搜档网
当前位置:搜档网 › 电子显微镜、电子显微分析、TEM,SEM

电子显微镜、电子显微分析、TEM,SEM

电子显微镜、电子显微分析、TEM,SEM
电子显微镜、电子显微分析、TEM,SEM

实验报告

电子显微镜技术(TEM﹠SEM)

姓名:韩银龙

学号:201021140037

院系:物理系

实验报告

一、实验名称

电子显微镜技术(TEM ﹠SEM ) 二、实验目的

1、学习扫描电子显微镜和透射电子显微镜的原理。

2、基本掌握扫描电子显微镜的使用。

3、学习投射电子显微镜衍射花样的标定。 三、实验原理

(一)电子与物质相互作用产生的信息

当一束聚焦电子沿一定方向射到样品上时,在样品物质原子的为库仑电场作用下,入射电子方向将发生改变。此现象称散射。可分为两种:弹性散射和非弹性散射。弹性散射,只改变方向,无能量变化;非弹性散射, 不仅改变方向,能量也有不同程度的衰减,衰减部分转变成热、光、射线、二次电子等有用的信息,如图1所示。

图1 (a )入射电子产生的各种信息

(b )信息深度和广度范围

1、二次电子

当入射电子与原子核外电子相互作用时,会使原子失掉电子而变成离子,这种现象叫电离。上述过程中脱离原子的电子就是二次电子。从距表面10nm左右深度范围内激发出来的低能电子(<50eV)。

二次电子信息是扫描电镜成像的主要手段。

二次电子主要特点:

(1) 反映样品表面起伏,对样品表面形貌敏感

如图2所示,二次电子的产率大小顺序为:a

图2 二次电子产生率

(2)空间分辨率高

尽管在电子的有效作用深度内都可产生二次电子,但因其能量很低,只有在接近表面10nm以内的二次电子才能逸出表面,可以接收。这种信号反映的是一个与入射束直径相当的、很小体积范围的形貌特征,具有较高的空间分辨率。目前扫描电镜中二次电子成像的分辨率可达3~6nm之间,透射电镜可达2~3nm。

(3)信号收集效率高

2、背散射电子

入射电子累计散射角超过90o ,重新从表面逸出,称为背散射电子。从距表面0.1~1μm深度范围内散射回来的入射电子,能量近似入射电子能量。

背散射电子主要特点:

(1)对样品物质的原子序数敏感

背散射电子产生额(发射效率)δBE随原子序数Z的增大而增加,因此,背散射电子像的衬度与样品上各微区的成分密切相关。

(2)分辨率及信号收集率较低

背散射电子的成像的空间分辨率通常只能达到100nm。但是近年来,采用半

导体环形检测器,分辨率可提高到6nm。

3、特征X射线

一个原子在入射电子的作用下失掉一个K层电子,它就处于K激发状态,当一个外层电子填补了这个空位以后,电子从高能级跃迁到低能级,有特定值的能量释放出来,产生的X射线就称为特征X射线。发射深度0.5~5μm范围。

从特征X射线能谱峰位置确定元素,从峰面积确定元素相对含量。

能普仪(EDS)就是利用特征X射线对试样进行元素定性及定量分析的。

4、透射电子

当试样薄到比电子的有效穿透厚度小得多时,就会有相当数量的电子穿透试样而在样品的下方检测到,该电子称透射电子。它与穿过微区的厚度、晶体结构和成分有关。是透射电子显微镜(TEM)的成像信号,主要用到以下三种效应:(1)质厚衬度效应

样品上不同微区无论是质量还是厚度的差别,均可以引起相应区域透射电子强度的改变,从而在图像上形成亮暗不同的区域,称这一现象为质厚衬度效应。

(2)衍射效应

当入射电子束都是恒定的单色平面波,照射到样品上产生弹性相干散射,也有衍射现象。衍射规律与X射线相同。也满足布拉格方程。

2dsinθ = λ

当λ已知时,测出一系列掠射角就可以求出晶面间距,进而确定晶体结构。

(3)衍衬效应

在同一入射束照射下,由于样品相邻区域位向或结构的不同,以致衍射束强度不同而造成图亮度差别(衬度),称为衍衬效应。它可显示单相合金晶粒的形貌,或多相合金中不同相的分布状况,以及晶体结构内部的结构缺陷等。

5、其他信号

其他还有俄歇电子、吸收电子等

(二)扫描电子显微镜(SEM)

1、成像基本原理

电子枪发射出来的电子束,在加速电压作用下,经过电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射

电子、吸收电子、X射线、俄歇电子等。这些物理信号的强度随样品表面特征而变。它们分别被相应的收集器接受,经放大器按顺序、成比例地放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。扫描电子显微镜结构如图3所示。

图3 扫描电子显微镜结构示意图

2、SEM性能指标

(1)分辨率

分辨率是扫描电子显微镜主要性能指标。对微区成分分析而言,它是指能分析的最小区域;对成像而言,它是指能分辨两点之间的最小距离。

这两者主要取决于入射电子束直径,电子束直径愈小,分辨率愈高。

但分辨率并不直接等于电子束直径,因为入射电子束与试样相互作用会使入射电子束在试样内的有效激发范围大大超过入射束的直径。

一般理想情况下可以认为SEM 分辨率d=d0?M1?M2?M3

(2)景深

景深是指透镜对高低不平的试样各部位能同时聚焦成像的一个能力范围,即

样品在深度方向变化,而像仍保持清晰的程度。

(3)放大倍数

当入射电子束作光栅扫描时,若电子束在样品表面扫描的幅度为A S ,在荧光屏上阴极射线同步扫描的幅度为A C ,则扫描电子显微镜的放大倍数为:

由于扫描电子显微镜的荧光屏尺寸是固定不变的,因此,放大倍率的变化是通过改变电子束在试样表面的扫描幅度A S 来实现的。

3、SEM 主要成像种类 (1)二次电子像

二次电子的产额主要与样品表面的起伏状况有关,当电子束垂直照射表面,二次电子的量最少。因此二次电子象主要反映表面的形貌特征。

(2)背散射电子像

背散射电子的产额与样品中元素的原子序数有关,原子序数越大,背散射电子发射量越多(因散射能力强),因此背散射电子象兼具样品表面平均原子序数分布(也包括形貌)特征。

(3)X 射线显微分析

入射电子束激发样品时,不同元素的受激,发射出不同波长的特征X 射线,从特征X 射线能谱峰位置确定元素,从峰面积确定元素相对含量。本实验中EDS 就是根据此原理进行元素定性与定量分析。

(三)透射电子显微镜(TEM )

透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领、高放大倍数的电子光学仪器。测试的样品要求厚度极薄(几十纳米),以便使电子束透过样品。

1、透射电镜的结构

透射电子显微镜结构包括两大部分:主体部分和为辅助部分。主体部分包括照明系统、成像系统、像的观察和记录系统;辅助部分包括真空系统、电气系统。

照明系统:电子枪和聚光镜组成

成像系统:物镜、中间镜和投影镜组成。成像系统一般由物镜、中间镜和投影镜

组成,其中物镜是最重要的,因为分辨率是由物镜决定,其他两个透镜的作用是把物镜所形

C S

A M A

成的一次象进一步放大。

2、成像原理

(1)成像

如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图4-a所示。

成像放大倍数:透射电子显微镜总的放大倍数就是各个透镜倍率的乘积:

M = M0.Mi.Mp

式中:M0---物镜放大倍率,数值在50-100范围;Mi----中间镜放大倍率,数值在0-20范围;Mp---投影镜放大倍率,数值在100-150范围。

图4 TEM成像原理图(a)成像(b)电子衍射图谱(2)电子衍射图谱

如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图4-b所示。

3、电子衍射

解释X 射线衍射现象的布拉格定律,完全适用于解释电子衍射。布拉格定律一般的形式:

2d sin θ=λ (1)

还可以写成:

2

1

sin λ

θd =

爱瓦尔德作图法,如图5所示,首先作晶体的倒易点阵,O 为倒易原点。入射线沿O’O 方向入射,以0’为球心,以1/λ为半径画一球,称反射球。沿O’O 方向入射的情况下,所有能发生反射的晶面,其倒易点都应落在以O’为球心。以1/λ为半径的球面上,从球心O’指向倒易点的方向是相应晶面反射线的方向。

如图6所示:

L

R =

θ2tan (2)

当θ角很小时,可以近似认为

θθθs i n

22s i n 2t a n == ( 3) 联立(1)、(2)、(3)可得

L Rd λ=

所以,在衍射图谱标定中,只需要测出R ,就可以求的晶面间距,继而确定晶格结构。

四、扫描电子显微镜(SEM )实验

1、实验设备

本实验用的是S-4800场发射扫描电镜及EMAX-350能谱仪。 2、实验样品 样品为人造骨头。 3、实验步骤

(1) 将待测样品放入样品室。 (2) 对系统抽真空。 (3) 设定实验参数。 (4) 对样品进行形貌观察。

(5) 用能谱仪对样品选定的点进行成分分析。 五、实验数据及结果分析 (一)扫描电镜测试分析

如图7所示,为本实验人造骨头样品的SEM 照片,放大倍数分别为(a)300倍,(b)3,000倍,(c)40,000倍,(d)为100,000倍。

由图7-a 可以看出,人造骨头是一层一层大的片状结构堆叠在一起形成的,

图6 相机常数公式示意图

并且堆叠结构中有很多大的空隙。

由图7-b 和7-c 可以看出大的片状结构是由一些小的片状结构堆叠在一起成的,也有空隙,但空隙比较小比,堆叠较密。图7-d ,是对小的层状结构的经一步放大,可以看出这些层状结构是由一些列宽度约为50nm 左右的纳米棒构成的;并且这些纳米棒的形貌比较均匀。

(二)样品EDS 成分分析

如图8所示,在样品上选择了六个成分分析数据点,用EDS 对个点进行成分分析,所得的数据见表1,从表1的数据对比可以看出,人造骨头样品主要含有C 、O 、Ca 、P 这四种元素,且含量很高;从第6数据点中数据里有Na 元素的存在,但含量很低,而其他数据点均无Na 的存在,所以可以推测Na 或许是少量杂质;第2数据点中,没有P 的存在,而出现了Zr 元素,且含量较高,但其他几个数据点均无Zr 的出现,因此也不能确定Zr 元素是杂质还是样品中就含有。 六、TEM 衍射花样的标定

单晶Si 样品衍射花样如图9所示

在图9中选择O 、A 、B 、C 三点,测得:

R OA =R OB =1.55cm R OC =22.0cm

由公式

Rd hkl =L λ

2

2

2

hk l =

d l

k

h a ++

联立得:

2

2

2

2

λ??

? ??=++L aR l

k h 其中a=5.43?,L=80cm ,λ=0.037 ?。

将R OA =R OB =1.55cm 、R OC =22.0cm 分别代入上式可以求得A 、B 、C 对应的晶面指数为:

h A 2+k A 2+l A 2=8.05 h B 2+k B 2+l B 2=8.05 h C 2+k C 2+l C 2=16.29

由于Si 为面心立方,对应的晶面应属于{220}、{220}、{400}晶面族,因为OA 与OB 夹角为90°,OC 与OA 、OB 夹角分别为45°,所以可以这样标定:

A: (220) B: (220) C: (400)

扫描电子显微镜在材料研究中的应用

扫描电子显微镜在材料研究中的应用 宋啸 北京石油化工学院高063班 摘要:介绍了扫描电子显微镜的工作原理及特点,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:扫描电子显微镜材料应用 二十世纪60年代以来,出现了扫描电子显微镜(SEM)技术,这样使人类观察微小物质的能力发生质的飞跃。依靠扫描电子显微镜的高分辨率、良好的景深和简易的操作方法,扫描电子显微镜(SEM)迅速成为一种不可缺少的工具,并且广泛应用于科学研究和工程实践中。1扫描电子显微镜的原理 扫描电镜(Scanning ElectronMicroscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小的电子束,在试样表面进行扫描,激发出各种信息,通过对这些信息的接收、放大和显示成像,以便对试样表面进行分析。入射电子与试样相互作用产生如图1所示的信息种类。 图1电子束探针照射试样产生的各种信息 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。 扫描电子显微镜中的各种信号及其功能如表1所示。 表1扫描电镜中主要信号及其功能 收集信号类别功能 二次电子形貌观察 背散射电子成分分析 特征X射线成分分析 俄歇电子成分分析

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

电子显微分析考试复习中南

电子显微分析考试复习中南

材料结构分析 一、名词解释: 1、球差:球差是由于电子透镜的中心区域和边 沿区域对电子的会聚能力不同而造成的。电子通过透镜时的折射近轴电子要厉害的多,以致两者不交在一点上,结果在象平面成了一个满散圆斑。 色差:是电子能量不同,从而波长不一造成的2、景深:保持象清晰的条件下,试样在物平面 上下沿镜轴可移动的距离或试样超越物平面元件的距离。 焦深:在保持像清晰的前提下,象平面沿镜轴可移动的距离或者说观察屏或照相底板沿镜轴所允许的移动距离 3、分辨率:所能分辨开来的物平面上两点间的最小距离,称为分辨距离 4、明场像:采用物镜光阑将衍射束挡掉,只让透射束通过获得图像衬度得到的图像。 5、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑所的图像。中心暗场像:入射电子束相对衍射晶面倾斜角,此时衍射斑将移到透镜的中心位置,该衍 射束通过物镜光栏形成的衍衬像称为中心暗场

成像。 衬度:试样不同部位由于对入射电子作用不同,经成像放大系统后,在显示装置上显示的 强度差异。 6、消光距离:衍射束的强度从0逐渐增加到最大,接着又变为0时在晶体中经过的距离。 7、菊池花样:由入射电子经非弹性不相干散射, 失去很少能量,随即入射到一定晶面时,满足布拉格定律,产生布拉格衍射,衍射圆锥与厄瓦尔德球相交,其交线放大后在底片投影出的由亮暗平行线对组成的花样。 8、衍射衬度:由于晶体试样满足布拉格反射条 件程度差异以及结构振幅不同而形成的电子图像反差,它仅属于晶体结构物质。 9、双光束条件:假设电子束穿过样品后,除了 透射束以外,只存在一束较强的衍射束精确地符合布拉格条件,其它的衍射束都大大偏离布拉格条件。作为结果,衍射花样中除了透射斑以外,只有一个衍射斑的强度较大,其它的衍射斑强度基本上可以忽略,这种情况就是所谓的双光束条件。

扫描电子显微镜技术应用与研究

扫描电子显微镜技术应用与研究 摘要:本文从金属晶体理论和扫描电子显微镜的原理出发,阐述了的定义和性质。通过对金属模块和焊条的二次电子成像,论证了分辨率高,能反映物体更多的层次结构等优点。最后,讨论了二次电子在电子制造业中的应用。 关键词:扫描电子显微镜金属晶体二次电子成像电子束 Abstract:This article is based on the theory of metal crystal, configuration and working theory of the scanning electron microscope. It is expounded the definition and nature of secondary electron image. Through the secondary electron image of metal and the welding rod, it is proved the secondary electron resolution to be likely high, could reflect merits and so on object more hierarchical. Finally we discussed the secondary electron in the electronic manufacturing applications. Key words: scanning electron microscope, metal crystal, secondary electron image electron beam 前言 随着现代科学技术的飞跃发展,各种新型材料的不断涌现.材料的检测技术也正在朝着科学、先进、简便、精确、自动化的方向发展.材料组织结构和性能的检测已成为一门多学科、跨学科的综合性技术.材料性能的检测既有传统的见手段又有高度现代化的研究手段.面对新技术和新材料的快速发展,过去传统的常规性能检测遇到了极大的挑战.一方面由于采用现代化的电子技术、光学技术、声学技术等新技术以及随之发展的各种高科技的设备,触进了材料检测技术的不断进步.另外一方面,为了适应新材料和新技术的发展不断不断修改检测标准,使常规检验和深入研究紧密的结合起来. 而在材料组织的形貌观察中,主要是依靠显微技术,利用二次电子成像来分析材料的组织结构,已成为当今检测的主要趋势.扫描电子显微镜和透射电子显微镜则把观察的尺度推广到亚微米和微米以下的层次.现代的显微镜的分辨率可达到0.2nm甚至更高.在借助显微技术和其他一些分析系统可以把材料组合子形貌比较准确的分析出来.

全球及中国电子显微镜样品制备行业研究及十四五规划分析报告

全球及中国电子显微镜样品制备行业研究及十四五规划分析报告(2021) ◎调研报告◎调查报告 ◎市场调研◎行业分析 调研报告 Q Y R e s e a r c h

【报告内容】 电子显微镜是用于可视化生物样品的非常强大的工具。它们使科学家能够非常详细地观察细胞,组织和小型生物。但是,这些生物样品尚无法在电子显微镜下查看。取而代之的是,样品必须经过复杂的制备步骤,以帮助它们承受显微镜内部的环境。制备过程会杀死组织,也可能导致样品外观发生变化。本报告研究“十三五”期间全球及中国市场电子显微镜样品制备的供给和需求情况,以及“十四五”期间行业发展预测。重点分析全球主要地区电子显微镜样品制备的市场规模,历史数据2015-2020年,预测数据2021-2026年。本文同时着重分析电子显微镜样品制备行业竞争格局,包括全球市场主要企业中国本土市场主要企业竞争格局,重点分析全球主要企业近三年电子显微镜样品制备的收入和市场份额。 此外针对电子显微镜样品制备行业产品分类、应用、行业政策、产业链、生产模式、销售模式、波特五力分析、行业发展有利因素、不利因素和进入壁垒也做了详细分析。 全球及国内主要企业包括: Electron Microscopy Sciences Ametek, Inc Technoorg Linda Ltd. Co Boeckeler Instruments, Inc Allied High Tech Products, Inc Verder Group CryoCapCell Anatech USA Engineering Office M. Wohlwend GmbH JEOL Ltd Danaher Company

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

电子显微镜项目可行性研究报告

电子显微镜项目可行性研究报告 目录 第一章项目绪论 (4) 第二章报告编制总体说明 (13) 第三章项目建设背景及必要性 (17) 第四章建设规模和产品规划方案合理性分析 (22) 第五章项目选址科学性分析 (24) 第六章工程设计总体方案 (27) 第七章原辅材料供应及成品管理 (34) 第八章工艺技术设计及设备选型方案 (36) 第九章环境保护 (40) 第十章消防专篇 (46) 第十一章节能分析 (51) 第十二章组织机构及人力资源配置 (56) 第十三章项目实施进度计划 (58) 第十四章投资估算与资金筹措 (60) 第十五章经济评价 (62) 第十六章项目招投标方案 (67) 第十七章综合评价 (76)

报告辑要 作为投资决策前必不可少的关键环节,可行性研究报告是在前一阶段的可行性研究报告获得审批通过的基础上,主要对项目市场、技术、财务、工程、经济和环境等方面进行精.确系统、完备无遗的分析,完成包括市场和销售、规模和产品、厂址、原辅料供应、工艺技术、设备选择、人员组织、实施计划、投资与成本、效益及风险等的计算、论证和评价,选定最佳方案,依此就是否应该投资开发该项目以及如何投资,或就此终止投资还是继续投资开发等给出结论性意见,为投资决策提供科学依据,并作为进一步开展工作的基础。 电子显微镜:饲料膨化机是膨化机的一种,主要用于食品膨化、畜禽饲料或用于膨化单一原料,也可做为植物油脂及饮用酒生产中原料的预处理。本系列干、湿法膨化机,适用于大、中、小型饲养场、饲料厂及食品厂选用。 为了积极响应国家《中国制造2025》和《工业绿色发展规划(2016-2020年)》以及邢台、邢台关于促进电子显微镜产业发展的政策要求,某某有限公司通过科学调研、合理布局,计划在邢台新建“电子显微镜生产建设项目”;预计总用地面积51125.55平方米(折合约76.65亩),其中:净用地面积51125.55平方米;项目规划总建筑面积60328.15平方米,计容建筑面积60328.15平方米;根据总体规划设计测算,项目建筑系数57.34%,建筑容积率1.18,建设区域绿化覆盖率6.16%,固定资产投资强度229.14

实验六 电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法 一、实验内容及实验目的 1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、电子探针的分析方法 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。 1.实验条件 (1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。 (4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

电子显微镜项目可行性研究报告

电子显微镜项目可行性研究报告 泓域咨询丨规划设计

目录 第一章项目总论 (1) 第二章项目建设背景及必要性 (14) 第三章项目选址科学性分析 (18) 第四章总图布置 (20) 第五章工程设计总体方案 (23) 第六章原辅材料及能源供应情况 (25) 第七章工艺技术设计及设备选型方案 (27) 第八章环境保护 (30) 第九章节能分析 (32) 第十章组织机构及人力资源配置 (36) 第十一章项目实施进度计划 (39) 第十二章投资估算与资金筹措 (40) 第十三章经济评价 (50) 第十四章综合评价结论及投资建议 (61)

第一章项目总论 一、项目提出的理由 电子显微镜技术在肿瘤诊断中的应用因此,透射电子显微镜突破了光学显微镜分辨率低的限制,成为了诊断疑难肿瘤的一种新的工具。有研究报道,无色素性肿瘤、嗜酸细胞瘤、肌原性肿瘤、软组织腺泡状肉瘤及神经内分泌肿瘤这些在光镜很难明确诊断的肿瘤,利用电镜可以明确诊断电镜主要是通过对超微结构的精细观察,寻找组织细胞的分化标记,确诊和鉴别相应的肿瘤类型。细胞凋亡与肿瘤有着密切的关系,电镜对细胞凋亡的研究起着重要的作用,因此利用电镜观察细胞的超微结构病理变化和细胞凋亡情况,将为肿瘤的诊断和治疗提供科学依据。电子显微镜技术在肿瘤鉴别诊断中的应用透射电子显微镜观察的是组织细胞、生物大分子、病毒、细菌等结构,能够观察到不同病的病理结构,也可以鉴别一些肿瘤疾病,有研究报道电子显微镜技术通过超微结构观察可以区分癌、黑色素瘤和肉瘤以及腺癌和间皮瘤;可区别胸腺瘤、胸腺类癌、恶性淋巴瘤和生殖细胞瘤;可区别神经母细胞瘤、胚胎性横纹肌瘤、Ewing氏肉瘤、恶性淋巴瘤和小细胞癌;可区别纤维肉瘤、恶性纤维组织细胞瘤、平滑肌肉瘤和恶性神经鞘瘤以及区别梭形细胞癌和癌肉瘤。 二、项目名称及项目建设单位

电子探针、扫描电镜显微分析2

图8-12 电子探针结构的方框图 2.4.1 电子光学系统 电子光学系统包括电子枪、电磁透镜、消像散器和扫描线圈等。其功能是产生一定能量的电子束、足够大的电子束流、尽可能小的电子束直径,产生一个稳定的X 射线激发源。 2.4.1.1 电子枪 电子枪是由阴极(灯丝)、栅极和阳极组成。它的主要作用是产生具有一定能量的细聚焦电子束(探针)。从加热的钨灯丝发射电子,由栅极聚焦和阳极加速后,形成一个10μm ~100μm 交叉点(Crossover),再经过二级会聚透镜和物镜的聚焦作用,在试样表面形成一个小于1μm 的电子探针。电子束直径和束流随电子枪的加速电压而改变, 加速电压可变范围一般为1kV ~30kV 。 2.4.1.2 电磁透镜 电磁透镜分会聚透镜和物镜,靠近电子枪的透镜称会聚透镜,会聚透镜一般分两级,是把电子枪形成的10μm -100μm 的交叉点缩小1-100倍后,进入样品上方的物镜,物镜可将电子束再缩小并聚焦到样品上。为了挡掉大散射角的杂散电子,使入射到样品的电子束直径尽可能小,会聚透镜和物镜下方都有光阑。 为了在物镜和样品之间安置更多的信号探测器,如二次电子探测器、能谱仪等,必须有一定的工作距离( 物镜底面和样品之间的距离)。工作距离加长必然会使球差系数增大,从而使电子束直径变大,如果电子束几何直径为dg, 由于球差系数的影响,最终形成的电子束 直径d 应为:d 2=dg 2+ds 2 ,ds 为最小弥散圆直径,它和球差系数Cs 的关系为: ds = 2 1Cs 2 α (8·2) α为探针在试样表面的半张角。因此,增加工作距离受到球差的限制。为了解决这一矛盾,设计了一种小物镜,是这类仪器的一项重要改进。小物镜可以在不增加工作距离的情况下,在物镜和样品之间安放更多的信号探测器,如JCXA -733电子探针,工作距离为11mm ,可同时安装四道波谱仪(WDS),一个能谱仪,一个二次电子探测器和一个背散射电子探测器,并使X 射线出射角增加到40°。高出射角减小了试样对X 射线的吸收和样品表面粗糙所造成的影响,但小物镜要获得足够的磁场必须在其线圈内通以大电流,为了解决散热问题要进行强制冷却,一般用油冷却。

电子显微分析总结

《电子显微分析》知识点总结 第一讲电子光学基础 1、电子显微分析特点 2、Airy斑概念 3、Rayleigh准则 4、光学显微镜极限分辨率大小:半波长,200nm 5、电子波的速度、波长推导公式 6、光学显微镜和电子显微镜的不同之处:光源不同、透镜不同、环境不同 7、电磁透镜的像差产生原因,如何消除和减少像差。 8、影响光学显微镜和电磁透镜分辨率的关键因素,如何提高电磁透镜的分辨率 9、电子波的特征,与可见光的异同 第二讲 TEM 1、TEM的基本构造 2、TEM中实现电子显微成像模式与电子衍射模式操作 第三讲电子衍射 1、电子衍射的基本公式推导过程 2、衍射花样的分类:斑点花样、菊池线花样、会聚束花样 3、透射电子显微镜图像衬度,各自的成像原理。 第四讲 TEM制样 1、粉末样品制备步骤 2、块状样品制备减薄的方法 3、块状脆性样品制备减薄——离子减薄 4、塑料样品制备——离子减薄 5、复型的概念、分类 第五讲 SEM 1、电子束入射固体样品表面会激发的信号、特点和用途 2、SEM工作原理 3、SEM的组成 4、SEM的成像衬度:二次电子表面形貌衬度、背散射电子原子序数衬度、吸收电子像的衬 度、X射线图像的衬度 第六讲 EDS和WDS 1、EDS探测系统——锂漂移硅固体探测器 2、EDS与WDS的优缺点 第七讲 EBSD 1、EBSD的应用 第八讲其它电子显微分析方法 1、各种设备的缩写形式

历年考题 透射电镜的图像衬度有非晶样品质厚衬度, 薄晶体样品的衍射衬度, 相位衬度。 一、我校材料分析中心现有的两台场发射电子显微镜有哪些主要的功能附件可以进行哪方面的分析工作 答:1、场发射扫描电子显微镜仪器型号: SUPRA 55 生产厂家:德国ZEISS 功能附件: (1)配备Oxford INCA EDS设备,可以对5B-92U的元素进行微区成分定性、定量分析,包括点、线、面成分的分析; (2)配备HKL EBSD设备,可以对材料进行取向、织构及物相鉴定,晶体学结构分析,相位及相位差分析,应变分析; (3)配备拉伸弯曲台,可以在扫描电镜内对试样做拉伸、压缩和弯曲试验,同时原位观察组织变化。 用途:可用于金属、非金属、半导体、地质、矿物、冶金、考古、生物等材料的显微形态,断口形貌的分析研究;也可进行各种样品的高分辨成像以及配合能谱仪进行微区元素分析,配备电子背散射衍射(EBSD)附件,可对晶体材料进行晶体取向、织构、以及物相鉴定等分析研究。 2、场发射透射电子显微镜仪器型号:TECNAI F30 G2生产厂家:美国FEI公司 功能附件: (1)配备EDS设备,可以进行微区成分定性定量分析,包括点、线、面成分的分析; (2)配备EELS,进行电子-能量损失谱分析; (3)配备原位拉伸仪,可以进行原位拉伸观察和三维图像重构分析。 用途:可以对透射电镜样品进行形貌、相应选区电子衍射、微衍射及相干电子衍射和高分辨电子显微像观察;配合STEM-HAADF探针进行原子序数衬度像分析;配合特征X射线能谱仪(EDS)进行纳米尺度成分分析;配合电子能量损失谱系统(EELS)进行电子能量损失谱分析;进行样品原位拉伸观察和三维图像重构分析。 二、电子束入射固体样品表面会激发哪些信号它们有哪些特点和用途 答:电子束入射固体样品表面会激发出背散射电子、二次电子、吸收电子、透射电子、特征X射线、俄歇电子、电子束感生电效应、阴极荧光。 (1)背散射电子:入射电子与原子核发生弹性散射,能量损失小,一般大于50eV都称为背散射电子。平均原子序数越大,产生背散射电子越多,不仅能用于形貌分析,还可以用于显示原子序数衬度,定性进行成分分析; (2)二次电子:入射电子与外层电子发生非弹性散射,一部分核外电子获得能量逸出试样表面,成为二次电子。二次电子能量小,一般小于50eV,适于表面形貌观察; (3)吸收电子:入射电子发生非弹性散射次数增多,以致电子无法逸出试样表面,在样品与地之间接电流放大器,获得电流信号,吸收电子像衬度与二次电子和背散射电子的总像衬度相反,适用于显示试样元素分布和表面形貌,尤其是试样裂纹内部的微观形貌; (4)透射电子:如果被分析的样品很薄,就会有一部分入射电子穿过薄样品而成为透射电子。可进行形貌和成分分析。 (5)特征X射线:入射电子与样品原子内层电子作用,释放出具有特征能量的电磁辐射波,

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

扫描电子显微镜及其在材料研究中的应用

扫描电子显微镜及其在材料研究中的应用 摘要:本文介绍了扫描电子显微镜的发展、结构特点及工作原理,阐述了扫描电子显微镜在材料研究中的应用。 关键词:扫描电子显微镜;材料研究;应用 一、扫描电镜简介 1.1扫描电子显微镜分类 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到 1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展相对于光学显微镜。扫描电子显微镜有如下七种分类方法:(1)按照电子枪种类分:钨丝枪、六硼化镧、场发射电子枪;(2)按照样品室的真空度分:高真空模式、低真空模式、环境模式;(3)按照真空泵分:油扩散泵、分子泵;(4)按照自动化程度分:自动、手动;(5)按照操作方式分:旋钮操作、鼠标操作;(6)按照电器控制系统分:模拟控制、数字控制;按照图像显示系统分:模拟显像、数字显像[1]。 1.2扫描电子显微镜的特点 SEM在分辨率、景深及微分析等方面具有巨大优越性,因而发展迅速,应用广泛。随着科学技术的发展,使SEM的性能不断提高,使用的范围也逐渐扩大。扫描电镜测试技术的特点主要有: (1)聚焦景深大。扫描电子显微镜的聚焦景深是实体显微镜聚焦景深的50倍,比偏反光显微镜则大500倍,且不受样品大小与厚度的影响,观察样品时立体感强。 (2)二次电子扫描图像的分辨率优于100埃,比实体显微镜高200倍。可以直接观察矿物、岩石等的表面显微结构特征,清晰度好。 (3)放大倍数在14—100000倍内连续可调。填补了光学显微镜和电子显微镜之间放大倍数的空白,便于在低倍下寻找位置,在高倍下详细观察,且不用重新对焦,易于了解局部和整体之间的相互联系。 (4)不破坏样品,制样方便,样品大小几乎不受限制。试样在样品室中的自由度非常大,观察的视场大。 (5)能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等)。 (6)扫描电镜是一种有效的理化分析工具,通过它可进行各种形式的图像观察、元素分析、晶体结构分析[2]。 1.3扫描电子显微镜的发展 扫描电镜的设计思想早在1935年便已提出,1942年在实验室制成第一台扫描电镜,但因受各种技术条件的限制,进展一直很慢。前期近20年,扫描电镜主要是在提高分辨率方面取得了较大进展,目前,采用钨灯丝电子枪扫描电镜

扫描透射电子显微镜模式分析

A general introduction to STEM detector 1. BF detector It is placed at the same site as the aperture in BF-TEM and detects the intensity in the direct beam from a point on the specimen. 2. ADF detector The annular dark field (ADF) detector is a disk with a hole in its center where the BF detector is installed. The ADF detector uses scattered electrons for image formation, similar to the DF mode in TEM.The measured contrast mainly results from electrons diffracted in crystalline areas but is superimposed by incoherent Rutherford scattering. 3. HAADF detector The high-angle annular dark field detector is also a disk with a hole, but the disk diameter and the hole are much larger than in the ADF detector. Thus, it detects electrons that are scattered to higher angles and almost only incoherent Rutherford scattering contributes to the image. Thereby, Z contrast is achieved.

电子显微分析技术及其应用

电子显微分析技术及其应用 恶魔 (恶魔大学恶魔学院,湖北武汉) [内容提要]:本文阐述的电子显微技术及其在纳米材料中的应用。同时本文介绍了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,并论述的电子显微技术在实际中的应用。 [关键词]:电子显微技术;TEM;SEM;STM 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。特别是基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分,以光谱分析、电子能谱分析、衍射分析与电子显微分析等4大类方法,以及基于其他物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法也是材料现代分析的重要方法。 材料及产品性能和质量的检测是检验和评价制造装备以及产品能否合格有效的重要关口。 在材料纳米材料分析当中,最长用到的电子显微分析技术包括了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,通过这些技术来对物质的显微形貌、成分和结构进行分析。 一透射电镜技术 透射电子显微镜,是以波长极短的电子束作为照明源,用电磁透射聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统(包括电子枪高压电源、透镜电源、控制线路电源等)、真空系统3部分组成。分辨本领和放大倍数是透射电子显微镜的两项主要性能指标,它体现了仪器显示样品显微组织和结构细节的能力。 透射电镜一般分为分析型透射电镜和高分辨透射电镜。TEM的分辨率较高,可用于研究纳米材料的结晶情况,观察纳米粒子的形貌、分散情况及测量和评估纳米粒子的粒径,是研究材料微观结构的重要仪器。 利用透射电镜的电子衍射能够较准确地分析纳米材料的晶体结构,配合XRD, SAXS,特别是EX-AFS等技能更有效地表征纳米材料。可结合电子显微镜和能谱两种方法共同对某一微区的情况进行分析。此外,微区分析还能够用于研究材料夹杂物、析出相、晶界偏析等微观现象。利用透射电镜法测试纳米材料的粒度大小及其分布,是最直观的测试方法之一,可靠性较高,但该法的准确性很大程度上取决于取样的代表性和扫描区域的选择。利用TEM进行微观结构分析时,配以能谱可以研究元素在试样内部的存在状态或分布情况。近年来,高分辨率透射电镜(HRTEM)的应用越来越广泛,利用HRTEM可获取有关晶体结构的更可靠的信息。 二扫描电镜技术 扫描电子显微镜, 成像原理与透射电镜不同,不用透镜法放大成像, 而是以类似电视摄像显像的方式, 用细聚焦电子束在样品表面扫描是激发产生的某些物理信号来调制成像。扫描电子显微镜由于其具有制样简单、使用方便、可直接观察大样品(如100mm@100mm)、并具有景深大、分辨率较高、放大倍数范围宽、可连续调节、可进行化学成分和晶体取向测定等一系列优点, 在失效分析中得到了广泛的应用。 SEM在纳米材料的分析中应用很广,它可用于纳米材料的粒度分析、形貌分析以及微观结构的分析等。SEM一般只能提供微米或亚微米的形貌信息,与TEM相比,其分辨率较低,因而表征结果不如透射电镜准

X射线和透射电子显微镜在显微分析的研究应用

X射线和透射电子显微镜在显微分析 的研究应用 现代材料分析测试技术

摘要:X射线衍射分析技术是一种现代物理分析技术,已广泛应用于我国科学研究的各个领域,如医药分析、地质、土壤分析、生物、微生物检测、金属、无机非金属检测等,并发挥着不可替代的作用,并将在我国和世界上不同学科领域中发挥更大更新的作用。同时,透射电子显微分析方法(Transmission electron microscopy, TEM)作为纳米尺寸晶体材料最有力的结构表征手段之一, 已经被逐渐应用于MOF新材料领域, 展现出了巨大的应用潜力,本文主要阐述该两种显微技术在科学研究方面的应用。 关键词:X射线,透射电子显微镜。 引言:(一)1932 年透射电子显微镜(Transmission electron microscope)被发明成功,利用该技术,不仅能拍摄到反映晶体结构中原子和原子团位置信息的高分辨电子显微图(High resolution transmission electron microscopy, HRTEM),还可利用电磁透镜将电子束会聚对小至数纳米的晶体颗粒或区域进行电子衍射(Electron diffraction, ED)分析。在观测尺度以及分辨率上的巨大优势,使透射电子显微镜在纳米尺度的相关研究中发挥了巨大作用。 金属有机骨架(MOF)配位聚合物是由金属或金属簇与含氧或氮的有机配体由配位键连接而形成的结晶多孔材料。 MOF 作为一类比表面积大、孔径可调控、可功能化的新兴材料, 在气体存储[1~3]、吸附分离[4~6]、传感[7, 8]和催化[9]等方面均有广阔的应用前景。这些特性取决于它们独特的骨架与孔道结构特征.随着合成化学的发展, 大量新颖的MOF结构陆续被报道。MOF材料的结构化学的研究, 对新材料的设计合成与应用开发具有重要的意义。 已报道的MOF结构大多是通过单晶X-射线衍射解析得到。虽然单晶X-射线衍射兼备自动化程度高、样品损伤小、数据后处理软件完善等诸多优点,但其一般只适用于粒径在数十微米以上的晶体, 即使使用同步辐射X-射线源,晶体粒径也需保持在微米尺度。因此,为获得大尺寸晶体供结构解析使用, 新型MOF 材料的研究中往往需要大量的时间来调整合成条件。然而,近期报道的由Zr和Cr等金属合成的MOF材料,尽管其具有优异的性能却难以获得大晶体[10, 11]。在这种情况下,粉末X-射线衍射成为了最主要的结构分析手段。但粉末X-射线衍射晶体结构解析需要大量高纯度、高结晶度的样品;同时,粉末X-射线衍射数据只是衍射强度相对衍射角度的一维曲线,这对晶体学单胞及空间对称性的确定造成较大的不确定性。当晶体尺寸在纳米量级或所分析结构的晶体学单胞较大时,高角度的衍射峰重叠变得严重。由于MOF材料的晶体结构通常具有较大的单胞并且独立原子数目较多, 粉末X-射线衍射技术受到了一定限制。所以,仅有部分对称性较高的MOF 结构得到解析。目前,采用新的结构解析方法以更加有效地解析小尺寸MOF材料的结构成为高度关注的热点问题。 传统透射电子显微分析的应用 MIL101 (MOF)的透射电子显微图像MIL-101(MOF)首先报道于2005年的Science 期刊中。MIL-101晶体结构是由Cr金属簇与对苯二甲酸(Benzenedicarboxylate, 1,4-BDC)配位形成的四面体基元相互连接构筑而成的三维骨架结构。由于MIL-101的晶体尺寸较小,该晶体结构解析通过粉末X-射线衍射获得。2005年Lebedev 等[12]尝试使用极小的电子剂量以延长MIL-101晶体结构在电子束下的保持时间,成功获得了部分晶体学方向的选区电子衍射谱图和HRTEM 图像。在该报道中, 通过粉末X-射线衍射解析获得的晶体结构模型的模拟结果与获得的电子显微图像相比较,间接证明了MIL-101晶体结构的正确性。值得

相关主题