of?ρc?23.6is larger than any background event,so only an upper bound can be placed on its false alarm rate.Across the three search classes this bound is1in 203000years.This translates to a false alarm probability <2×10?7,corresponding to5.1σ.

A second,independent matched-filter analysis that uses a

different method for estimating the significance of its

events[85,86],also detected GW150914with identical

signal parameters and consistent significance.

When an event is confidently identified as a real gravitational-wave signal,as for GW150914,the back-ground used to determine the significance of other events is reestimated without the contribution of this event.This is the background distribution shown as a purple line in the right panel of Fig.4.Based on this,the second most significant event has a false alarm rate of1per2.3years and corresponding Poissonian false alarm probability of0.02. Waveform analysis of this event indicates that if it is astrophysical in origin it is also a binary black hole merger[44].

VI.SOURCE DISCUSSION

The matched-filter search is optimized for detecting signals,but it provides only approximate estimates of the source parameters.To refine them we use general relativity-based models[77,78,87,88],some of which include spin precession,and for each model perform a coherent Bayesian analysis to derive posterior distributions of the source parameters[89].The initial and final masses, final spin,distance,and redshift of the source are shown in Table I.The spin of the primary black hole is constrained to be<0.7(90%credible interval)indicating it is not maximally spinning,while the spin of the secondary is only weakly constrained.These source parameters are discussed in detail in[39].The parameter uncertainties include statistical errors and systematic errors from averaging the results of different waveform models.

Using the fits to numerical simulations of binary black hole mergers in[92,93],we provide estimates of the mass and spin of the final black hole,the total energy radiated in gravitational waves,and the peak gravitational-wave luminosity[39].The estimated total energy radiated in gravitational waves is3.0t0.5

?0.5

M⊙c2.The system reached a

peak gravitational-wave luminosity of3.6t0.5

?0.4

×1056erg=s,

equivalent to200t30

?20

M⊙c2=s.

Several analyses have been performed to determine whether or not GW150914is consistent with a binary TABLE I.Source parameters for GW150914.We report median values with90%credible intervals that include statistical errors,and systematic errors from averaging the results of different waveform models.Masses are given in the source frame;to convert to the detector frame multiply by(1tz) [90].The source redshift assumes standard cosmology[91]. Primary black hole mass36t5?4M⊙Secondary black hole mass29t4?4M⊙Final black hole mass62t4?4M⊙Final black hole spin0.67t0.05

?0.07 Luminosity distance410t160

?180

Mpc

Source redshift z0.09t0.03

?0.04

black hole system in general relativity[94].A first consistency check involves the mass and spin of the final black hole.In general relativity,the end product of a black hole binary coalescence is a Kerr black hole,which is fully described by its mass and spin.For quasicircular inspirals, these are predicted uniquely by Einstein’s equations as a function of the masses and spins of the two progenitor black https://www.sodocs.net/doc/bb2230051.html,ing fitting formulas calibrated to numerical relativity simulations[92],we verified that the remnant mass and spin deduced from the early stage of the coalescence and those inferred independently from the late stage are consistent with each other,with no evidence for disagreement from general relativity.

Within the post-Newtonian formalism,the phase of the gravitational waveform during the inspiral can be expressed as a power series in f1=3.The coefficients of this expansion can be computed in general relativity.Thus,we can test for consistency with general relativity[95,96]by allowing the coefficients to deviate from the nominal values,and seeing if the resulting waveform is consistent with the data.In this second check[94]we place constraints on these deviations, finding no evidence for violations of general relativity. Finally,assuming a modified dispersion relation for gravitational waves[97],our observations constrain the Compton wavelength of the graviton to beλg>1013km, which could be interpreted as a bound on the graviton mass m g<1.2×10?22eV=c2.This improves on Solar System and binary pulsar bounds[98,99]by factors of a few and a thousand,respectively,but does not improve on the model-dependent bounds derived from the dynamics of Galaxy clusters[100]and weak lensing observations[101].In summary,all three tests are consistent with the predictions of general relativity in the strong-field regime of gravity. GW150914demonstrates the existence of stellar-mass black holes more massive than?25M⊙,and establishes that binary black holes can form in nature and merge within a Hubble time.Binary black holes have been predicted to form both in isolated binaries[102–104]and in dense environ-ments by dynamical interactions[105–107].The formation of such massive black holes from stellar evolution requires weak massive-star winds,which are possible in stellar environments with metallicity lower than?1=2the solar value[108,109].Further astrophysical implications of this binary black hole discovery are discussed in[110]. These observational results constrain the rate of stellar-mass binary black hole mergers in the local https://www.sodocs.net/doc/bb2230051.html,ing several different models of the underlying binary black hole mass distribution,we obtain rate estimates ranging from 2–400Gpc?3yr?1in the comoving frame[111–113].This is consistent with a broad range of rate predictions as reviewed in[114],with only the lowest event rates being excluded.

Binary black hole systems at larger distances contribute to a stochastic background of gravitational waves from the superposition of unresolved systems.Predictions for such a background are presented in[115].If the signal from such a population were detected,it would provide information about the evolution of such binary systems over the history of the universe.

VII.OUTLOOK

Further details about these results and associated data releases are available at[116].Analysis results for the entire first observational period will be reported in future publications.Efforts are under way to enhance significantly the global gravitational-wave detector network[117]. These include further commissioning of the Advanced LIGO detectors to reach design sensitivity,which will allow detection of binaries like GW150914with3times higher SNR.Additionally,Advanced Virgo,KAGRA,and a possible third LIGO detector in India[118]will extend the network and significantly improve the position reconstruction and parameter estimation of sources.

VIII.CONCLUSION

The LIGO detectors have observed gravitational waves from the merger of two stellar-mass black holes.The detected waveform matches the predictions of general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. These observations demonstrate the existence of binary stellar-mass black hole systems.This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the United States National Science Foundation(NSF)for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council(STFC)of the United Kingdom,the Max-Planck Society(MPS),and the State of Niedersachsen,Germany,for support of the construction of Advanced LIGO and construction and operation of the GEO600detector.Additional support for Advanced LIGO was provided by the Australian Research Council.The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare(INFN),the French Centre National de la Recherche Scientifique(CNRS),and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector,and for the creation and support of the EGO consortium.The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India,Department of Science and

Technology,India,Science&Engineering Research Board (SERB),India,Ministry of Human Resource Development, India,the Spanish Ministerio de Economía y Competitividad,the Conselleria d’Economia i Competitivitat and Conselleria d’Educació,Cultura i Universitats of the Govern de les Illes Balears,the National Science Centre of Poland,the European Commission,the Royal Society,the Scottish Funding Council,the Scottish Universities Physics Alliance,the Hungarian Scientific Research Fund(OTKA),the Lyon Institute of Origins(LIO),the National Research Foundation of Korea,Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation,the Natural Sciences and Engineering Research Council of Canada,Canadian Institute for Advanced Research,the Brazilian Ministry of Science, Technology,and Innovation,Russian Foundation for Basic Research,the Leverhulme Trust,the Research Corporation, Ministry of Science and Technology(MOST),Taiwan,and the Kavli Foundation.The authors gratefully acknowledge the support of the NSF,STFC,MPS,INFN,CNRS and the State of Niedersachsen,Germany,for provision of compu-tational resources.This article has been assigned the document numbers LIGO-P150914and

VIR-0015A-16.

[1]A.Einstein,Sitzungsber.K.Preuss.Akad.Wiss.1,688

(1916).

[2]A.Einstein,Sitzungsber.K.Preuss.Akad.Wiss.1,154

(1918).

[3]P.R.Saulson,Gen.Relativ.Gravit.43,3289(2011).

[4]K.Schwarzschild,Sitzungsber.K.Preuss.Akad.Wiss.1,

189(1916).

[5]D.Finkelstein,Phys.Rev.110,965(1958).

[6]M.D.Kruskal,Phys.Rev.119,1743(1960).

[7]R.P.Kerr,Phys.Rev.Lett.11,237(1963).

[8]C.V.Vishveshwara,Nature(London)227,936(1970).

[9]W.H.Press,Astrophys.J.170,L105(1971).

[10]S.Chandrasekhar and S.L.Detweiler,Proc.R.Soc.A344,

441(1975).

[11]L.Blanchet,T.Damour,B.R.Iyer,C.M.Will,and A.G.

Wiseman,Phys.Rev.Lett.74,3515(1995).

[12]L.Blanchet,Living Rev.Relativity17,2(2014).

[13]A.Buonanno and T.Damour,Phys.Rev.D59,084006

(1999).

[14]F.Pretorius,Phys.Rev.Lett.95,121101(2005).

[15]M.Campanelli, C.O.Lousto,P.Marronetti,and Y.

Zlochower,Phys.Rev.Lett.96,111101(2006).

[16]J.G.Baker,J.Centrella,D.-I.Choi,M.Koppitz,and J.van

Meter,Phys.Rev.Lett.96,111102(2006).

[17]B.L.Webster and P.Murdin,Nature(London)235,37

(1972).

[18]C.T.Bolton,Nature(London)240,124(1972).

[19]J.Casares and P.G.Jonker,Space Sci.Rev.183,223

(2014).

[20]R.A.Hulse and J.H.Taylor,Astrophys.J.195,L51

(1975).[21]J.H.Taylor and J.M.Weisberg,Astrophys.J.253,908

(1982).

[22]W.Press and K.Thorne,Annu.Rev.Astron.Astrophys.

10,335(1972).

[23]J.Weber,Phys.Rev.117,306(1960).

[24]P.Astone et al.,Phys.Rev.D82,022003(2010).

[25]M.E.Gertsenshtein and V.I.Pustovoit,Sov.Phys.JETP

16,433(1962).

[26]G.E.Moss,https://www.sodocs.net/doc/bb2230051.html,ler,and R.L.Forward,Appl.Opt.10,

2495(1971).

[27]R.Weiss,Electromagnetically coupled broadband gravi-

tational antenna,Quarterly Report of the Research Labo-ratory for Electronics,MIT Report No.105,1972,https:// https://www.sodocs.net/doc/bb2230051.html,/LIGO?P720002/public/main.

[28]R.W.P.Drever,in Gravitational Radiation,edited by N.

Deruelle and T.Piran(North-Holland,Amsterdam,1983), p.321.

[29]R.W.P.Drever,F.J.Raab,K.S.Thorne,R.V ogt,and R.

Weiss,Laser Interferometer Gravitational-wave Observa-tory(LIGO)Technical Report,1989,https://https://www.sodocs.net/doc/bb2230051.html,/ LIGO?M890001/public/main.

[30]A.Abramovici et al.,Science256,325(1992).

[31]A.Brillet, A.Giazotto et al.,Virgo Project Technical

Report No.VIR-0517A-15,1989,https://tds.ego?gw.it/ql/?

c=11247.

[32]J.Hough et al.,Proposal for a joint German-British

interferometric gravitational wave detector,MPQ Techni-cal Report147,No.GWD/137/JH(89),1989,http://eprints https://www.sodocs.net/doc/bb2230051.html,/114852.

[33]J.Aasi et al.,Classical Quantum Gravity32,074001

(2015).

[34]F.Acernese et al.,Classical Quantum Gravity32,024001

(2015).

[35]C.Affeldt et al.,Classical Quantum Gravity31,224002

(2014).

[36]Y.Aso,Y.Michimura,K.Somiya,M.Ando,O.

Miyakawa,T.Sekiguchi,D.Tatsumi,and H.Yamamoto, Phys.Rev.D88,043007(2013).

[37]The waveform shown is SXS:BBH:0305,available for

download at http://www.black?https://www.sodocs.net/doc/bb2230051.html,/waveforms. [38]A.H.Mrouéet al.,Phys.Rev.Lett.111,241104

(2013).

[39]B.Abbott et al.,arXiv:1602.03840.

[40]N.J.Cornish and T.B.Littenberg,Classical Quantum

Gravity32,135012(2015).

[41]B.Abbott et al.,arXiv:1602.03843.

[42]S.Chatterji,L.Blackburn,G.Martin,and E.Katsavounidis,

Classical Quantum Gravity21,S1809(2004).

[43]S.Klimenko et al.,Phys.Rev.D93,042004(2016).

[44]B.Abbott et al.,arXiv:1602.03839.

[45]https://www.sodocs.net/doc/bb2230051.html,man et al.,arXiv:1508.02357.

[46]B.Abbott et al.,https://https://www.sodocs.net/doc/bb2230051.html,/LIGO?P1500227/

public/main.

[47]B.Abbott et al.,arXiv:1602.03838.

[48]R.W.P.Drever,The Detection of Gravitational Waves,

edited by D.G.Blair(Cambridge University Press, Cambridge,England,1991).

[49]R.W.P.Drever et al.,in Quantum Optics,Experimental

Gravity,and Measurement Theory,edited by P.Meystre and M.O.Scully,NATO ASI,Ser.B,V ol.94(Plenum Press,New York,1983),pp.503–514.

[50]R.Schilling(unpublished).

[51]B.J.Meers,Phys.Rev.D38,2317(1988).

[52]J.Mizuno,K.A.Strain,P.G.Nelson,J.M.Chen,R.

Schilling,A.Rüdiger,W.Winkler,and K.Danzmann, Phys.Lett.A175,273(1993).

[53]P.Kwee et al.,Opt.Express20,10617(2012).

[54]C.L.Mueller et al.,Rev.Sci.Instrum.87,014502

(2016).

[55]T.T.Fricke et al.,Classical Quantum Gravity29,065005

(2012).

[56]S.M.Aston et al.,Classical Quantum Gravity29,235004

(2012).

[57]F.Matichard et al.,Classical Quantum Gravity32,185003

(2015).

[58]G.M.Harry et al.,Classical Quantum Gravity24,405

(2007).

[59]M.Granata et al.,Phys.Rev.D93,012007(2016).

[60]A.V.Cumming et al.,Classical Quantum Gravity29,

035003(2012).

[61]A.Staley et al.,Classical Quantum Gravity31,245010

(2014).

[62]L.Barsotti,M.Evans,and P.Fritschel,Classical Quantum

Gravity27,084026(2010).

[63]B.Abbott et al.,arXiv:1602.03845.

[64]E.Goetz et al.,in Gravitational Waves:Proceedings,of

the8th Edoardo Amaldi Conference,Amaldi,New York, 2009;E.Goetz and R.L.Savage Jr.,Classical Quantum Gravity27,084024(2010).

[65]A.Effler,R.M.S.Schofield,V.V.Frolov,G.González,K.

Kawabe,J.R.Smith,J.Birch,and R.McCarthy,Classical Quantum Gravity32,035017(2015).

[66]I.Bartos,R.Bork,M.Factourovich,J.Heefner,S.Márka,

Z.Márka,Z.Raics,P.Schwinberg,and D.Sigg,Classical Quantum Gravity27,084025(2010).

[67]J.Aasi et al.,Classical Quantum Gravity32,115012

(2015).

[68]J.Aasi et al.,Phys.Rev.D87,022002(2013).

[69]B.Abbott et al.,arXiv:1602.03844.

[70]L.Nuttall et al.,Classical Quantum Gravity32,245005

(2015).

[71]L.Lyons,Ann.Appl.Stat.2,887(2008).

[72]S.Klimenko,I.Yakushin,A.Mercer,and G.Mitselmakher,

Classical Quantum Gravity25,114029(2008).

[73]R.Lynch,S.Vitale,R.Essick,E.Katsavounidis,and F.

Robinet,arXiv:1511.05955.

[74]J.Kanner,T.B.Littenberg,N.Cornish,https://www.sodocs.net/doc/bb2230051.html,lhouse,

E.Xhakaj,

F.Salemi,M.Drago,

G.Vedovato,and S.

Klimenko,Phys.Rev.D93,022002(2016).

[75]A.Buonanno and T.Damour,Phys.Rev.D62,064015

(2000).

[76]L.Blanchet,T.Damour,G.Esposito-Farèse,and B.R.

Iyer,Phys.Rev.Lett.93,091101(2004).

[77]A.Taracchini et al.,Phys.Rev.D89,061502

(2014).

[78]M.Pürrer,Classical Quantum Gravity31,195010

(2014).

[79]B.Allen,W.G.Anderson,P.R.Brady,D.A.Brown,and

J.D.E.Creighton,Phys.Rev.D85,122006(2012). [80]B.S.Sathyaprakash and S.V.Dhurandhar,Phys.Rev.D

44,3819(1991).

[81]B.J.Owen and B.S.Sathyaprakash,Phys.Rev.D60,

022002(1999).

[82]B.Allen,Phys.Rev.D71,062001(2005).

[83]J.Abadie et al.,Phys.Rev.D85,082002(2012).

[84]S.Babak et al.,Phys.Rev.D87,024033(2013).

[85]K.Cannon et al.,Astrophys.J.748,136(2012).

[86]S.Privitera,S.R.P.Mohapatra,P.Ajith,K.Cannon,N.

Fotopoulos,M.A.Frei,C.Hanna,A.J.Weinstein,and J.T.Whelan,Phys.Rev.D89,024003(2014),

[87]M.Hannam,P.Schmidt,A.Bohé,L.Haegel,S.Husa,F.

Ohme,G.Pratten,and M.Pürrer,Phys.Rev.Lett.113, 151101(2014).

[88]S.Khan,S.Husa,M.Hannam,F.Ohme,M.Pürrer,X.

Jiménez Forteza,and A.Bohé,Phys.Rev.D93,044007 (2016).

[89]J.Veitch et al.,Phys.Rev.D91,042003(2015).

[90]A.Krolak and B.F.Schutz,Gen.Relativ.Gravit.19,1163

(1987).

[91]P.A.R.Ade et al.,arXiv:1502.01589.

[92]J.Healy,C.O.Lousto,and Y.Zlochower,Phys.Rev.D90,

104004(2014).

[93]S.Husa,S.Khan,M.Hannam,M.Pürrer,F.Ohme,X.

Jiménez Forteza,and A.Bohé,Phys.Rev.D93,044006 (2016).

[94]B.Abbott et al.,arXiv:1602.03841.

[95]C.K.Mishra,K.G.Arun, B.R.Iyer,and B.S.

Sathyaprakash,Phys.Rev.D82,064010(2010). [96]T.G.F.Li,W.Del Pozzo,S.Vitale,C.Van Den Broeck,

M.Agathos,J.Veitch,K.Grover,T.Sidery,R.Sturani,and

A.Vecchio,Phys.Rev.D85,082003(2012),

[97]C.M.Will,Phys.Rev.D57,2061(1998).

[98]C.Talmadge,J.P.Berthias,R.W.Hellings,and E.M.

Standish,Phys.Rev.Lett.61,1159(1988).

[99]L.S.Finn and P.J.Sutton,Phys.Rev.D65,044022

(2002).

[100]A.S.Goldhaber and M.M.Nieto,Phys.Rev.D9,1119 (1974).

[101]S.Choudhury and S.SenGupta,Eur.Phys.J.C74,3159 (2014).

[102]A.Tutukov and L.Yungelson,Nauchnye Informatsii27, 70(1973).

[103]V.M.Lipunov,K.A.Postnov,and M.E.Prokhorov,Mon.

Not.R.Astron.Soc.288,245(1997).

[104]K.Belczynski,S.Repetto,D.Holz,R.O’Shaughnessy,T.

Bulik,E.Berti,C.Fryer,M.Dominik,arXiv:1510.04615 [Astrophys.J.(to be published)].

[105]S.Sigurdsson and L.Hernquist,Nature(London)364,423 (1993).

[106]S.F.Portegies Zwart and S.L.W.McMillan,Astrophys.J.

Lett.528,L17(2000).

[107]C.L.Rodriguez,M.Morscher, B.Pattabiraman,S.

Chatterjee,C.-J.Haster,and F.A.Rasio,Phys.Rev.Lett.

115,051101(2015),

[108]K.Belczynski,T.Bulik,C.L.Fryer,A.Ruiter,F.Valsecchi, J.S.Vink,and J.R.Hurley,Astrophys.J.714,1217 (2010).

[109]M.Spera,M.Mapelli,and A.Bressan,Mon.Not.R.

Astron.Soc.451,4086(2015).

[110]B.Abbott et al.,Astrophys.J.818,L22(2016). [111]B.Abbott et al.,arXiv:1602.03842.

[112]C.Kim,V.Kalogera,and D.R.Lorimer,Astrophys.J.584, 985(2003).

[113]W.M.Farr,J.R.Gair,I.Mandel,and C.Cutler,Phys.Rev.

D91,023005(2015).

[114]J.Abadie et al.,Classical Quantum Gravity27,173001 (2010).

[115]B.Abbott et al.,arXiv:1602.03847.[116]LIGO Open Science Center(LOSC),https://https://www.sodocs.net/doc/bb2230051.html,/ events/GW150914/.

[117]B.P.Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration),Living Rev.Relativity19,1(2016). [118]B.Iyer et al.,LIGO-India Technical Report No.LIGO-M1100296,2011,https://https://www.sodocs.net/doc/bb2230051.html,/LIGO?M1100296/ public/main

.

B.P.Abbott,1R.Abbott,1T.D.Abbott,2M.R.Abernathy,1F.Acernese,3,4K.Ackley,5

C.Adams,6T.Adams,7P.Addesso,3 R.X.Adhikari,1V.B.Adya,8C.Affeldt,8M.Agathos,9K.Agatsuma,9N.Aggarwal,10O.

D.Aguiar,11L.Aiello,12,13 A.Ain,14P.Ajith,15B.Allen,8,16,17A.Allocca,18,19P.A.Altin,20S.B.Anderson,1W.G.Anderson,16K.Arai,1M.A.Arain,5 M.C.Araya,1C.C.Arceneaux,21J.S.Areeda,22N.Arnaud,23K.G.Arun,24S.Ascenzi,25,13G.Ashton,26M.Ast,27 S.M.Aston,6P.Astone,28P.Aufmuth,8C.Aulbert,8S.Babak,29P.Bacon,30M.K.M.Bader,9P.T.Baker,31

F.Baldaccini,32,33

G.Ballardin,34S.W.Ballmer,35J.C.Barayoga,1S.E.Barclay,36B.C.Barish,1D.Barker,37F.Barone,3,4 B.Barr,36L.Barsotti,10M.Barsuglia,30D.Barta,38J.Bartlett,37M.A.Barton,37I.Bartos,39R.Bassiri,40A.Basti,18,19 J.C.Batch,37C.Baune,8V.Bavigadda,34M.Bazzan,41,42B.Behnke,29M.Bejger,43C.Belczynski,44A.S.Bell,36 C.J.Bell,36B.K.Berger,1J.Bergman,37G.Bergmann,8C.P.L.Berry,45D.Bersanetti,46,47A.Bertolini,9J.Betzwieser,6 S.Bhagwat,35R.Bhandare,48I.A.Bilenko,49G.Billingsley,1J.Birch,6R.Birney,50O.Birnholtz,8S.Biscans,10A.Bisht,8,17 M.Bitossi,34C.Biwer,https://www.sodocs.net/doc/bb2230051.html,ouard,23J.K.Blackburn,1C.D.Blair,51D.G.Blair,51R.M.Blair,37S.Bloemen,52 O.Bock,8T.P.Bodiya,10M.Boer,53G.Bogaert,53C.Bogan,8A.Bohe,29P.Bojtos,54C.Bond,45F.Bondu,55R.Bonnand,7

B.A.Boom,9R.Bork,1V.Boschi,18,19S.Bose,56,14Y.Bouffanais,30A.Bozzi,34

C.Bradaschia,19P.R.Brady,16 V.B.Braginsky,49M.Branchesi,57,58J.E.Brau,59T.Briant,60A.Brillet,53M.Brinkmann,8V.Brisson,23P.Brockill,16 A.F.Brooks,1

D.A.Brown,35D.D.Brown,45N.M.Brown,10C.C.Buchanan,2A.Buikema,10T.Bulik,44H.J.Bulten,61,9 A.Buonanno,29,62D.Buskulic,7C.Buy,30R.L.Byer,40M.Cabero,8L.Cadonati,63G.Cagnoli,64,65C.Cahillane,1 J.Calderón Bustillo,66,63T.Callister,1

E.Calloni,67,4J.B.Camp,68K.C.Cannon,69J.Cao,70C.D.Capano,8E.Capocasa,30

F.Carbognani,34S.Caride,71J.Casanueva Diaz,23C.Casentini,25,13S.Caudill,16M.Cavaglià,21F.Cavalier,23 R.Cavalieri,34

G.Cella,19C.B.Cepeda,1L.Cerboni Baiardi,57,58G.Cerretani,18,19E.Cesarini,25,13R.Chakraborty,1 T.Chalermsongsak,1S.J.Chamberlin,72M.Chan,36S.Chao,73P.Charlton,74E.Chassande-Mottin,30

H.Y.Chen,75 Y.Chen,76C.Cheng,73A.Chincarini,47A.Chiummo,34H.S.Cho,77M.Cho,62J.H.Chow,20N.Christensen,78Q.Chu,51 S.Chua,60S.Chung,51G.Ciani,5F.Clara,37J.A.Clark,63F.Cleva,53E.Coccia,25,12,13P.-F.Cohadon,60A.Colla,79,28 C.G.Collette,https://www.sodocs.net/doc/bb2230051.html,insky,81M.Constancio Jr.,11A.Conte,79,28L.Conti,42D.Cook,37T.R.Corbitt,2N.Cornish,31

A.Corsi,71S.Cortese,34C.A.Costa,11M.W.Coughlin,78S.

B.Coughlin,82J.-P.Coulon,53S.T.Countryman,39 P.Couvares,1E.E.Cowan,63D.M.Coward,51M.J.Cowart,6D.

C.Coyne,1R.Coyne,71K.Craig,36J.

D.

E.Creighton,16 T.D.Creighton,83J.Cripe,2S.G.Crowder,84A.M.Cruise,45A.Cumming,36L.Cunningham,36E.Cuoco,34T.Dal Canton,8 S.L.Danilishin,36S.D’Antonio,13K.Danzmann,17,8N.S.Darman,85C.

F.Da Silva Costa,5V.Dattilo,34I.Dave,48 H.P.Daveloza,83M.Davier,23

G.S.Davies,36E.J.Daw,86R.Day,34S.De,35D.DeBra,40G.Debreczeni,38J.Degallaix,65 M.De Laurentis,67,4S.Deléglise,60W.Del Pozzo,45T.Denker,8,17T.Dent,8

H.Dereli,53V.Dergachev,1R.T.DeRosa,6 R.De Rosa,67,4R.DeSalvo,87S.Dhurandhar,14M.C.Díaz,83L.Di Fiore,4M.Di Giovanni,79,28A.Di Lieto,18,19 S.Di Pace,79,28

I.Di Palma,29,8A.Di Virgilio,19G.Dojcinoski,88V.Dolique,65F.Donovan,10K.L.Dooley,21S.Doravari,6,8 R.Douglas,36T.P.Downes,16M.Drago,8,89,90R.W.P.Drever,1

J.C.Driggers,37Z.Du,70M.Ducrot,7S.E.Dwyer,37 T.B.Edo,86M.C.Edwards,78A.Effler,6H.-B.Eggenstein,8P.Ehrens,1J.Eichholz,5S.S.Eikenberry,5W.Engels,76 R.C.Essick,10T.Etzel,1M.Evans,10T.M.Evans,6R.Everett,72M.Factourovich,39V.Fafone,25,13,12H.Fair,35 S.Fairhurst,91X.Fan,70Q.Fang,51S.Farinon,47B.Farr,75W.M.Farr,45M.Favata,88M.Fays,91H.Fehrmann,8 M.M.Fejer,40D.Feldbaum,5I.Ferrante,18,19E.C.Ferreira,11F.Ferrini,34F.Fidecaro,18,19L.S.Finn,72I.Fiori,34 D.Fiorucci,30R.P.Fisher,35R.Flaminio,65,92M.Fletcher,36H.Fong,69J.-D.Fournier,53S.Franco,23S.Frasca,79,28 F.Frasconi,19M.Frede,8Z.Frei,54A.Freise,45R.Frey,59V.Frey,23T.T.Fricke,8P.Fritschel,10V.V.Frolov,6P.Fulda,5 M.Fyffe,6H.A.G.Gabbard,21J.R.Gair,93L.Gammaitoni,32,33S.G.Gaonkar,14F.Garufi,67,4A.Gatto,30G.Gaur,94,95 N.Gehrels,68G.Gemme,47B.Gendre,53E.Genin,34A.Gennai,19J.George,48L.Gergely,96V.Germain,7Abhirup Ghosh,15

Archisman Ghosh,15S.Ghosh,52,9J.A.Giaime,2,6K.D.Giardina,6A.Giazotto,19K.Gill,97A.Glaefke,36J.R.Gleason,5

E.Goetz,98R.Goetz,5L.Gondan,54G.González,2J.M.Gonzalez Castro,18,19A.Gopakumar,99N.A.Gordon,36 M.L.Gorodetsky,49S.E.Gossan,1M.Gosselin,34R.Gouaty,7C.Graef,36P.B.Graff,62M.Granata,65A.Grant,36S.Gras,10 C.Gray,37G.Greco,57,58A.C.Green,45R.J.S.Greenhalgh,100P.Groot,52H.Grote,8S.Grunewald,29G.M.Guidi,57,58 X.Guo,70A.Gupta,14M.K.Gupta,95K.E.Gushwa,1E.K.Gustafson,1R.Gustafson,98J.J.Hacker,22B.R.Hall,56

E.D.Hall,1G.Hammond,36M.Haney,99M.M.Hanke,8J.Hanks,37C.Hanna,72M.D.Hannam,91J.Hanson,6 T.Hardwick,2J.Harms,57,58G.M.Harry,101I.W.Harry,29M.J.Hart,36M.T.Hartman,5C.-J.Haster,45K.Haughian,36 J.Healy,102J.Heefner,1,a A.Heidmann,60M.C.Heintze,5,6G.Heinzel,8H.Heitmann,53P.Hello,23G.Hemming,34 M.Hendry,36I.S.Heng,36J.Hennig,36A.W.Heptonstall,1M.Heurs,8,17S.Hild,36D.Hoak,103K.A.Hodge,1D.Hofman,65 S.E.Hollitt,104K.Holt,6D.E.Holz,75P.Hopkins,91D.J.Hosken,104J.Hough,36E.A.Houston,36E.J.Howell,51 Y.M.Hu,36S.Huang,73E.A.Huerta,105,82D.Huet,23B.Hughey,97S.Husa,66S.H.Huttner,36T.Huynh-Dinh,6A.Idrisy,72 N.Indik,8D.R.Ingram,37R.Inta,71H.N.Isa,36J.-M.Isac,60M.Isi,1G.Islas,22T.Isogai,10B.R.Iyer,15K.Izumi,37 M.B.Jacobson,1T.Jacqmin,60H.Jang,77K.Jani,63P.Jaranowski,106S.Jawahar,107

F.Jiménez-Forteza,66W.W.Johnson,2 N.K.Johnson-McDaniel,15D.I.Jones,26R.Jones,36R.J.

G.Jonker,9L.Ju,51K.Haris,108C.V.Kalaghatgi,24,91 V.Kalogera,82S.Kandhasamy,21G.Kang,77J.B.Kanner,1S.Karki,59M.Kasprzack,2,23,34E.Katsavounidis,10 W.Katzman,6S.Kaufer,17T.Kaur,51K.Kawabe,37F.Kawazoe,8,17F.Kéfélian,53M.S.Kehl,69D.Keitel,8,66D.B.Kelley,35 W.Kells,1R.Kennedy,86D.G.Keppel,8J.S.Key,83A.Khalaidovski,8F.Y.Khalili,49I.Khan,12S.Khan,91Z.Khan,95 E.A.Khazanov,109N.Kijbunchoo,37C.Kim,77J.Kim,110K.Kim,111Nam-Gyu Kim,77Namjun Kim,40Y.-M.Kim,110 E.J.King,104P.J.King,37D.L.Kinzel,6J.S.Kissel,37L.Kleybolte,27S.Klimenko,5S.M.Koehlenbeck,8K.Kokeyama,2

S.Koley,9V.Kondrashov,1A.Kontos,10S.Koranda,16M.Korobko,27W.Z.Korth,1I.Kowalska,44D.B.Kozak,1 V.Kringel,8B.Krishnan,8A.Królak,112,113C.Krueger,17G.Kuehn,8P.Kumar,69R.Kumar,36L.Kuo,73A.Kutynia,112 P.Kwee,https://www.sodocs.net/doc/bb2230051.html,ckey,https://www.sodocs.net/doc/bb2230051.html,ndry,https://www.sodocs.net/doc/bb2230051.html,nge,https://www.sodocs.net/doc/bb2230051.html,ntz,https://www.sodocs.net/doc/bb2230051.html,sky,https://www.sodocs.net/doc/bb2230051.html,zzarini,https://www.sodocs.net/doc/bb2230051.html,zzaro,63,42P.Leaci,29,79,28 S.Leavey,36E.O.Lebigot,30,70C.H.Lee,110H.K.Lee,111H.M.Lee,115K.Lee,36A.Lenon,35M.Leonardi,89,90 J.R.Leong,8N.Leroy,23N.Letendre,7Y.Levin,114B.M.Levine,37T.G.F.Li,1A.Libson,10T.B.Littenberg,116 N.A.Lockerbie,107J.Logue,36A.L.Lombardi,103L.T.London,91J.E.Lord,35M.Lorenzini,12,13V.Loriette,117 M.Lormand,6G.Losurdo,58J.D.Lough,8,17C.O.Lousto,102G.Lovelace,22H.Lück,17,8A.P.Lundgren,8J.Luo,78 R.Lynch,10Y.Ma,51T.MacDonald,40B.Machenschalk,8M.MacInnis,10D.M.Macleod,2F.Maga?a-Sandoval,35 R.M.Magee,56M.Mageswaran,1E.Majorana,28I.Maksimovic,117V.Malvezzi,25,13N.Man,53I.Mandel,45V.Mandic,84 V.Mangano,36G.L.Mansell,20M.Manske,16M.Mantovani,34F.Marchesoni,118,33F.Marion,7S.Márka,39Z.Márka,39 A.S.Markosyan,40E.Maros,1F.Martelli,57,58L.Martellini,53I.W.Martin,36R.M.Martin,5D.V.Martynov,1J.N.Marx,1

K.Mason,10A.Masserot,7T.J.Massinger,35M.Masso-Reid,36F.Matichard,10L.Matone,39N.Mavalvala,10 N.Mazumder,56G.Mazzolo,8R.McCarthy,37D.E.McClelland,20S.McCormick,6S.C.McGuire,119G.McIntyre,1 J.McIver,1D.J.McManus,20S.T.McWilliams,105D.Meacher,72G.D.Meadors,29,8J.Meidam,9A.Melatos,85 G.Mendell,37D.Mendoza-Gandara,8R.A.Mercer,16E.Merilh,37M.Merzougui,53S.Meshkov,1C.Messenger,36 C.Messick,72P.M.Meyers,84F.Mezzani,28,79H.Miao,45C.Michel,65H.Middleton,45E.E.Mikhailov,https://www.sodocs.net/doc/bb2230051.html,ano,67,4 https://www.sodocs.net/doc/bb2230051.html,ler,https://www.sodocs.net/doc/bb2230051.html,lhouse,31Y.Minenkov,13J.Ming,29,8S.Mirshekari,121C.Mishra,15S.Mitra,14V.P.Mitrofanov,49 G.Mitselmakher,5R.Mittleman,10A.Moggi,19M.Mohan,34S.R.P.Mohapatra,10M.Montani,57,58B.C.Moore,88 C.J.Moore,122D.Moraru,37G.Moreno,37S.R.Morriss,83K.Mossavi,8B.Mours,7C.M.Mow-Lowry,45C.L.Mueller,5

G.Mueller,5A.W.Muir,91Arunava Mukherjee,15D.Mukherjee,16S.Mukherjee,83N.Mukund,14A.Mullavey,6 J.Munch,104D.J.Murphy,39P.G.Murray,36A.Mytidis,5I.Nardecchia,25,13L.Naticchioni,79,28R.K.Nayak,123V.Necula,5 K.Nedkova,103G.Nelemans,52,9M.Neri,46,47A.Neunzert,98G.Newton,36T.T.Nguyen,20A.B.Nielsen,8S.Nissanke,52,9 A.Nitz,8F.Nocera,34D.Nolting,6M.E.N.Normandin,83L.K.Nuttall,35J.Oberling,37E.Ochsner,16J.O’Dell,100 E.Oelker,10G.H.Ogin,124J.J.Oh,125S.H.Oh,125F.Ohme,91M.Oliver,66P.Oppermann,8Richard J.Oram,6B.O’Reilly,6 R.O’Shaughnessy,102C.D.Ott,76D.J.Ottaway,104R.S.Ottens,5H.Overmier,6B.J.Owen,71A.Pai,108S.A.Pai,48 J.R.Palamos,59O.Palashov,109C.Palomba,28A.Pal-Singh,27H.Pan,73Y.Pan,62C.Pankow,82F.Pannarale,91B.C.Pant,48 F.Paoletti,34,19A.Paoli,34M.A.Papa,29,16,8H.R.Paris,40W.Parker,6D.Pascucci,36A.Pasqualetti,34R.Passaquieti,18,19 D.Passuello,19B.Patricelli,18,19Z.Patrick,40B.L.Pearlstone,36M.Pedraza,1R.Pedurand,65L.Pekowsky,35A.Pele,6 S.Penn,126A.Perreca,1H.P.Pfeiffer,69,29M.Phelps,36O.Piccinni,79,28M.Pichot,53M.Pickenpack,8F.Piergiovanni,57,58 V.Pierro,87G.Pillant,34L.Pinard,65I.M.Pinto,87M.Pitkin,36J.H.Poeld,8R.Poggiani,18,19P.Popolizio,34A.Post,8

J.Powell,36J.Prasad,14V.Predoi,91S.S.Premachandra,114T.Prestegard,84L.R.Price,1M.Prijatelj,34M.Principe,87 S.Privitera,29R.Prix,8G.A.Prodi,89,90L.Prokhorov,49O.Puncken,8M.Punturo,33P.Puppo,28M.Pürrer,29H.Qi,16 J.Qin,51V.Quetschke,83E.A.Quintero,1R.Quitzow-James,59F.J.Raab,37D.S.Rabeling,20H.Radkins,37P.Raffai,54 S.Raja,48M.Rakhmanov,83C.R.Ramet,6P.Rapagnani,79,28V.Raymond,29M.Razzano,18,19V.Re,25J.Read,22 C.M.Reed,37T.Regimbau,53L.Rei,47S.Reid,50D.H.Reitze,1,5H.Rew,120S.D.Reyes,35F.Ricci,79,28K.Riles,98 N.A.Robertson,1,36R.Robie,36F.Robinet,23A.Rocchi,13L.Rolland,7J.G.Rollins,1V.J.Roma,59J.D.Romano,83 R.Romano,3,4G.Romanov,120J.H.Romie,6D.Rosińska,127,43S.Rowan,36A.Rüdiger,8P.Ruggi,34K.Ryan,37 S.Sachdev,1T.Sadecki,37L.Sadeghian,16L.Salconi,34M.Saleem,108F.Salemi,8A.Samajdar,123L.Sammut,85,114 L.M.Sampson,82E.J.Sanchez,1V.Sandberg,37B.Sandeen,82G.H.Sanders,1J.R.Sanders,98,35B.Sassolas,65 B.S.Sathyaprakash,91P.R.Saulson,35O.Sauter,98R.L.Savage,37A.Sawadsky,17P.Schale,59R.Schilling,8,b J.Schmidt,8 P.Schmidt,1,76R.Schnabel,27R.M.S.Schofield,59A.Sch?nbeck,27E.Schreiber,8D.Schuette,8,17B.F.Schutz,91,29 J.Scott,36S.M.Scott,20D.Sellers,6A.S.Sengupta,94D.Sentenac,34V.Sequino,25,13A.Sergeev,109G.Serna,22 Y.Setyawati,52,9A.Sevigny,37D.A.Shaddock,20T.Shaffer,37S.Shah,52,9M.S.Shahriar,82M.Shaltev,8Z.Shao,1 B.Shapiro,40P.Shawhan,62A.Sheperd,16D.H.Shoemaker,10D.M.Shoemaker,63K.Siellez,53,63X.Siemens,16D.Sigg,37

A.D.Silva,11D.Simakov,8A.Singer,1L.P.Singer,68A.Singh,29,8R.Singh,2A.Singhal,12A.M.Sintes,66

B.J.J.Slagmolen,20J.R.Smith,22M.R.Smith,1N.D.Smith,1R.J.E.Smith,1E.J.Son,125B.Sorazu,36F.Sorrentino,47 T.Souradeep,14A.K.Srivastava,95A.Staley,39M.Steinke,8J.Steinlechner,36S.Steinlechner,36D.Steinmeyer,8,17 B.

C.Stephens,16S.P.Stevenson,45R.Stone,83K.A.Strain,36N.Straniero,65G.Stratta,57,58N.A.Strauss,78S.Strigin,49 R.Sturani,121A.L.Stuver,6T.Z.Summerscales,128L.Sun,85P.J.Sutton,91B.L.Swinkels,34M.J.Szczepańczyk,97 M.Tacca,30

D.Talukder,59D.B.Tanner,5M.Tápai,96S.P.Tarabrin,8A.Taracchini,29R.Taylor,1T.Theeg,8 M.P.Thirugnanasambandam,1

E.G.Thomas,45M.Thomas,6P.Thomas,37K.A.Thorne,6K.S.Thorne,76E.Thrane,114 S.Tiwari,12V.Tiwari,91K.V.Tokmakov,107C.Tomlinson,86M.Tonelli,18,19C.V.Torres,83,c C.I.Torrie,1D.T?yr?,45

F.Travasso,32,33

G.Traylor,6D.Trifirò,21M.C.Tringali,89,90L.Trozzo,129,19M.Tse,10M.Turconi,53D.Tuyenbayev,83

D.Ugolini,130C.S.Unnikrishnan,99A.L.Urban,https://www.sodocs.net/doc/bb2230051.html,man,35H.Vahlbruch,17G.Vajente,1G.Valdes,83 M.Vallisneri,76N.van Bakel,9M.van Beuzekom,9J.F.J.van den Brand,61,9C.Van Den Broeck,9D.C.Vander-Hyde,35,22 L.van der Schaaf,9J.V.van Heijningen,9A.A.van Veggel,36M.Vardaro,41,42S.Vass,1M.Vasúth,38R.Vaulin,10 A.Vecchio,45G.Vedovato,42J.Veitch,45P.J.Veitch,104K.Venkateswara,131D.Verkindt,7F.Vetrano,57,58A.Viceré,57,58 S.Vinciguerra,45D.J.Vine,50J.-Y.Vinet,53S.Vitale,10T.V o,35H.V occa,32,33C.V orvick,37D.V oss,5W.D.V ousden,45 S.P.Vyatchanin,49A.R.Wade,20L.

E.Wade,132M.Wade,132S.J.Waldman,10M.Walker,2L.Wallace,1S.Walsh,16,8,29 G.Wang,12H.Wang,45M.Wang,45X.Wang,70Y.Wang,51H.Ward,36R.L.Ward,20J.Warner,37M.Was,7B.Weaver,37 L.-W.Wei,53M.Weinert,8A.J.Weinstein,1R.Weiss,10T.Welborn,6L.Wen,51P.We?els,8T.Westphal,8K.Wette,8 J.T.Whelan,102,8S.E.Whitcomb,1D.J.White,86B.

F.Whiting,5K.Wiesner,8C.Wilkinson,37P.A.Willems,1L.Williams,5 R.D.Williams,1A.R.Williamson,91J.L.Willis,133B.Willke,17,8M.H.Wimmer,8,17L.Winkelmann,8W.Winkler,8 C.C.Wipf,1A.

G.Wiseman,16

H.Wittel,8,17G.Woan,36J.Worden,37J.L.Wright,36G.Wu,6J.Yablon,82

I.Yakushin,6 W.Yam,10H.Yamamoto,1C.C.Yancey,62M.

J.Yap,20H.Yu,10M.Yvert,7A.Zadro?ny,112L.Zangrando,42M.Zanolin,97 J.-P.Zendri,42M.Zevin,82F.Zhang,10L.Zhang,1M.Zhang,120Y.Zhang,102C.Zhao,51M.Zhou,82Z.Zhou,82X.J.Zhu,51

M.E.Zucker,1,10S.E.Zuraw,103and J.Zweizig1

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO,California Institute of Technology,Pasadena,California91125,USA

2Louisiana State University,Baton Rouge,Louisiana70803,USA

3Universitàdi Salerno,Fisciano,I-84084Salerno,Italy

4INFN,Sezione di Napoli,Complesso Universitario di Monte S.Angelo,I-80126Napoli,Italy

5University of Florida,Gainesville,Florida32611,USA

6LIGO Livingston Observatory,Livingston,Louisiana70754,USA

7Laboratoire d’Annecy-le-Vieux de Physique des Particules(LAPP),UniversitéSavoie Mont Blanc,CNRS/IN2P3,

F-74941Annecy-le-Vieux,France

8Albert-Einstein-Institut,Max-Planck-Institut für Gravitationsphysik,D-30167Hannover,Germany

9Nikhef,Science Park,1098XG Amsterdam,Netherlands

10LIGO,Massachusetts Institute of Technology,Cambridge,Massachusetts02139,USA

11Instituto Nacional de Pesquisas Espaciais,12227-010S?o Josédos Campos,S?o Paulo,Brazil

12INFN,Gran Sasso Science Institute,I-67100L’Aquila,Italy

13INFN,Sezione di Roma Tor Vergata,I-00133Roma,Italy

14Inter-University Centre for Astronomy and Astrophysics,Pune411007,India

15International Centre for Theoretical Sciences,Tata Institute of Fundamental Research,Bangalore560012,India

16University of Wisconsin-Milwaukee,Milwaukee,Wisconsin53201,USA

17Leibniz Universit?t Hannover,D-30167Hannover,Germany

18Universitàdi Pisa,I-56127Pisa,Italy

19INFN,Sezione di Pisa,I-56127Pisa,Italy

20Australian National University,Canberra,Australian Capital Territory0200,Australia

21The University of Mississippi,University,Mississippi38677,USA

22California State University Fullerton,Fullerton,California92831,USA

23LAL,UniversitéParis-Sud,CNRS/IN2P3,UniversitéParis-Saclay,Orsay,France

24Chennai Mathematical Institute,Chennai,India603103

25Universitàdi Roma Tor Vergata,I-00133Roma,Italy

26University of Southampton,Southampton SO171BJ,United Kingdom

27Universit?t Hamburg,D-22761Hamburg,Germany

28INFN,Sezione di Roma,I-00185Roma,Italy

29Albert-Einstein-Institut,Max-Planck-Institut für Gravitationsphysik,D-14476Potsdam-Golm,Germany 30APC,AstroParticule et Cosmologie,UniversitéParis Diderot,CNRS/IN2P3,CEA/Irfu,Observatoire de Paris,

Sorbonne Paris Cité,F-75205Paris Cedex13,France

31Montana State University,Bozeman,Montana59717,USA

32Universitàdi Perugia,I-06123Perugia,Italy

33INFN,Sezione di Perugia,I-06123Perugia,Italy

34European Gravitational Observatory(EGO),I-56021Cascina,Pisa,Italy

35Syracuse University,Syracuse,New York13244,USA

36SUPA,University of Glasgow,Glasgow G128QQ,United Kingdom

37LIGO Hanford Observatory,Richland,Washington99352,USA

38Wigner RCP,RMKI,H-1121Budapest,Konkoly Thege Miklósút29-33,Hungary

39Columbia University,New York,New York10027,USA

40Stanford University,Stanford,California94305,USA

41Universitàdi Padova,Dipartimento di Fisica e Astronomia,I-35131Padova,Italy

42INFN,Sezione di Padova,I-35131Padova,Italy

43CAMK-PAN,00-716Warsaw,Poland

44Astronomical Observatory Warsaw University,00-478Warsaw,Poland

45University of Birmingham,Birmingham B152TT,United Kingdom

46Universitàdegli Studi di Genova,I-16146Genova,Italy

47INFN,Sezione di Genova,I-16146Genova,Italy

48RRCAT,Indore MP452013,India

49Faculty of Physics,Lomonosov Moscow State University,Moscow119991,Russia

50SUPA,University of the West of Scotland,Paisley PA12BE,United Kingdom

51University of Western Australia,Crawley,Western Australia6009,Australia 52Department of Astrophysics/IMAPP,Radboud University Nijmegen,P.O.Box9010,6500GL Nijmegen,Netherlands 53Artemis,UniversitéC?te d’Azur,CNRS,Observatoire C?te d’Azur,CS34229,Nice cedex4,France 54MTA E?tv?s University,“Lendulet”Astrophysics Research Group,Budapest1117,Hungary

55Institut de Physique de Rennes,CNRS,Universitéde Rennes1,F-35042Rennes,France

56Washington State University,Pullman,Washington99164,USA

57Universitàdegli Studi di Urbino“Carlo Bo,”I-61029Urbino,Italy

58INFN,Sezione di Firenze,I-50019Sesto Fiorentino,Firenze,Italy

59University of Oregon,Eugene,Oregon97403,USA

60Laboratoire Kastler Brossel,UPMC-Sorbonne Universités,CNRS,ENS-PSL Research University,Collège de France,

F-75005Paris,France

61VU University Amsterdam,1081HV Amsterdam,Netherlands

62University of Maryland,College Park,Maryland20742,USA

63Center for Relativistic Astrophysics and School of Physics,Georgia Institute of Technology,Atlanta,Georgia30332,USA 64Institut Lumière Matière,Universitéde Lyon,UniversitéClaude Bernard Lyon1,UMR CNRS5306,69622Villeurbanne,France 65Laboratoire des Matériaux Avancés(LMA),IN2P3/CNRS,Universitéde Lyon,F-69622Villeurbanne,Lyon,France 66Universitat de les Illes Balears,IAC3—IEEC,E-07122Palma de Mallorca,Spain

67Universitàdi Napoli“Federico II,”Complesso Universitario di Monte S.Angelo,I-80126Napoli,Italy

68NASA/Goddard Space Flight Center,Greenbelt,Maryland20771,USA

69Canadian Institute for Theoretical Astrophysics,University of Toronto,Toronto,Ontario M5S3H8,Canada

70Tsinghua University,Beijing100084,China

71Texas Tech University,Lubbock,Texas79409,USA

72The Pennsylvania State University,University Park,Pennsylvania16802,USA

73National Tsing Hua University,Hsinchu City,30013Taiwan,Republic of China

74Charles Sturt University,Wagga Wagga,New South Wales2678,Australia

75University of Chicago,Chicago,Illinois60637,USA

76Caltech CaRT,Pasadena,California91125,USA

77Korea Institute of Science and Technology Information,Daejeon305-806,Korea

78Carleton College,Northfield,Minnesota55057,USA

79Universitàdi Roma“La Sapienza,”I-00185Roma,Italy

80University of Brussels,Brussels1050,Belgium

81Sonoma State University,Rohnert Park,California94928,USA

82Northwestern University,Evanston,Illinois60208,USA

83The University of Texas Rio Grande Valley,Brownsville,Texas78520,USA

84University of Minnesota,Minneapolis,Minnesota55455,USA

85The University of Melbourne,Parkville,Victoria3010,Australia

86The University of Sheffield,Sheffield S102TN,United Kingdom

87University of Sannio at Benevento,I-82100Benevento,Italy and INFN,Sezione di Napoli,I-80100Napoli,Italy 88Montclair State University,Montclair,New Jersey07043,USA

89Universitàdi Trento,Dipartimento di Fisica,I-38123Povo,Trento,Italy

90INFN,Trento Institute for Fundamental Physics and Applications,I-38123Povo,Trento,Italy

91Cardiff University,Cardiff CF243AA,United Kingdom

92National Astronomical Observatory of Japan,2-21-1Osawa,Mitaka,Tokyo181-8588,Japan 93School of Mathematics,University of Edinburgh,Edinburgh EH93FD,United Kingdom

94Indian Institute of Technology,Gandhinagar Ahmedabad Gujarat382424,India

95Institute for Plasma Research,Bhat,Gandhinagar382428,India

96University of Szeged,Dóm tér9,Szeged6720,Hungary

97Embry-Riddle Aeronautical University,Prescott,Arizona86301,USA

98University of Michigan,Ann Arbor,Michigan48109,USA

99Tata Institute of Fundamental Research,Mumbai400005,India

100Rutherford Appleton Laboratory,HSIC,Chilton,Didcot,Oxon OX110QX,United Kingdom

101American University,Washington,D.C.20016,USA

102Rochester Institute of Technology,Rochester,New York14623,USA

103University of Massachusetts-Amherst,Amherst,Massachusetts01003,USA

104University of Adelaide,Adelaide,South Australia5005,Australia

105West Virginia University,Morgantown,West Virginia26506,USA

106University of Bia?ystok,15-424Bia?ystok,Poland

107SUPA,University of Strathclyde,Glasgow G11XQ,United Kingdom

108IISER-TVM,CET Campus,Trivandrum Kerala695016,India

109Institute of Applied Physics,Nizhny Novgorod,603950,Russia

110Pusan National University,Busan609-735,Korea

111Hanyang University,Seoul133-791,Korea

112NCBJ,05-400?wierk-Otwock,Poland

113IM-PAN,00-956Warsaw,Poland

114Monash University,Victoria3800,Australia

115Seoul National University,Seoul151-742,Korea

116University of Alabama in Huntsville,Huntsville,Alabama35899,USA

117ESPCI,CNRS,F-75005Paris,France

118Universitàdi Camerino,Dipartimento di Fisica,I-62032Camerino,Italy

119Southern University and A&M College,Baton Rouge,Louisiana70813,USA

120College of William and Mary,Williamsburg,Virginia23187,USA

121Instituto de Física Teórica,University Estadual Paulista/ICTP South American Institute for Fundamental Research,

S?o Paulo SP01140-070,Brazil

122University of Cambridge,Cambridge CB21TN,United Kingdom

123IISER-Kolkata,Mohanpur,West Bengal741252,India

124Whitman College,345Boyer Avenue,Walla Walla,Washington99362USA

125National Institute for Mathematical Sciences,Daejeon305-390,Korea

126Hobart and William Smith Colleges,Geneva,New York14456,USA

127Janusz Gil Institute of Astronomy,University of Zielona Góra,65-265Zielona Góra,Poland

128Andrews University,Berrien Springs,Michigan49104,USA

129Universitàdi Siena,I-53100Siena,Italy

130Trinity University,San Antonio,Texas78212,USA

131University of Washington,Seattle,Washington98195,USA

132Kenyon College,Gambier,Ohio43022,USA

133Abilene Christian University,Abilene,Texas79699,USA

a Deceased,April2012.

b Deceased,May2015.

c Deceased,March2015.

常用音频插件中英文总结译义表

中文 含义及简介 gain 增益 调整Db的增益或减少,在电子音乐中是没有音量大小的概念,只有db多少的概念,因此在电子音乐中,调整db其实就是调整音量在音箱的输出多少 frequency 频率 人能听见的频率在20hz-20khz之间,frequency是不能调整的参数,他只是一个讯息,告诉你所操作的控制器是在甚么频率上的 Input 输入 指在效果器中显示的是干信号进入插件的db量 Output 输出 经过处理后的声音从output输出,显示出输出的db量有多少《压缩系compressor、压限limiter的参数——C1,C4,L1》 Range/Ratio 范围/比例 我是在C4看到range这个词的,他的作用应该相当于c1的ratio比例,range指的是c4所要压缩的范围而ratio则是指出c1的门限threshold所要压缩的比例,这里要说说甚么是压缩 Compres 压缩 可以所说一种压下过高的音频又尽可能不影响音量音质的一种手段,他以尽可能平滑的方法压下不稳定因素而和一刀切掉过高的不稳定频点因素是不一样,并且提升所想要的目标音色(也就是常说的特色),c4的range指的是所压缩的范围,c1的ratio指的是所想要压缩的比例

补足 请理解为提升被压缩的音频的意思吧,他在c1的作用所带来的效果和gain是很相似的,但他的原始目的是以提升或补足一些被处理后的感觉而做到的提升,和提升output或gain的原意是不同的,所带来的效果也不一样,虽然感觉上也是在调整音量 Threshold 门限 如果要我来形容,他给我的感觉就像是eq的frequency,本身只是用来决定位置而不是改变参数,参数的改变是由make up,ratio,等参数来进行操作的,但我们称threshold为门限值,指的是对于多少db以下的数值所能通过所设的门限,而超出门限的音频信号则是要被处理的 outCeiling 出界补偿 这里来说说L1,L2的outceiling,out指的是出界,出了threshold的界限的音频信号修复补偿(ceiling)也就是之前说的压缩系的效果器是为了平滑的压下效果器而非一刀切,但压限器却恰恰相反,压限器就是对超过门限的音频一刀切掉然后用outceiling来补偿并最大化的还原于门限之下 Attack Time 攻击时间 压缩、压限的攻击时间,越长就命令生效的越慢,越快就命令生效的越快,就像拳头要花多少时间才能打到对方身上一样,是一个“攻击一次从出拳到击中目标用了多少时间”的设置参数 Release Time 释放时间 甚么意思?一开始我也糊涂了,最后终于搞懂,他的意思是“how long you to do used to release your attack”而不是攻击一次后要休息多久,而是要恢复多久,比喻的话就像是,拳头出拳到击中目标为attack time,拳头击在对方体内停留多少时间后才抽回拳头=release time,就是这样的比喻 PDR - 字典解释为precision depth recorder精密深度记录器,而在waves中,有几点要注意的,1)PDR 为0的时候这个功能自动关闭,2)音频信号音频信号在最高点停留的时间要耗费多少毫秒,越少毫秒停留的时间越少,越多毫秒则停留越长,3)但是其中的差别真的太微弱了,但说明书上说,在录制很大回响的音频时,这个参数能够有效压缩一些微弱的混响,以便在后期的时候这些混响不会对后期发生干扰

做音乐必备。非常全的专业效果器软件分类的介绍_图形并茂_一位热心专业人士整理的。今天上传_你们有福了。.

1、TC出品的效果器插件包。TC的这些VST效果插件一直都是被广泛使用. TC Compressor DeEsser压缩、消唇齿音效果器 Compressor压缩效果可以这样理解,就是把音频低的地方提升,把高的地方下压,以便让音频整体的音量更均匀,通过设置压缩的比例和起始时间以及释放时间,可以让一些比如低鼓、军鼓、BASS等乐器听起来感觉更有力,DeEsser我们一般翻译为消唇齿音效果,也有叫嘶声消除器的。它可以通过调整压缩、门限的参数来消除人声或乐器4KHZ到8KHZ之间的嘶声。比如唱歌时由口齿发出的唇齿音、箱琴在弹奏时发出的一些杂音。 中英文名词对照:Compressors/压缩、attack time/起始时间、threshold/门限、release time/释放时间、ratio/压缩 比例、SoftKNEE/拐点柔软度、Hard Time/硬的时间,SoftKNEE和Hard Time一起来设置拐点柔软度是硬还是软。De- Esser/嘶声消除。(其他品牌的压缩效果器都小异,不再重复解释,实际运用后面章节叙述)

TC Filtrator滤波效果器 简单来说Filtrator就是通过过滤某些频段和调整失真饱和度以及低频震荡来创造出一个全新的声音。TC Filtrator滤波 效果器主要分为:FILTER滤波模块、LFO低频震荡模块、DRIVE失真度模块并在ENV FOLLOWER模块中调整相关参数值。如 果你需要把你的声音变成一个外星人或者类似机器人的声音,想得到一种特殊的效果你不仿试试它,不过想用好可不是 那么简单。 中英文名词对照:Filter/滤波器、LFO/低频震荡器、Speed/速率、Division/分界点、Slope/倾斜值、Attack/起始时间 、HOLD/保持时间、DECAY/衰变时间(其他品牌的滤波效果器也是小异,不再重复叙述)

Waves9的介绍

Waves9介绍 EQ的部分: 1、API-550B:这个EQ是一个四段的EQ,API的东西声音比较立体,瞬态反应比较快,所以API的东西特别适合来处理鼓组。 2、H-EQ:

这个EQ用它来处理钢琴或弦乐,而且每个频段有7种曲线形状可调,而且它的立体声版本可以对左右声道做不同的EQ调节,是一个非常强大的EQ。

3、Scheps 73:声音非常细腻饱满,光是话放的部分就已经为声音增色不少,EQ的部分处理出来的质感也非常棒,所以这个插件要慎用,但如果遇到适合的干声还是能得到一个比较理想的音色的。尽量不要用在本来已经挺亮的干声上。 4、Puigtec EQP1A:

这个EQ声音都比较暖,尤其是高频,声音相对其他模拟硬件的插件来说比较自然,即使增益量比较大依然不会有过分的感觉。 5、SSL-EQ: SSL这个牌子的标志性特征就是硬,因为SSL的EQ处理的声音比较结实有劲儿,中频很稳,即使在乐队很丰满的情况下人声依然能站得住,用来做快歌特别适合,用它来处理弦乐也可以, 6、Red 2:

红2的EQ会有一些松散的感觉,音色上跟Scheps 73有那么一点点像,但是没有插件版的73那么毛躁。 7、Fabfilter Pro Q2: 它是我用过的EQ里调节幅度最大的,增益量围高达±30个db,斜率最大可达到96db/oct,Q值最大可到40,所以它可以做到非常精确而极端的处理,而且它处理的痕迹也比较淡,即使增益量调的比较大也不会有很明显的处理痕迹,每段都有8种滤波类型可选,而且它比较特别的是它可以选择三种不同的处理模式(零延时、自然相位和线性相位)经常用它来修正声音中的频率问题,或者用于一些原声乐器的调节。 压缩部分: 1、API-2500:

BCC插件中英文对照表

BCC插件中英文对照表 一、BCC 3D Objects 三维物体 BCC Extruded EPS 内置图形挤压成3D图形BCC Extruded Spline 挤压样条曲线 BCC Extruded Spline Curves 挤出的样条曲线 BCC Extruded Text 挤压文本 BCC Extrusion Bevel Curves 挤压锥曲线 BCC Extrusion Side Curves 挤压边曲线 BCC Extrusion Text Paths 挤压文本路径 BCC Layer Deformer 层变形 BCC Title Studio 文字标题效果插件BCC Type On Text 类型文本 二、BCC Art Looks 视觉艺术 BCC Artist's Poster 招贴画 BCC Bump Map 凹凸贴图 BCC Cartoon Look 漫画

BCC Cartooner 艺术画效果BCC Charcoal Sketch 木炭画BCC Halftone 中间色BCC Median 中间的BCC Pencil Sketch 素描 BCC Posterize 色调分离BCC Spray Paint Noise 喷漆噪声BCC Tile Mosaic 马赛克瓷砖BCC Water Color 水彩画 三、BCC Blur 滤镜BCC Directional Blur 方向模糊滤镜BCC Fast Lens Blur 快镜头模糊BCC Gaussian Blur 高斯模糊BCC Lens Shape 透镜 BCC Motion Blur 动态模糊BCC Pyramid Blur 金字塔模糊BCC Radial Blur 径向模糊滤镜

混响效果器使用方法(第二讲)①

混响效果器使用方法 —亚菲— 在宿主软件中找到效果再找到Waves下的Transx打开TrueVerb模拟混响(见图一:)我们就看见了这款模拟混响效果器插件,使用它就可以为人声或乐器添加混响效果了。图一:第二讲菜单参数原理(1)

一、点击维数键我们可以设置维数来改变早期反射的特性,从而创造出一个虚拟空间,它对应着上方橘黄色线条,例如:将这里设置为2.0就表示将产生一种早期反射的模式来模仿二维空间,将其设置为3.0就意味着,声音将会符合在立体空间中的情况。数值为4时则会虚拟在一个四维空间中的情形,维数在音调、密度、或反射方面都不会影响到混响效果。 二、点击房间大小键我们可以设置产生混响的房间大小(单位是立方米)就是可统一设置房间的长、宽、高。当我们把房间大小设置为50米时,就表示房间的长、宽、高为50米,我们也可以使用上方的蓝色线条来设置房间大小。 三、点击与生源距离键时,我们可以设置听者与发声源的的距离(单位是米),这个距离越大,乐手或歌手的声音距离与听者就越远,反之就越近。例如:将这里设置为21米就意味着歌者与听者的距离为21米。我们也可以调节上方的黄色线条来设置这个距离。 四:点击链接键,链接按钮被激活,这时就可以链接房间大小和语预延迟时间,链接时混响的空间和预延迟的数值会自动的与房间里最终的反射水平相匹配,取消链接时,预延迟时间和房间大小以及维数都可以手动设置。 五:点击平衡键,可以设置混响与直达声和早期反射声之间的比例。正数时可以增加混响声,减少直达声和早期

反射声,负数时可以增加直达声和早期反射声,减少混响声,当参数为0时,并且开启链接键,就表示直达声和早期反射声喝混响的比例都一致。如果取消链接,这里的0分贝则取决于早期反射的音量。也可以将比例理解为调节干湿比例,只不过这里的比例可以控制原始干声和早期反射声以及混响三种声音的比例。 六、点击衰减时间键,可以设置早期反射和混响的衰减度(单位是毫秒ms)它决定了混响效果从发声开始直到衰减60分贝所需要的毫秒数,也就是说衰减时间控制的就是混响的持续时间。 哈哈小样的累死我了,这混响就这么任性,内容就这么多,要参考的资料也很多,眼睛受不了了,今天就写这些,明日继续拜拜。

WAVES C4 效果器的使用方法

WA VES C4 效果器的使用方法 Waves 公司出品的C4 多段多维处理器(售价595美元) 是一个超酷的48bit双精度EQ+动态处理器,它既是一个四段动态处理器,又是一个EQ,但它并不是动态处理和EQ处理的简单叠加,而是完美地结合。我们可以把它理解成一个“多维调节的多段压限器”或者是“时刻变化着的EQ”(a multiband compressor with parametric adjustments , or a 4-band dynamic equalizer)。 它的参数有:threshold , range , gain , attack time , release time , bandwidth , knee 等等。waves 公司的独特的DynamicLine 显示系统显示着象EQ 一样的实时的增益变化(gain change)。这个显示系统是waves 公司独有的专利产品,“DynamicLine”是专利商标。它非常科学和直观。调节参数非常方便,可以直接在里面操作。 界面讲解:

最右下脚的部份是效果器参数总调整,也就是说,当你需要一次给4个动态效果器的参数做一个相同的改变的时候,可以用它来快速进行。另外这里也有些细节参数设置。——————————— 显示器讲解: C4 的显示器非常科学直观。我真是懒得赞美了。 中间的黄色线条实时显示压缩的状况,也就是是否在压缩以及压缩了多少,这条线是时刻变化的,例如此刻,处理器将大约100Hz以下的声音往下压了10个dB,而在大约300Hz以上只压了一点点。 紫色飘带,上边缘表示增益,就是说将这个频率的声音提升多少。通过拉动那四个点点(橙色、绿色、紫色、黄色)可以直接设置各自频段的增益(gain)。 紫色飘带的下边缘表示能够允许压掉的最大范围,也就是说压缩过程中最多也就压到此处。三条竖线分别将四个频段切割开来。我们可以直接拉动这三条竖线,或者拉动那四个点点,

英美文学-中英文对照

British Writers and Works The Anglo-Saxon Period ●The Venerable Bede 比得673~735 ?Ecclesiastical History of the English People 英吉利人教会史 ●Alfred the Great 阿尔弗雷得大帝849~899 ?The Anglo-Saxon Chronicle 盎格鲁—萨克逊编年史 The Late Medieval Ages ●William Langland 威廉·兰格伦1332~1400 ?Piers the Plowman 农夫比埃斯的梦 ●Geoffery Chaucer 杰弗里·乔叟1340(?)~1400 ?The Books of the Duchess悼公爵夫人 ?Troilus and Criseyde特罗伊拉斯和克莱希德 ?The Canterbury Tales坎特伯雷故事集 ?The House of Fame声誉之宫 ●Sir Thomas Malory托马斯·马洛里爵士1405~1471 ?Le Morte D’Arthur亚瑟王之死 The Renaissance ●Sir Philip Sydney菲利普·锡德尼爵士1554~1586 ?The School of Abuse诲淫的学校 ?Defense of Poesy诗辩 ●Edmund Spenser埃德蒙·斯宾塞1552~1599 ?The Shepherds Calendar牧人日历 ?Amoretti爱情小唱 ?Epithalamion婚后曲 ?Colin Clouts Come Home Againe柯林·克劳特回来了 ?Foure Hymnes四首赞美歌 ?The Faerie Queene仙后 ●Thomas More托马斯·莫尔1478~1535 ?Utopia乌托邦 ●Francis Bacon弗兰西斯·培根1561~1626 ?Advancement of Learning学术的推进 ?Novum Organum新工具 ?Essays随笔 ●Christopher Marlowe柯里斯托弗·马洛1564~1595 ?Tamburlaine帖木耳大帝 ?The Jew of Malta马耳他的犹太人 ?The Tragical History of Doctor Faustus浮士德博士的悲剧

TC-M效果器使用详解

TC M350效果器的简单使用方法 一.TC M350数字效果器的简介及效果器的相关概念 1. TC M350数字效果器的简介: 須TC M350拥有真正的双引擎(即双DSP处理模块):多用途效果引擎处理(包括延迟效果等)和立体声混响引擎处理(包括TC经典的厅堂效果等)。涵盖了现场表演、 录音室、声效制作等全方位的效果应用。 須TC M350拥有两种效果路径选择:双引擎串联效果路径和双引擎并联混合效果路径。 須TC M350拥有简单且易于操作的用户界面,可保证您在任何场合的使用下可以灵活简便地调整各种效果参数。 須自适应的内置电源(即110V和220V等电压模式自动选择),保证在世界上任何地方均可自由安全地使用—真正摆脱麻烦的变压问题。 2. 什么效果器: 須效果器是改变声音音色(泛音结构)的一种音频设备。此种音频设备是充分利用了声学中混响的理论概念而创造的,目前的效果器已经完全进入到了数字时代,通过 数字技术可以创造出多种声音效果,一般分为五大类:厅堂效果(HALL)、金属板效 果(PLATE)、密室效果(CHAMBER)、房间效果(ROOM)、延迟效果(DELAY)。当前世界上效果器的著名生产厂商主要有两家,丹麦的TC和美国的LEXICON。 3. TC M350数字效果器前操作面板上的一些相关英文解释: 須INPUT(输入电平旋钮):指调音台输出到效果器的信号电平,信号灯处于黄色时为输入电平的最佳状态,这样可以保留一定的动态余量,以免造成效果器失真。 須DIG IN (数字输入信号按键):开启时,绿色灯亮起,M350此时只能处理数字信号。 須MIX (效果混合比例旋扭):当调至极左的时候无效果,当调至极右的时候为最大效果混合(混合比例为100%)。

Waves插件的使用技巧和诀窍

Waves插件的使用技巧和诀窍 使音轨具有冲击力——Renaissance Compressor(文艺复兴压缩器)或C1 Compressor(C1压缩器) 尽管这个技巧更加适合于鼓音轨,但是其实任何类型的信号都能够使用(人声,吉他等等)。将这条音轨复制到另一条音轨上。在这条被复制的音轨上打开文艺复兴压缩器或C1压缩器,然后施加非常重的压缩:10︰1的压缩比,-30dB(分贝)的门限。这些设置将使压缩器产生“泵”的效果。将这条音轨和原始音轨相混合,直到你听见原始的未被压缩音轨如同被这条被复制的音轨添加上了“冲击力”一样。 Waves插件的使用技巧和诀窍二 将早期反射声和混响尾声混合起来——TrueVerb(真实的混响)和Renaissance Reverb(文艺复兴混响) 既喜欢真实的混响所模拟出的空间的声音,但是同时又想得到文艺复兴混响所产生出来的平滑的混响尾声吗?想要两全其美吗?使用一个单独的插入通道,首先将真实的混响放到这个通道中,紧接着放入文艺复兴混响。 首先我们来设置真实的混响,所以现在先要将文艺复兴混响旁路。加载一个你喜欢的预置或者创建一个你自己的设置。点击位于底部右下角(Reverb字样的下方)的蓝色方块来关闭混响信号部分。通过这种方法你可以不使用真实的混响的混响尾声部分而只使用直通信号和早反射信号。 现在,将文艺复兴混响退出旁路状态。加载一个你喜欢的预置或者创建一个你自己的设置并将“Early ref.(早反射)”滑块向下拉至“Off(关闭)”状态。现在,通过调整文艺复兴混响的Wet(湿)/dry(干)滑块,你就可以将真实的混响的早期反射声和文艺复兴混响的混响尾声混合起来使用。 Waves插件的使用技巧和诀窍三 声音效果创造者——Renaissance Bass(文艺复兴低音)和TrueVerb(真实的混响) 文艺复兴低音是一个能够使各种各样的声音变得丰满起来的强大工具——从雷鸣声到射击声,隆隆声和照相机的闪光声。在调整你的参数时,请确定频率不要太高(40-55赫兹对雷鸣声最为合适)。 真实的混响对于想要从多个声音效果中将其中个别的声音效果分离出来而言也是一个强大的工具。例如,要在多个钟声中获得一个教堂塔楼的钟声。使你想要得到的其中一个敲钟声到达峰值状态,分离出这个钟声的敲击声并使其尾音渐弱。放置一个长板式真实的混响到这个文档上,那么其尾声将会得到完美的再现。 Waves插件的使用技巧和诀窍四 在不会出现因挤压而产生平顶的情况下进行大电平缩混——Linear Phase Multiband(线性阶段多频带)和L2(L2超级最大化) 在这里我们将要使用线性阶段多频带和L2超级最大化来创建一个适合于广播的缩混,但是不会产生削波和门输入类型的波形。 在主通道效果链中依次放入线性阶段化多频带和L2超级最大化。载入“Adaptive Multi Electro Mastering(适合多种电子缩混)”预置。在“Master(总通道)”标题下,你会看见带有箭头记号的控制方块。这些控制对所有这些频带都起作用。点击THRSH(门限)控制方块并向下拖动。这将会降低所有这些频带的门限。当这条活跃的动态线条开始跳动得像一条蛇时,你将开始施加压缩。当这条动态线条在被蓝色长方形所描绘出来的总范围的一半区域之间移动时停止拖动。要注意到让所有这些频带都真正展示出了充分的动作。这显示了这个波段的许多行为,哪些对于这个缩混是正常的而哪些则指出了频率平衡方面的问题。同样也要注意到最低的频率是否足够活跃。或者这些都符合条件,或者需要进行另外一些工作来得到平衡。 完成以上工作后,你就可以进行L2超级最大化处理。点击左侧的Threshold(门限)滑块并向下拖动直到你开始看见在ATTEN(衰减)电表上出现非常微小的活动。将滑块放在这个位置上面。将Out Ceiling(输出限度)滑

Waves各效果名称

Waves 各效果名称 AudioTrack waves的通道条效果器,是一款均衡器/压缩器/门限器的组合 C1 comp 压缩器 C1 comp gate 压缩/门限的组合 C1 comp SC 旁链压缩器(应用于广播等场合) C1 gate 门限 DeEsser 消除齿音效果器 Doppler 多普勒声效变速效果器 Doppler 2 Doppler 4 Engima 英格吗迷幻效果器 Guitar Amp stereo 吉他音箱模拟效果器 IDR 数码分辨率增加效果器,waves自己开发的噪声整型/抖动算法,转换采样深度时用来减小数字背景随机噪声 L1-ultramaximizer L1/L2/L3都是限制器,区别一个比一个猛,L1可以放在分轨作限制,L2、L3是母带用的。 L1-ultramaximizer+ L2 母带限制器 MaxxBass 低音增强器 MaxxVolume stereo 动态处理器 MetaFlanger 镶变效果器 MondoMod 空间回旋效果器 PAZ Analyzer 频谱图形效果器(相位显示/频谱仪的组合) PAZ Frequency 示波器 PAZ Meter 电平表 PAZ Position 相位显示器 Q1 -paragraphic EQ Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 Q10-paragraphic EQ 十段均衡效果器 Q2 -paragraphic EQ Q3 -paragraphic EQ Stomp 2 stereo Stomp 4 stereo Stomp 6 stereo Vcomp stereo VEQ3 stereo VEQ4 stereo Z-Noise stereo 更多插件 ----------------------------------------------

waves 插件名称中英文对照表

. waves 7插件名称中英文对照表 ?AudioTrack waves的通道条效果器,是一款均衡器/压缩器/门限器的组合 C1 comp 压缩器 C1 comp gate 压缩/门限的组合 C1 comp SC 旁链压缩器(应用于广播等场合) C1 gate 门限 DeEsser 消除齿音效果器 Doppler 多普勒声效变速效果器 Doppler 2 Doppler 4 Engima 英格吗迷幻效果器 Guitar Amp stereo 吉他音箱模拟效果器 IDR 数码分辨率增加效果器,waves自己开发的噪声整型/抖动算法,转换采样深度时用来减小数字背景随机噪声 L1-ultramaximizer L1/L2/L3都是限制器,区别一个比一个猛,L1可以放在分轨作限制,L2、L3是母带用的。 L1-ultramaximizer+ L2 母带限制器 MaxxBass 低音增强器 MaxxVolume stereo 动态处理器 MetaFlanger 镶变效果器 MondoMod 空间回旋效果器 PAZ Analyzer 频谱图形效果器(相位显示/频谱仪的组合) PAZ Frequency 示波器 PAZ Meter 电平表 PAZ Position 相位显示器 Q1 -paragraphic EQ Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 Q10-paragraphic EQ 十段均衡效果器

Q2 -paragraphic EQ Q3 -paragraphic EQ Stomp 2 stereo Stomp 4 stereo Stomp 6 stereo Vcomp stereo VEQ3 stereo VEQ4 stereo Z-Noise stereo 更多插件 ---------------------------------------------- C4 waves的著名多段动态处理器 IR-L Efficient 空间效果 IR-L Full IR1 Efficient 采样混响效果器 IR1 Full L3 MultiMaximizer 多段母带限制器 L3 UltraMaximizer LinEq Broadband 六段均衡器 LinEq Lowband LinMB Q4-Paragraphic EQ Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 Q6-Paragraphic EQ Q8-Paragraphic EQ RAxx RBass 低音增强 RComp 文艺复兴插件包里的压缩效果器 RDeEsser 文艺复兴插件包里的消除齿音 REQ 2 bands 文艺复兴插件包里的均衡器 REQ 4 bands

电吉他效果器使用常识.

电吉他效果器使用常识 2006-11-10 15:14:10| 分类:关于音乐| 标签:|字号大中小订阅 吉他效果器初步调节方法 在开始说效果器之前,先说一下有关音箱的几个知识点: 1。不同的音箱声音不同,同一品牌同一型号也有可能不一样,不要一味相信品牌和型号,最值得相信的是自己的耳朵。 2。就算是一模一样的琴,一模一样的效果器,一模一样的参数,在不同的音箱下出来的声音会有不同。 3。一般来讲,吉他音箱纸盆越大,低频响应越好,也可以理解为声音越结实,越细腻。4。在声压级不够(可以理解为音量不大的情况下,你是听不出声音真实的特性的,也就是说我们需要一个90db左右的声音来作为参考调节~ 5。不同品牌音箱操作不同,包括均衡部分~,不要把不同音箱之间的均衡参数互换使用,你将得不到你原来想要的。 6。音箱的摆放位置,房间周围的装修材质,地面的材质,房间的大小,以及周边环境,你与音箱之间的位置都会影响音色~。 7。把音箱放在墙角会使低音听起来加重。 8。开放式和密闭式的音箱之间音色是不同的。各有所长,要靠你的耳朵来感受那种是你更喜欢的。 9。音箱有噪音的情况下先检查音箱是否接地,吉他连线是否完好,吉他拾音器前面是否有电磁辐射干扰。 10。吉他音箱有的会漏电,建议大家一定要保证接地。

失真与过载的一些玩法 1,失真与过载是两种不同的电路模式,所以声音上有本质的区别,具体区别请大 家自己靠耳朵积累经验。 2,如果你想获得一个与众不同的失真不一定非要买新的失真,你可以买一个过载,再买一个均衡,这样你可以调节出好多不同的失真了~ 举例:把过载串在失真前面,首先关掉失真,然后调节过载,感觉声音变硬,变得稍 有一点点过载的时候,在打开失真,调节失真,你会得到一个比以往更加有力的失真效果。把你的均衡串到你的失真后面,调节它,你会让你的失真千变万化~! 3,千万不要把混响和延迟串到你的失真前面,除非你喜欢一个浑浊宛如噪音墙一样的声音。4,失真前面尽量少接踏板~,会无形的给你增加烦人的噪音。 5,solo中最有魅力的声音是来自中频的~,它会让你的吉他在乐队中脱颖而出,虽然单独听它的时候可能这种声音不是那么猛。。。 6,自己爽的时候你可以增强低音让失真听起来非常厚重,如果是乐队合奏时还是让吉他的低音稍微小一些吧~,咱乐队里不是还有地鼓和bass不是? 7,乐队合奏的时候你的失真高频是否特别扎耳朵?降低一些你吉他的高频,让乐队的嚓片来补充吧~。 8,觉得你的失真不够劲?你用的是什么音箱?不会是家用小音箱或者电脑音箱吧?如果是的话请你买个吉他音箱吧,如果是吉他音箱请你开大音量再听一下~,俗话说 声音一大,声音的细节就全都体现出来了~,你手上的失真效果也许并不像你想象得 那么差哦~ 9,你可以去听一下电子管失真,再听一下晶体管失真,他们是各有特色的,你的耳朵喜欢哪种?

Waves Audio Chinese

Waves Propriety and Confidential
Waves音频公司为消费类电子产品 提供完美的音频处 方案 提供完美的音频处理方案
Waves Proprietary and Confidential

Waves Propriety and Confidential
公司简介
?全世界最顶尖的音频信号处理工具的供应商 ?公司成立于1992年 ?曾经是第一家介绍第三方音频处理器的公司 ?在美国,中国,韩国,日本,德国,以色列都有分公司 在美国 中国 韩国 日本 德国 以色列都有分公司 ?世界范围内有超过150名的雇员
Waves Proprietary and Confidential

Waves Propriety and Confidential
谁是WAVES?
当你在听音乐,当你在看电影, 当你在玩视频游戏的时候,你都有机会听到经过WAVES 公司音效处理过的声音。
Waves Proprietary and Confidential

Waves Propriety and Confidential
WAVES的使命
设计和生产出简单易用的高品质的音效处理产品 100%的专业 由最专业的音频工程师来支持
Waves Proprietary and Confidential

Waves Propriety and Confidential
WAVES的产品在 业内最顶尖的音 频工作站中应用
Waves Proprietary and Confidential

WAVES效果插件介绍

W A VES效果插件介绍 第一种效果:AudioTrack(音频轨) 它是针对通常我们见到的普通的音轨的,综合了4段EQ均衡、压缩、噪声门三种效果器。如果你用过T-racks(母带处理软件),你会发觉它与AudioTrack的功能非常相像。只不过T-racks的界面要漂亮得多了。下图是AudioTrack(音频轨)的界面: 使用它之后,你的整个混音作品就可以站立在坚实的基础之上了。 在均衡方面,具体操作和参数设置可以参照Ultrafunk--EQ效果器。 在压缩方面可以参照Ultrafunk的压缩效果器。 在Gate(噪声门)的几个参数中,只有Floor(基底)是我们不熟悉的,不熟悉怎么办,试试就知道了。 1。Rel为Release(释放)的缩写。 2。将鼠标放在按钮上,鼠标会变化成一个双向的箭头,照此方向拖动,可以直接调整按钮相应的值。 3。如果你觉得某一步操作错误,可以点击左上方的UNDO按钮,将这一步取消。 4。如果你在Output(输出)的设置上调得过大,右面的No Clip(没有削波)会变成Out Clip(溢出,削波),同时在下面显示出已超过多少。如果你将此时的设置处理成波形,则会看到被放大的电平信号和被削去的“刺儿头”。5。你可以在Setup A中选择一种预置方案,点击Setup A之后再显示出来的Setup B中再调入一种方案,然后进行两种方案的对比。再点一下A->B 或是B->A都会让两种方案统一 第二种效果器:C1 Compressor(C1 压缩器)如下图: 左面为压缩/扩展电平表。 中间的按钮分别是: Low Ref,低反射,点击之后改变为峰值反射; Makeup,电平弥补; Threshold,阀值; Ratio,压缩比率; Attack,起音时间; Release,释放时间; 第三种效果器C1 Gate(噪声门)如下图: 除了有些按钮的功能与C1 compressor不同之外,基本界面都很相似。 这里没有了阀值、比率,而是成了Floor(基底)、GateOpen(门限开)、GateClose(门限关)分别用来设定噪声门的启动和关闭的值。 第四种效果:C1效果器,如下图: 其实已经不需再多介绍了,C1不过是集成了前面压缩/扩展器、噪声门/扩展器、侧链滤波器等几个效果器的功能罢了。当我们把压缩率设为负值时,压缩器就变为了扩展器。这个扩展器可以强化节奏乐段,当压缩率设定为0.5:1时,节奏乐段中的军鼓声就被突出出来了。 C1提供了一个独特的“Key Mode(调节模式)”,可以以立体声信号中的一路信号为参照来触发或哑音另一路信号。这个功能可以很方便地制作出那种在电子音乐中十分流行的“结结巴巴”的节奏。 侧链滤波器:压缩器和噪声门中的一个或两个都可以配合侧链滤波器来使用。这样,C1就可以只对特定频段的信号做出反应,以完成一种特殊的用法,如嘶声消除、低音压缩和增强等。 稍有不同的是下面有个EQ模式:Widebnd(宽档);Sidechain(边缘电路);Split(分开)。在你选中之后,两种模式会用红、蓝两种颜色表示,可以分别调整下面LED中的频率线,也可以将二者关联使用。 第五种效果器:C1-comp:如图 与上一种效果器C1类似,所以不再做介绍了。它预置的效果方案与C1的一样。

效果器的使用技巧

Waves 效果器之二十二讲 管理提醒:本帖被slashizzy 执行加亮操作(2010-03-24) 第一种效果:AudioTrack(音频轨) 它是针对通常我们见到的普通的音轨的,综合了4段EQ均衡、压缩、噪声门三种效果器。如果你用过T-racks(母带处理软件),你会发觉它与AudioTrack的功能非常相像。只不过T-racks的界面要漂亮得多了。 下图是AudioTrack(音频轨)的界面: 使用它之后,你的整个混音作品就可以站立在坚实的基础之上了。 在均衡方面,具体操作和参数设置可以参照Ultrafunk--EQ效果器。在压缩方面可以参照Ultrafunk的压缩效果器。 在Gate(噪声门)的几个参数中,只有Floor(基底)是我们不熟悉的,不熟悉怎么办,试试就知道了。

1。Rel为Release(释放)的缩写。 2。将鼠标放在按钮上,鼠标会变化成一个双向的箭头,照此方向拖动,可以直接调整按钮相应的值。 3。如果你觉得某一步操作错误,可以点击左上方的UNDO按钮,将这一步取消。 4。如果你在Output(输出)的设置上调得过大,右面的No Clip(没有削波)会变成Out Clip(溢出,削波),同时在下面显示出已超过多少。如果你将此时的设置处理成波形,则会看到被放大的电平信号和被削去的“刺儿头”。 5。你可以在Setup A中选择一种预置方案,点击Setup A之后再显示出来的Setup B中再调入一种方案,然后进行两种方案的对比。再点一下A->B 或是B->A 都会让两种方案统一。 第二种效果器:C1 Compressor(C1 压缩器) 如下图:

声音处理插件Waves介绍(一)雪帝音频

声音处理插件Waves介绍(一)雪帝音频 Waves9 是是一套非常专业的音频处理套件,目前包含vst2和vst3以及rtas格式的插件,能广泛应用于很多专业音频软件中。 第一种效果:AudioTrack(音频轨) 它是针对通常我们见到的普通的音轨的,综合了4段EQ均衡、压缩、噪声门三种效果器。如果你用过T-racks(母带处理软件),你会发觉它与AudioTrack的功能非常相像。只不 过T-racks的界面要漂亮得多了。 使用它之后,你的整个混音作品就可以站立在坚实的基础之上了。 在均衡方面,具体操作和参数设置可以参照Ultrafunk--EQ效果器。

在压缩方面可以参照Ultrafunk的压缩效果器。 在Gate(噪声门)的几个参数中,只有Floor(基底)是我们不熟悉的,不熟悉怎么办,试 试就知道了。 1。Rel为Release(释放)的缩写。 2。将鼠标放在按钮上,鼠标会变化成一个双向的箭头,照此方向拖动,可以直接调整按钮 相应的值。 3。如果你觉得某一步操作错误,可以点击左上方的UNDO按钮,将这一步取消。 4。如果你在Output(输出)的设置上调得过大,右面的No Clip(没有削波)会变成Out Clip (溢出,削波),同时在下面显示出已超过多少。如果你将此时的设置处理成波形,则会看 到被放大的电平信号和被削去的“刺儿头”。 5。你可以在Setup A中选择一种预置方案,点击Setup A之后再显示出来的Setup B中再调入一种方案,然后进行两种方案的对比。再点一下 A->B 或是 B->A 都会让两种方案统一。 第二种效果器:C1 Compressor(C1 压缩器) 第三种效果器C1 Gate(噪声门)如下图: 除了有些按钮的功能与C1 compressor不同之外,基本界面都很相似。 第四种效果:C1效果器,如下图: 其实已经不需再多介绍了,C1不过是集成了前面压缩/扩展器、噪声门/扩展器、侧链滤波器等几个效果器的功能罢了。当我们把压缩率设为负值时,压缩器就变为了扩展器。这个扩展器可以强化节奏乐段,当压缩率设定为0.5:1时,节奏乐段中的军鼓声就被突出出来了。 C1提供了一个独特的“Key Mode(调节模式)”,可以以立体声信号中的一路信号为参照来触发或哑音另一路信号。这个功能可以很方便地制作出那种在电子音乐中十分流行的“结结 巴巴”的节奏。 侧链滤波器:压缩器和噪声门中的一个或两个都可以配合侧链滤波器来使用。这样,C1就可以只对特定频段的信号做出反应,以完成一种特殊的用法,如嘶声消除、低音压缩和增强 等。 稍有不同的是下面有个EQ模式:Widebnd(宽档);Sidechain(边缘电路);Split(分开)。在你选中之后,两种模式会用红、蓝两种颜色表示,可以分别调整下面LED中的频率线,也 可以将二者关联使用。 第五种效果器:C1-comp 与上一种效果器C1类似,所以不再做介绍了。它预置的效果方案与C1的一样。

WAVES全套效果器说明

WAVES全套效果器说明。。。。 AudioTrack 是waves的通道条效果器,是一款均衡器/压缩器/门限器的组合 C1 包括四个,C1comp是单纯的压缩器,C1comp gate是压缩/门限的组合,C1 SC是旁链压 缩器(应用于广播等场合), C1gate是单纯的门限 C4是waves的著名多段动态处理器 Desser是消除齿音效果器 Doppler是掠过音效器,多普勒效应嘛 Doubler是声音加倍效果器,做合唱合奏用的 Engima是迷幻音效效果器,它利用相位调制原理来产生各种稀奇古怪的效果 IDR是waves自己开发的噪声整型/抖动算法,转换采样深度时用来减小数字背景随机噪声L1/L2/L3都是限制器,区别一个比一个猛,L1可以放在分轨作限制,L2、L3是母带用的。 LinEQ和LinMB是waves的母代均衡/母代多段动态处理器,专为母带处理定制 MaxxBass是低音增强器 MetaFlanger是镶变效果器

MondoMod是相位调制器 Morphoder这个效果器非常有意思,它可以根据你定制的midi信号将处理的波形进行卷积调制,产生机器人一样的怪异声音,特别适合一些迷幻音乐呵呵 PAZ系列都是示波器/频谱仪,共有4个,Analyzer是相位显示/频谱仪的组合,Frequency 是单纯的示波器,Meter顾名思义就是电平表,Position是很好用的相位显示器 Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 R系列叫做文艺复兴效果器,是Waves针对人声处理开发的, RBass低音增强, RChannel是通道条, Rcomp是压缩, RDesser消除齿音, REQ均衡器, RVerb是优秀的文艺复兴混响器, RVox是人声自动压缩器, S1系列都是声场扩展器,可模拟MS制录音的立体声场等等 SoundShifter是变调效果器,SuperTaps是多段延时器 TransX同样是相位效果的一种,改变声音的特性 TrueVerb是另一款优算法秀的模拟真实混响 UltraPitch系列是声音变调、变速、加倍效果器 剩下的“X三兄弟”分别是消除爆破音、咔嚓声、去除直流偏移、实时降噪效果器

BCC插件中英文对照表知识分享

BCC插件中英文对照表 三维物体BCC 3D Objects 一、图形内置图形挤压成3D BCC Extruded EPS 挤压样条曲线BCC Extruded Spline 挤出的样条曲线BCC Extruded Spline Curves 挤压文本BCC Extruded Text 挤压锥曲线BCC Extrusion Bevel Curves 挤压边曲线BCC Extrusion Side Curves 挤压文本路径BCC Extrusion Text Paths 层变形BCC Layer Deformer 文字标题效果插件BCC Title Studio 类型文本BCC Type On Text 视觉艺术二、BCC Art Looks 招贴画BCC Artist's Poster BCC Bump Map 凹凸贴图 漫画BCC Cartoon Look 艺术画效果BCC Cartooner 木炭画BCC Charcoal Sketch 中间色BCC Halftone BCC Median 中间的 BCC Pencil Sketch 素描 BCC Posterize 色调分离 喷漆噪声BCC Spray Paint Noise 马赛克瓷砖BCC Tile Mosaic 水彩画BCC Water Color 滤镜三、BCC Blur 方向模糊滤镜BCC Directional Blur 快镜头模糊BCC Fast Lens Blur 高斯模糊BCC Gaussian Blur 透镜BCC Lens Shape BCC Motion Blur 动态模糊 金字塔模糊BCC Pyramid Blur BCC Radial Blur 径向模糊滤镜 旋转模糊BCC Spiral Blur BCC Unsharp Mask 反锐化模糊 BlurBCC Z- BCC Color & Tone 色彩与色调四、BCC 3 Way Color Grade 色彩分级亮度对比Contrast BCC Brightness-

相关主题