搜档网
当前位置:搜档网 › Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite

Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite

Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite
Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite

Chemical Engineering Journal 152 (2009) 537–542

Contents lists available at ScienceDirect

Chemical Engineering

Journal

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c e

j

Visible light photocatalytic decolourization of C.I.Acid Red 66by chitosan capped CdS composite nanoparticles

Jiang Ru a ,Zhu Huayue a ,b ,?,Li Xiaodong c ,Xiao Ling b

a

Department of Environmental Engineering,Taizhou University,Taizhou 317000,China b

College of Resource and Environmental Science,Wuhan University,Wuhan 430072,China c

College of Environmental Science and Engineering,Hunan University,Changsha 410082,China

a r t i c l e i n f o Article history:

Received 13January 2009

Received in revised form 21May 2009Accepted 21May 2009Keywords:

Photocatalytic decolourization Visible light C.I.Acid Red 66Chitosan

Cadmium sul?de

a b s t r a c t

Chitosan capped CdS (CS/CdS)composite nanoparticles were prepared by biomimetic synthesis method under mild condition.The CS/CdS composite catalyst was characterized by XRD,SEM,TEM and TGA,which indicated the successful formation of nanosized hexagonal phase of CdS on chitosan.Visible light photocatalytic decolourization of C.I.Acid Red 66(AR 66)was carried out by employing this innovative composite catalyst.The effects of catalyst amount,initial dye concentration and initial pH of solution on decolourization were investigated.The kinetics of photocatalytic decolourization was found to follow a pseudo-?rst-order according to Langmiur–Hinshelwood (L–H)model.UV–vis spectra were analyzed to prove that AR 66dye can be decolourized effectively by chitosan capped CdS composite nanoparticles under visible light irradiation.In addition,the recycle and reuse of the catalyst were examined,and the results showed that dye decolourization ef?ciency was still about 80.1%after 60min of reaction time when the catalyst was used for 5times.

? 2009 Elsevier B.V. All rights reserved.

1.Introduction

Textile industry discharges large amount of coloured dye wastewater which is toxic and nonbiodegradable in most cases [1].Apart from the aesthetic problems created when coloured ef?u-ents reach the natural water runoff,dyes strongly absorb sunlight,impending photosynthetic activity of aquatic plants and seriously threatening the whole ecosystem [2].The decolourization of dyes ef?uents has always been an attractive and challenging topic.Researchers all over the world have developed extensive studies through physical–chemical,biological techniques aiming to ?nd a cost-effective process.However,conventional physical–chemical techniques such as adsorption on activated carbon,ultra?ltration,reverse osmosis,coagulation by chemical agents,and ion exchange on synthetic resins can only transfer organic compounds from one phase to another [3].On the other hand,due to the large numbers of aromatic compounds present in dye molecules and the stability of modern dyes,traditional biological treatment by activated sludge is ineffective for decolourization and degradation [4,5].

In recent years,heterogeneous photocatalysis was proved to be an effective advanced oxidation technique for the complete

?Corresponding author at:No.605,Dongfang Avenue,Linhai City,Zhejiang Province 317000,China.Tel.:+86013989672070;fax:+86057685137066.

E-mail addresses:jiangru0576@https://www.sodocs.net/doc/ac15629634.html, (R.Jiang),zhuhuayue@https://www.sodocs.net/doc/ac15629634.html, (H.Zhu),lxdfox@https://www.sodocs.net/doc/ac15629634.html, (X.Li),xl9119@https://www.sodocs.net/doc/ac15629634.html, (L.Xiao).decolourization of hazardous and refractory organic compounds,due to the high oxidation potential of active hydroxyl free radical (?OH)which is generated from irradiated semiconductor catalyst [6–10].Among the various semiconductor catalysts employed,TiO 2has been extensively studied because of its relative excellent prop-erties such as high photosensitivity,strong oxidizing power under UV light irradiation,nontoxicity,long-term stability,and low cost.However,there are some drawbacks associated with its use:(i)electron–hole pairs recombination occurring within nanoseconds weakens the quantum effects [11];(ii)the relatively large band gap (3.2eV for anatase phase)does not allow the effective utilization of economical and ecological sunlight [12].Due to these limitations,how to prepare the photocatalyst that can be excited by visible light and how to lengthen the electron–hole pairs recombination lifetime are of great interest for the development of photocatalytic process [13].

Cadmium sul?de (CdS)is a kind of semiconductor with narrow band gap of 2.5eV,and its valence electron can be easily evoked to conduction band under visible light irradiation.Therefore,CdS semiconductor nanoparticles (NPs)have attracted intense interest due to their unique photochemical and photophysical properties.However,CdS NPs are easy to aggregate in aqueous solution and this metal sul?de is prone to photocorrosion.Biological synthe-sis of CdS NPs by yeasts and bacteria has been reported earlier in 1989[14],and its photocatalytic activity has been veri?ed [15,16].The bioformation of CdS NPs is generally considered as the conse-quence of detoxi?cation of intracellular Cd ions,and the binding

1385-8947/$–see front matter ? 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.cej.2009.05.037

538R.Jiang et al./Chemical Engineering Journal

152 (2009) 537–542

Fig.1.Preparation mechanism of chitosan capped CdS nanoparticles.

of heavy metals by organisms through polysaccharide has also been demonstrated [17].Furthermore,recent researches revealed that semiconductor sul?des could be utilized by some species in their energy circle,and in this process a polysaccharide layer was used to extract sulfur in the form of colloids [18].These ?ndings strongly suggest that polysaccharide plays an important role in the biosynthesis of CdS NPs.Thus,it is reasonable for us to design a polysaccharide-mediated route to mimic the biosynthesis of CdS NPs under relatively mild condition to control nanoparticles growth and minimize the electron–hole recombination.

Chitosan (CS)(1,4)-2-amino-2-deoxy-?-d -glucosamine,a nat-ural basic,hydrophilic,nontoxic and biocompatible biopolymer obtained by the alkaline deacetylation of chitin [19],was reported to be the structural component of ascospore wall of yeast such as Saccharomyces cerevisiae [20].Moreover,chitosan has good chelat-ing ability with transition metal ions,which makes it possible for its metal ion complexes to be used as precursors to synthesize CdS NPs [21].In addition,the amino and hydroxyl groups on linear chitosan chains are good capping groups for CdS NPs,and due to the highly viscous nature,chitosan can also prevent CdS NPs from agglomer-ation during the growth.Also,chitosan is a well-known excellent adsorbent for a number of organic dyes,which can further increase the photocatalytic decolourization of the composite catalyst.

However,there is few report on the effect of decolouriza-tion using chitosan capped CdS composite nanoparticles without loading TiO 2for the photodegradation of dyes under visible light irradiation as far as we know.In this paper,we employed chi-tosan as capping material to biomimetically synthesize CdS NPs,i.e.CS/CdS NPs,under mild condition,and its photocatalytic activ-ity was examined through C.I.Acid Red 66(AR 66)photocatalytic decolourization under visible light irradiation.Parameters affecting the photocatalytic decolourization process,such as photocatalyst amount,solution pH,initial AR 66concentration and photocatalyst reuse,have been investigated.

2.Experimental 2.1.Materials

The dye, C.I.Acid Red 66(i.e.Biebrich Scarlet Red,C 22H 14N 4Na 2O 7S 2)was provided by China National Medicine Group Shanghai Chemical Reagent Company and used as received without further puri?cation.Chitosan (CS,degree of deacetyla-tion:91.7%,Mw =21×104)was purchased from Zhejiang Yuhuan Jinke Biochemisty Industry Co.,Ltd.(Zhejiang,China).Other chem-icals used in the experiments,cadmium chloride (CdCl 2,Shanghai Tianlian Fine Chemical Industry Co.,Ltd.,China),sulfocarbamide ((NH 2)2CS,Shanghai Chemical Reagent Factory,China),25%(v/v)glutaraldehyde (Shanghai Tianlian Fine Chemical Industry Co.,Ltd.,China)were of analytical grade.All the dye solutions were prepared by dissolving requisite quantity of dye in double distilled water.

2.2.Preparation of CS/CdS NPs composite catalyst

The synthetic procedure of CdS nanoparticles capped with chitosan was modi?ed from previous literature report [22].The preparation mechanism of chitosan capped CdS NPs is shown in Fig.1.At room temperature,1.5g chitosan was dissolved in dilute nitric acid (100mL,1%,v/v)and stirring for 2h.Then 0.9134g CdCl 2dissolved in 20mL water was added into chitosan colloidal solution and continuously stirred for 4h to reach a chelating bal-ance.Subsequently,the colloidal mixture was dropped slowly into equimolar amounts sulfocarbamide aqueous solution in a constant temperature water bath at 60?C for 1h.The cross-linking agent glu-taraldehyde (100mL,0.25%)was added to the mixed solution and stirred for 30min.Finally,sodium hydroxide (200mL,0.1mol/L)aqueous solution was introduced to precipitate chitosan capped CdS NPs.The golden yellow deposition was ?ltered and washed with distilled water and absolute ethyl alcohol for 3–4times,and dried at 60?C under atmospheric condition.2.3.Photocatalytic reaction

The photocatalytic oxidation was carried out using a cylindri-cal homemade organic glass reactor (80mm diameter and 110mm depth),in which the slurry was composed of dye solution and catalyst.The reactor vessel was laid on a thermostat magnetic stir-rer (model 85-2,Gongyi Yuhua Instrument Co.Ltd.,China)with constant stirred magnetically and aerated by a simple air pump.Initial pH of solution was adjusted using dilute sulfuric acid or sodium hydroxide,and monitored by a pH/conductivity meter (model 990,Jiangsu Electroanalytical Instrument Factory,China).A 300W Xenon lamp (PLS-SXE300,Beijing Trusttech Co.Ltd.,China)loaded with a UV-Cut ?lter was used as arti?cial solar light source which basically emits visible light at 400–780nm.The light inten-sity was kept approximately constant at 2W/cm 210cm away from the light source.At given irradiation time intervals,4mL of the sus-pensions were collected,then centrifuged and ?ltered through a Millipore ?lter (pore size,0.22in.)to separate the photocatalyst par-ticles.The Millipore ?lter was washed using double distilled water every time to ensure that no residual dye and catalyst remained on the micro?lter.AR 66concentration was measured by Cary 50Model UV–vis spectrophotometer (Varian,USA)scanning from 200to 600nm controlled by a Lenovo PC.All of the experiments were conducted at constant temperature 25?C.2.4.Characterization and analysis methods

The X-ray diffraction (XRD)spectra of chitosan and CS/CdS NPs were performed using a D8ADVANCE X-ray diffraction spectrom-eter (Bruker,German)with a Cu K ?target at 40kV and 50mA at a scan rate of 0.02?2?s ?1.

The morphological structure of photocatalyst was examined by scanning electron microscopy (SEM)with a Hitachi SX-650(Tokyo,Japan)machine.

R.Jiang et al./Chemical Engineering Journal 152 (2009) 537–542

539

Fig.2.XRD patterns of chitosan (a)and CS/CdS nanoparticles (b).

The TEM micrographs were taken using a transmittance elec-tron microscope (TEM)[JEM-2010FEF (UHR),JEOL,Japan]at an accelerating voltage of 200kV.

Thermogravimetry (TG)was performed using a Setaram Setsys 16TG/DTA/DSC (France)under a nitrogen atmosphere of 0.15MPa from 25to 800?C with heating rate of 2?C/min.

Photocatalytic activity of samples was assessed by decolouriza-tion rate.The percentage of decolourization (R )was estimated by the following:

R (%)=

1?C i

C 0

×100(1)

where C i was AR 66concentration in aqueous solution at time T (mg/L);C 0was initial AR 66concentration (mg/L).Both were calculated by the standard curve equation for the wavelength of maximum absorbance ( max =507.1nm).

Several research results have indicated that the photocatalytic decolourization of various dyes ?tted the Langmuir–Hinshelwood (L–H)kinetics model [23–26],which is commonly expressed:?

dC dt

=

kKC

1+KC (2)

where k is the reaction rate constant (mg/L min);K is the adsorption

coef?cient of the reactant (L/mg);and C is the reactant concentra-tion (mg/L).

When the concentration C is very small,KC is negligible with respect to unity,and the photocatalysis can be simpli?ed to an apparent pseudo-?rst-order kinetics [23]:?

dC

dt

=kKC (3)

i.e.ln

C 0

C i

=kKt =k app t

(4)

where k app is the apparent pseudo-?rst-order rate constant (min ?1).

3.Results and discussion 3.1.X-ray diffraction (XRD)

X-ray power diffraction analysis method was employed to inves-tigate the formation of chitosan capped CdS NPs (Fig.2).The XRD pattern of chitosan (trace a)showed two typical peaks at 2?=11.8?and 20.9?[27],while the XRD pattern of chitosan capped CdS NPs (trace b)gave relatively weaken peaks.Other major diffraction peaks corresponded to the hexagonal phase according to Luan’s report [28],which revealed the successful formation of hexagonal phase of CdS on chitosan by biomimetic synthesis method.The aver-age size of the crystalline structure of the chitosan capped CdS

NPs

Fig.3.SEM (a)and TEM (b)of representative chitosan capped CdS nanoparticles.

composite calculated by analysis of XRD data of (110),(102)and (103)was approximately 27nm according to the Scherrer formula [29].

3.2.SEM and TEM

The direct evidence of the formation of nanoparticles on the surface of chitosan was given by SEM (Fig.3a)and TEM (Fig.3b).In Fig.3a,there existed many pleats on the surface of chitosan capped CdS nanoparticles,which could provide a much larger surface area for photocatalytic reaction and adsorption process.Most of the par-ticles embedded into chitosan had about diameters of 25–35nm in the TEM image (Fig.3b),which was in close agreement with XRD result.

3.3.TGA analysis

Fig.4presented the results of the DSC–TG analysis of the CS/CdS NPs composite catalyst.Three stages of weight loss were observed from the TG curve (trace a):(1)about 8%weight loss from room temperature to 131?C,(2)38%weight loss from 250to 500?C,and (3)11%weight loss from 500to 800?C.The ?rst stage of weight loss referred to the evaporation of physically adsorbed water [30].Other stages of weight loss were due to the chemisorbed water and residual organics in the photocatalyst [19].The total weight loss of CS/CdS NPs by 800?C was about 7%more than that of cross-linked chitosan ?lms,and the excess residual components were mostly CdS.It could be concluded that CS/CdS NPs composite exhibited better thermal stability than the pure chitosan.

3.4.Adsorption in dark and photocatalysis of AR 66on CS/CdS NPs As the photocatalytic mechanism suggests,both catalyst and a light source are necessary for the photocatalysis reaction to

occur.

Fig.4.TG (a)and DSC (b)analysis of representative chitosan capped CdS.

540R.Jiang et al./Chemical Engineering Journal

152 (2009) 537–542

Fig.5.Photocatalytic decolourization of AR 66dye only in the presence of CS/CdS (0.7g/L)adsorption in dark and in the presence of CS/CdS (0.7g/L)under visible light irradiation.Inset:the chemical structure of AR 66.

A control experiment was conducted on the irradiation of AR 66(20mg/L)under only visible light,in the presence of CS/CdS NPs (0.7g/L)with and without light irradiation,as shown in Fig.5.Almost no decolourization was observed in the presence of visible light only.In the presence of CS/CdS NPs,without irradiation,only 13.3%was observed due to the adsorption of the dye within 60min.It may be explained that a majority of –NH 2and –OH groups,the main adsorbent groups in the chitosan,were cross-linked during synthesis of the composite.However,in the presence of CS/CdS NPs with visible light irradiation,about 36.6%and 94.3%were degraded after 10and 60min,respectively,as shown in Fig.5,which indicated that the CS/CdS NPs had high photocatalytic activity.The photo-catalysis and adsorption had synergistic effect for the dye colour removal.

3.5.Effect of the initial dye concentration

The effect of different initial dye concentrations on photocat-alytic decolourization was investigated in the presence of 0.7g/L catalyst at a normal pH of 5.6,as shown in Fig.6.The percentage of decolourization decreased with the increased of the initial AR 66dye concentration.The results were in good agreement with those reported in literatures [31,32].The decolourization rates of dye were 90.5%,73.6%and 37.3%,respectively,at the dye initial

concentration

Fig.6.Effect of initial dye concentration on AR 66decolourization (pH 5.6,catalyst amount of 0.7g/L).Inset:plot of ln(C 0/C i )versus irradiation

time.

Fig.7.Effect of catalyst amount on AR 66decolourization (pH 5.6,[AR]0of 20mg/L).Inset:plot of ln(C 0/C i )versus irradiation time.

of 5,20and 30mg/L after 30min irradiation.The reason was that a high initial dye concentration shielded the light,which resulted in the decrease of the light triggered catalyst,thus the concentration of hydroxyl radicals decreased.

A plot of ln(C 0/C i )versus irradiation time for different initial con-centration of AR 66is also shown in Fig.6.The in?uence of initial concentration of the dye can be described by apparent pseudo-?rst-order kinetics in terms of the L–H model.Values of k app can be obtained directly from the regression analysis of the linear curve in the plot.The reaction rate constants for 5,20and 30mg/L were 0.07140,0.04528and 0.01301min ?1,respectively.3.6.Effect of catalyst amount

Photocatalyst amount is one of critical parameters to decolour-ization ef?ciency.In order to determine the effect of catalyst amount on decolourization of AR 66and gain the optimum amount of CS/CdS NPs,a series of experiments were conducted with varying catalyst amount from 0.1to 1.0g/L,at dye concentration of 20mg/L and pH 5.6.The effect of different catalyst amount on decolouriza-tion of AR 66was shown in Fig.7.The increase of catalyst amount from 0.1to 0.7g/L increased the dye decolourization sharply from 30.4%to 94.3%after 60min irradiation.The decolourization of pol-lutants is in?uenced by the active site and the photo-absorption of the catalyst used.This was due to the increase in the cata-lyst amount,which contributed to the increase in the number of photons absorbed and also the number of dye molecule adsorbed [24,31].But the increase in the catalyst amount beyond 0.7g/L did not have an obvious positive effect on decolourization of AR 66because of the enhancement of light re?ectance and light blocking by excessive catalyst and decrease in light penetration.Accordingly,hydroxyl radicals,the primary oxidant in photocatalytic reaction,decreased and the decolourization ef?ciency of AR 66reduced.The apparent rate constants of different catalyst amounts could be obtained from the plot of ln(C 0/C i )versus irradiation time inserted in Fig.7.It can be clearly seen that the 0.7g/L catalyst amount had the highest photocatalytic decolourization of 0.04528min ?1with correlation coef?cient of 0.99865.Therefore 0.7g/L was used as the optimal catalyst amount for photocatalytic reaction.3.7.Effect of pH

Bahnemann et al.[34]have already reviewed that acid–base properties of the metal oxide surfaces can have considerable impli-

R.Jiang et al./Chemical Engineering Journal152 (2009) 537–542

541

Fig.8.Effect of initial pH on AR66decolourization([AR]0of20mg/L,catalyst amount of0.7g/L).Inset:plot of ln(C0/C i)versus irradiation time.

cations upon their photocatalytic activity.In order to investigate the effect of initial pH on photocatalytic decolourization of AR66, three experiments were conducted at different pH values of3.0,5.6 and9.0,at the initial dye concentration of20mg/L and the catalyst amount of0.7g/L.The results were illustrated in Fig.8.Increase in the pH of AR66solution from3.0to5.6led to mildly decreased ef?ciency in the decolourization of AR66.Further increase in pH from5.6to9.0had apparent decrease in AR66decolourization. After60min of irradiation,the calculated decolourization rate was 96.1%in the acidic medium(pH3.0),94.3%in the weak acidic medium(pH5.6),and38.9%in the alkaline medium(pH9.0). The results indicated that the photocatalytic decolourization of AR66was most ef?cient in acidic solution than in alkaline solu-tion.

The linear?t between the ln(C0/C i)and irradiation time for different initial pH of AR66solution can be approximated as pseudo-?rst-order kinetics,as shown in Fig.8(inset).The values of rate constants k app and correlation coef?cient R of decolour-ization process can be obtained directly from the straight line. The order of rate constants was pH3.0(0.10967min?1)>pH5.6 (0.04528min?1)>pH9.0(0.00834min?1).Correspondingly,the reaction half time for pH3.0,5.6and9.0were6.32,15.31and 83.11min,respectively.This was because AR66molecule with two sulfuric groups ionized easily even in acidic media and became a soluble AR66anion.At the same time,the residual amino groups of chitosan in CS/CdS were much more easily to be protonated at lower pH and could form electrostatic attraction to adsorb a quan-tity of dye anions[33].Therefore,in the acidic solution,AR66anions were easily adsorbed to CS/CdS with positive surface charge,while AR66anions were generally excluded away from surface of cat-alyst at alkaline media.The AR66anions could be oxidized more directly by hydroxyl radicals produced under visible light excitation in acidic media.That was why higher decolourization rates were obtained in acidic media.The possible photocatalytic decolouriza-tion mechanism of CS/CdS NPs in acidic solution may be expressed as follows:

(1)the?rst step is mainly the adsorption of azo anions on chitosan:

R1–NH3++R2–SO3?=R1–NH3+?O3S–R2;

where R1–NH3+is chitosan,and R2–SO3?is dye

anions.Fig.9.The decrease of AR66concentration with visible light irradiation by recycling use of CS/CdS NPs(pH5.6,catalyst amount of0.7g/L,[AR]0of20mg/L).

(2)the second step is photocatalytic decolourization of AR66on

CS/CdS NPs:

CdS+h?→CdS(h+)+CdS(e?)

CdS(h+)+H2O→CdS+?OH+H+

?OH+RH→decolourization product

3.8.Recycle of the catalyst

The catalyst’s lifetime is an important parameter of the photo-catalytic process,due to the fact that a longer period of time leads to a signi?cant cost reduction of the treatment[35].It is essen-tial to evaluate the stability and reuse of the catalyst for practical implication.The photocatalytic experiments were repeated5times with the same catalyst at20mg/L dye concentration in the presence of0.7g/L catalyst at a normal pH of5.6.After each experiment, the catalyst was centrifuged for15min,washed and recycled.The results showed that the catalytic activity of the catalyst had a slight decrease after5cycles and the results were shown in Fig.9.The decolourization for the5cycling reuse were93.1%,88.1%,83.7%, 80.7%and80.1%,respectively,after60min of irradiation time.It showed a relatively small drop in decolourization ef?ciency,which was likely due to the loss of the catalyst during washing and?ltrat-ing.In spite of this,it could be concluded that the CS/CdS composite catalyst has relatively long using life.

3.9.UV–vis spectrum scan

Fig.10showed the obvious changes in the absorbance spectra (200nm≤ ≤600nm)of AR66with CS/CdS NPs photocatalysis at different time intervals under visible light irradiation.The pri-mary absorption peaks of the original dye solution were507.1,352, and275nm in the range of200–600nm.The absorbance at the maximum absorption peak(507.1nm)corresponded to the n→?* transition of the azo and hydrazone forms,which is due to the colour of azo dyes.The absorbance at200–400nm was attributed to the n→?*transition of benzene rings,representing the aromatic con-tent of azo dyes,and its decrease was due to the deconstruction of aromatic part of the dye[36,37].As the reaction time increased, three peaks decreased gradually and the full spectrum scanning pattern changed obviously after60min.No peak was detected in

542R.Jiang et al./Chemical Engineering Journal

152 (2009) 537–542

Fig.10.Changes in UV–vis absorbance spectra of AR66with CS/CdS NPs at different time intervals under visible light irradiation.

the analyzed wavelength range at the end of the80min of reaction time.It indicated that the main chromophores and aromatic part in the original dye solution were destroyed in the presence of CS/CdS NPs under simulated solar light irradiation.UV–vis spectra were analyzed to indicate that the dye can be decoloured effectively by CS/CdS under visible light irradiation.

4.Conclusions

In the paper,chitosan was used as capping material to mimic the biosynthesis of CdS nanoparticles under relatively mild condition due to its metal sorption and chelation capability.CS/CdS NPs cata-lyst can be used effectively for AR66photocatalytic decolourization under visible light irradiation and oxygen supply.It is observed that the photocatalytic process followed apparent pseudo-?rst-order kinetics model.The decolourization was found to be relatively higher in the acidic medium with optimum catalyst amount of 0.7g/L at low dye initial concentration.The recycle and reuse of catalyst was examined,and the results showed that the dye decolourization ef?ciency was still about80.1%after60min of reac-tion time when catalyst was used for5times. Acknowledgements

The authors are grateful for the?nancial support of this research from the National Natural Science Foundation of China(No. 50808071).Special thanks to Mr.Changhua Ge and Doctor Tang Lin for their assistance in this work.

References

[1]S.K.Kansa,M.Singh,D.Sud,Studies on photodegradation of two commercial

dyes in aqueous phase using different photocatalysts,J.Hazard.Mater.141(3) (2007)581–590.

[2]W.G.Kuo,Decolorizing dye wastewater with Fenton’s reagent,Water Res.26

(1992)881–886.

[3]I.K.Konstantinou,T.A.Albanis,TiO2-assisted photocatalytic degradation of azo

dyes in aqueous solution:kinetic and mechanistic investigations.,Appl.Catal.

B:Environ.49(2004)1–14.

[4]H.An,Q.Yi,X.S.Gu,W.Z.Tang,Biological treatment of dye wastewaters using

an anaerobic-oxic system,Chemosphere33(1996)2533–2542.

[5]Y.Li,D.L.Xi,Decolourization and biodegradation of dye wastewaters by a

facultative-aerobic process,Environ.Sci.Pollut.Res.Int.11(2004)372–377. [6]A.Sobczy′nsk,L.Duczmal,A.Dobosz,Photocatalysis by illuminated titania:

oxidation of hydroquinone and p-benzoquinone,Monatsh.Chem.130(1999) 377–384.

[7]X.Li,W.Zhao,J.Zhao,Visible light-sensitized semiconductor photocatalytic

degradation of2,4-dichlorophenol,Sci.China Ser.B45(4)(2002)421–425.

[8]E.Vulliet,C.Emmelin,J.M.Chovelon,C.Guillard,J.M.Herrmann,Photocatalytic

degradation of the herbicide cinosulfuron in aqueous TiO2suspension,Environ.

Chem.Lett.1(2003)62–67.

[9]J.M.Herrmann,Heterogeneous photocatalysis:state of the art and present

applications,Top.Catal.34(1–4)(2005)49–65.

[10]J.Zhao,C.Chen,W.Ma,Photocatalytic degradation of organic pollutants under

visible light irradiation,Top.Catal.35(3–4)(2005)269–278.

[11]N.Serpone,E.Pelizzetti,Photocatalysis:Fundamentals and Applications,Wiley,

New York,1989,p.342.

[12]S.Sakthivel,S.U.Geissen,D.W.Bahnemann,et al.,Enhancement of photo-

catalytic activity by semiconductor heterojunctions:(-Fe2O3,WO3and CdS deposited on ZnO,J.Photochem.Photobiol.A:Chem.148(2002)283–293. [13]C.T.Juliana,M.Fabiano,C.Paola,et al.,Electronic characterization and pho-

tocatalytic properties of CdS/TiO2semiconductor composite,J.Photochem.

Photobiol.A:Chem.181(2006)152–157.

[14]C.T.Dameron,R.N.Reese,R.K.Mehra,A.R.Kortan,P.J.Carroll,M.L.Steigerwald,

L.E.Brus,D.R.Winge,Biosynthesis of cadmium sulphide quantum semiconduc-tor crystallites,Nature338(1989)596–597.

[15]W.Bae,R.Abdullah,R.K.Mehra,Cysteine-mediated synthesis of CdS bio-

nanocrystallites,Chemosphere37(2)(1998)363–385.

[16]P.R.Smith,J.D.Holmes,D.J.Richardson,D.A.Russel,J.R.Sodeau,Photophysi-

cal and photochemical characterization of bacterial semiconductor cadmium sul?de particles.,J.Chem.Soc.,Faraday Trans.94(9)(1998)1235–1241. [17]Z.A.Mohamed,Removal of cadmium and manganese by a non toxic strain

of the fresh water cyanobacterium Gloeothece magna,Water Res.35(2001) 4405–4409.

[18]H.Tributsch,J.A.Chapana,Bioleaching of pyrite accelerated by cysteine,Process.

Biochem.45(2000)4705–4716.

[19]H.Yi,L.Q.Wu,W.E.Bentley,R.Ghodssi,G.W.Rubloff,J.N.Culver,G.F.Payne,

Biofabrication with chitosan,Biomacromolecules6(2005)2881–2894. [20]P.Briza,A.Ellinger,G.Winkler,M.Breitenbach,Chemical composition of the

yeast ascospore wall.The second outer layer consists of chitsan,J.Biol.Chem.

263(1988)11569–11574.

[21]B.Krajewska,Diffusion of metal ions through gel chitosan membranes,React.

Funct.Polym.47(2001)37–47.

[22]Z.Li,Y.M.Du,Z.Zhang, D.W.Pang,Preparation and characterization of

CdS quantum dots chitosan biocomposite,React.Funct.Polym.55(2003) 35–43.

[23]Y.Li,X.Li,J.Li,J.Yin,Photocatalytic degradation of methyl orange by TiO2-coated

activated carbon and kinetic study,Water Res.40(2006)1119–1126.

[24]J.Sun,X.Wang,J.Sun,R.Sun,S.Sun,L.Qiao,Photocatalytic degradation and

kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst,J.Mol.

Catal.A:Chem.260(2006)241–246.

[25]X.Dong,W.Ding,X.Zhang,X.Liang,Mechanism and kinetics model of degrada-

tion of synthetic dyes by UV–vis/H2O2/Freeioxallate complexes,Dye Pigments 74(2007)470–476.

[26]C.Wu,H.Chang,J.Chen,Basic dye decomposition kinetics in a photocatalytic

slurry reactor,J.Hazard.Mater.B137(2006)336–343.

[27]R.J.Samuels,Solid State characterization of the structure of chitosan?lms,J.

Polym.Sci.B:Polym.Phys.19(5)(1981)1081–1105.

[28]Y.M.Luan,M.Z.An,M.R.Sun,Preparation and characterization of CdS/Cd

nanoparticle?lm produced by electrodeposition,J.Chem.Eng.Chin.Univ.18

(6)(2004)745–750(in Chinese).

[29]L.Wu,J.C.Yu,Fu X,Characterization and photocatalytic mechanism of nano-

sized CdS coupled TiO2nanocrystals under visible light irradiation,J.Mol.Catal.

A:Chem.244(2006)25–32.

[30]G.C.Ritthidej,P.Thawatchai,T.Koiaumi,Moist heat treatment on physicochem-

ical change of chitosan salt?lms,Int.J.Pharm.232(2002)11–22.

[31]S.Kaur,V.Singh,TiO2mediated photocatalytic degradation studies of Reactive

red198by UV irradiation,J.Hazard.Mater.141(2007)230–236.

[32]A.P.Toor,A.Verma,C.K.Jotshi,P.K.Bajpai,V.Singh,Photocatalytic degradation

of direct yellow12dye using UV/TiO2in a shallow pong slurry reactor,Dyes Pigments68(2006)53–60.

[33]H.Yoshida,A.Okamoto,T.Kataoka,Adsorption of acid dye on cross-linked

chitosan?bers:equilibria,Chem.Eng.Sci.48(1993)2267–2272.

[34]D.W.Bahnemann,J.Cunningham,M.A.Fox,E.Pelizzetti,P.Pichat,N.Serpone,in:

R.G.Zeep,G.R.Helz,D.G.Crosby(Eds.),Aquatic Surface Photochemistry,Lewis Publishers,Boca Raton,1994,p.261.

[35]C.Wang,H.Shang,Y.Tao,T.Yuan,G.Zhang,Properties and morphology of

CdS compounded TiO2visible-light photocatalytic nano?lms coated on glass surface,Sep.Purif.Technol.32(2003)357–362.

[36]H.Park,W.Choi,Visible light and Fe(III)-mediated degradation of Acid Orange

7in the absence of H2O2,J.Photochem.Photobiol.A159(2003)241–247. [37]M.Muruganandham,M.Swaminathan,Photochemical oxidation of reactive azo

dye with UV/H2O2process,Dyes Pigments62(2004)269–275.

2018届高考文言文翻译之典型例题:2016年高考真题

2018届高考文言文翻译之典型例题:2016年高考真题 2018届高考文言文翻译之典型例题:2016年高考真题 2018届高考文言文翻译之典型例题:2016年高考真题 一、(2016年高考新课标I卷)阅读下面的文言文,完成4~7题。 曾公亮,字明仲,泉州晋江人。举进士甲科,知会稽县。民田镜湖旁,每患湖溢。公亮立斗门,泄水入曹娥江,民受其利。以端明殿学士知郑州,为政有能声盗悉窜他境至夜户不闭尝有使客亡橐中物移书诘盗公亮报吾境不藏盗殆从之者度耳索之果然 公亮明练文法,更践久,习知朝廷台阁典宪,首相韩琦每咨访焉。仁宗末年,琦请建储,与公亮等共定大议。密州民田产银,或盗取之,大理当以强。公亮日:此禁物也,取之虽强,与盗物民家有间矣。固争之,遂下有司议,比劫禁物法,盗得不死。契丹纵人渔界河,又数通盐舟,吏不敢禁,皆谓:与之校,且生事。公亮言:萌芽不禁,后将奈何?雄州赵滋勇而有谋,可任也。使谕以指意,边害讫息。英宗即位,加中书侍郎兼礼部尚书,寻加户部尚书。帝不豫,辽使至不能见,命公亮宴于馆,使者不肯赴。公亮质之曰:锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎?使者即就席。熙宁三年,拜司空兼侍中、河阳三城节度使。明年,起判永兴军。居一岁,还京师。旋以太傅致仕。元丰元年卒,年八十。帝临哭,辍朝三日。公亮方厚庄重,沉深周密,平居谨绳墨,蹈规矩;然性吝啬,殖货至巨万。初荐王安石,及同辅政,知上方向之,阴为子孙计,凡更张庶事,一切听顺,而外若不与之者。常遣子孝宽参其谋,至上前略无所异,于是帝益信任安石。安石德其助己,故引擢孝宽至枢密以报之。苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 (节选自《宋史曾公亮传》) 7.把文中画横线的句子翻译成现代汉语。 (1)锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎? 译文:________________________________________________________________ ______________________________________________________________________ (2)苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 译文:________________________________________________________________ ______________________________________________________________________ 二、(2016年高考新课标卷)阅读下面的文言文,完成4~7题。 陈登云,字从龙,唐山人。万历五年进士。除鄢陵知县,征授御史。出按辽东,疏陈安攘十策,又请速首功之赏。改巡山西。还朝,会廷臣方争建储。登云谓议不早决,由贵妃家阴沮之。十六年六月遂因灾异抗疏,劾妃父郑承宪,言:承宪怀祸藏奸窥觊储贰且广结术士之流曩陛下重惩科场冒籍承宪妻每扬言事由己发用以恐喝勋贵簧鼓朝绅 不但惠安遭其虐焰,即中宫与太后家亦谨避其锋矣。陛下享国久长,自由敬德所致,而承宪每对人言,以为不立东宫之效。干挠盛典,蓄隐邪谋,他日何所不至?疏入,贵妃、承宪皆怒,同列亦为登云危,帝竟留中不下。久之,疏论吏部尚书陆光祖,又论贬四川提学副使冯时可,论罢应天巡抚李涞、顺天巡抚王致祥,又论礼部侍郎韩世能、尚书罗万化、南京太仆卿徐用检。朝右皆惮之。时方考选科道,登云因疏言:近岁言官,壬午以前怵于威,则摧刚为柔;壬午以后昵于情,则化直为佞。其间岂无刚直之人,而弗胜龃龉,多不能安其身。二十年来,以刚直擢京卿者百止一二耳。背公植党,逐嗜乞怜,如所谓‘七豺’‘八狗’者,言路顾居其半。夫台谏为天下持是非,而使人贱辱至此,安望其抗颜直绳,为国家锄大奸、歼巨蠹哉!与其误用而斥之,不若慎于始进。因条数事以献。出按河南。岁大饥,人相食。

门禁系统使用说明书

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

民歌篇教案范文

民歌篇教案范文 1、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西北民歌的不同风格,感受民歌的绚丽风采。 一、导入: 1、欣赏流行音乐视频片段:《茉莉花》——梁静茹 师提问:大家熟悉这首流行歌吗?喜欢吗?

这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。

我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感受民歌的绚丽风采。(点出本课围绕的中心话题,引发学生的关注。) 1、以“花”为题材的各地民歌 ①、四川民歌《槐花几时开》 (介绍“晨歌”,聆听歌曲,体验歌曲中富有地方特色的“啥子”的唱段) ②、江苏民歌《拔根芦柴花》 (介绍“秧田歌”,聆听歌曲,了解歌词中出现的众多花名的意义) ③、青海民歌《上去高三望平川》 (介绍“河湟花儿”,聆听歌曲,谈谈自己所感受到的演唱风格) ④、辽宁民歌《猜花》

高中文言文精短翻译练习100道题

高中文言文精短翻译练习100篇 1、范仲淹有志于天下 原文:范仲淹二岁而孤,母贫无靠,再适常山朱氏。既长,知其世家,感泣辞母,去之南都入学舍。昼夜苦学,五年未尝解衣就寝。或夜昏怠,辄以水沃面。往往糜粥不充,日昃始食,遂大通六经之旨,慨然有志于天下。常自诵曰:当先天下之忧而忧,后天下之乐而乐。 翻译:范仲淹二岁的时候死了父亲。母亲很穷,没有依靠。就改嫁到了常山的朱家。(范仲淹)长大以后,知道了自己的生世,含着眼泪告别母亲,离开去应天府的南都学舍读书。(他)白天、深夜都认真读书。五年中,竟然没有曾经脱去衣服上床睡觉。有时夜里感到昏昏欲睡,往往把水浇在脸上。(范仲淹)常常是白天苦读,什么也不吃,直到日头偏西才吃一点东西。就这样,他领悟了六经的主旨,后来又立下了造福天下的志向。他常常自己讲道:“当先天下之忧而忧,后天下之乐而乐。” 2、陈蕃愿扫除天下 原文:藩年十五,尝闲处一室,而庭宇芜岁。父友同郡薛勤来候之,谓藩曰:“孺子何不洒扫以待宾客?”藩曰:“大丈夫处世,当扫除天下,安事一室乎?”勤知其有清世志,甚奇之。 译文:陈藩十五岁的时候,曾经独自住在一处,庭院以及屋舍十分杂乱。他父亲同城的朋友薛勤来拜访他,对他说:“小伙子你为什么不整理打扫房间来迎接客人?”陈藩说:“大丈夫处理事情,应当以扫除天下的坏事为己任。不能在乎一间屋子的事情。”薛勤认为他有让世道澄清的志向,与众不同。 3、班超投笔从戎 原文:班超字仲升,扶风平陵人,徐令彪之少子也。为人有大志,不修细节。然内孝谨,居家常执勤苦,不耻劳辱。有口辩,而涉猎书传。永平五年。兄固被召诣校书郎,超与母随至洛阳。家贫,常为官佣书以供养。久劳苦,尝辍业投笔叹曰:“大丈夫无它志略,犹当效傅介子、张骞立功异域,以取封侯,安能久事笔研间乎?”左右皆笑之。超曰:“小子安知壮士志哉!” 翻译:班超为人有远大的志向,不计较一些小事情。然而在家中孝顺勤谨,过日子常常辛苦操劳,不以劳动为耻辱。他能言善辩,粗览了许多历史典籍。公元62年(永平五年),哥哥班固被征召做校书郎,班超和母亲也随同班罟到了洛阳。因为家庭贫穷,班超常为官府抄书挣钱来养家。他长期抄写,劳苦不堪,有一次,他停下的手中的活儿,扔了笔感叹道:“大丈夫如果没有更好的志向谋略,也应像昭帝时期的傅介子、武帝时期的张骞那样,在异地他乡立下大功,以得到封侯,怎么能长期地在笔、砚之间忙忙碌碌呢?”旁边的人都嘲笑他,班超说:“小子怎么能了解壮士的志向呢!” 4、宗悫(què)乘风破浪 原文:宗悫字元干,南阳涅阳人也。叔父炳高尚不仕。悫年少时,炳问其志。悫曰:“愿乘长风破万里浪。”炳曰:“汝若不富贵,必破我门户。”兄泌娶妻,始入门,夜被劫,悫年十四,挺身与拒贼,十余人皆披散,不得入室。时天下无事,士人并以文艺为业,炳素高节,诸子群从皆好学,而悫任气好武,故不为乡曲所称。 翻译:宗悫,字元干,是南阳涅阳人。他的叔父宗炳,学问很好但不肯做官。宗悫小的时候,宗炳问他长大后志向是什么?他回答:“希望驾着大风刮散绵延万里的巨浪。”(宗炳说:“就算你不能大富大贵,也必然会光宗耀祖。”)有一次宗悫的哥哥宗泌结婚,结婚的当晚就遭到强盗打劫。当时宗悫才14岁,却挺身而出与强盗打斗,把十几个强盗打得四下溃散,根本进不了正屋。当时天下太平,有点名望的人都认为习文考取功名是正业。宗炳因为学问高,大家都喜欢跟着他读儒家经典。而宗悫因为任性而且爱好武艺,因此不被同乡称赞。 5、祖逖闻鸡起舞 原文:范阳祖逖,少有大志,与刘琨俱为司州主簿,同寝,中夜闻鸡鸣,蹴琨觉曰:“此非恶声也!”因起舞。及渡江,左丞相睿以为军谘祭酒。逖居京口,纠合骁健,言于睿曰:“晋室之乱,非上无道而下怨叛也,由宗室争权,自相鱼肉,遂使戎狄乘隙,毒流中土。今遗民既遭残贼,人思自奋,大王诚能命将出师,使如逖者统之以复中原,郡国豪杰,必有望风响应者矣!”睿素无北伐之志,以逖为奋威将军、豫州刺史,给千人廪,布三千匹,不给铠仗,使自召募。逖将其部曲百余家渡江,中流,击楫而誓曰:“祖逖不能清中原而复济者,有如大江!”遂屯淮阴,起冶铸兵,募得二千余人而后进。 翻译:当初,范阳人祖逖,年轻时就有大志向,曾与刘琨一起担任司州的主簿,与刘琨同寝,夜半时听到鸡鸣,他踢醒刘琨,说:“这不是令人厌恶的声音。”就起床舞剑。渡江以后,左丞相司马睿让他担任军咨祭酒。祖逖住在京口,聚集起骁勇强健的壮士,对司马睿说:“晋朝的变乱,不是因为君主无道而使臣下怨恨叛乱,而是皇亲宗室之间争夺权力,自相残杀,这样就使戎狄之人钻了空子,祸害遍及中原。现在晋朝的遗民遭到摧残伤害后,大家都想着自强奋发,大王您确实能够派遣将领率兵出师,使像我一样的人统领军队来光复中原,各地的英雄豪杰,一定会有闻风响应的人!”司马睿一直没有北伐的志向,他听了祖逖的话以后,就任命祖逖为奋威将军、豫州刺史,仅仅拨给他千人的口粮,三千匹布,不供给兵器,让祖逖自己想办法募集。祖逖带领自己私家的军队共一百多户人家渡过长江,在江中敲打着船桨说:“祖逖如果不能使中原清明而光复成功,就像大江一样有去无回!”于是到淮阴驻扎,建造熔炉冶炼浇铸兵器,又招募了二千多人然后继续前进。 6、画家赵广不屈 原文:赵广,合肥人。本李伯时家小史,伯时作画,每使侍左右。久之遂善画。尤工画马。几能乱真,建炎中陷贼,贼闻其善画,使图所虏妇人,广毅然辞以实不能画,胁以白刃,不从遂断右手拇指遣去,而广平生适用左手。乱定,惟画观音大士而已。又数年,乃死,今士大夫所藏伯时观音,多广笔也。 翻译:赵广是合肥人,本来是李伯时家里的书童。李伯时作画的时候就侍奉在左右,时间长了就擅长画画了,尤其擅长画马,几乎和李伯时所作的一样。建炎年间,他落在金兵手里。金兵听说他擅长画画,就让他画掳来的妇人。赵广毅然推辞作画,金兵用刀子威胁,没得逞,就将他的右手拇指砍去。而赵广其实是用左手作画的。局势平定以后,赵广只画观音大士。又过了几年,赵广死了,如今有地位的知识分子所藏的李伯时的观音画,大多是赵广的手笔。 7、苏武牧羊北海上

F6门禁管理系统用户手册

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

中考文言文翻译实用方法经典讲解(带试题实例!)

一.增就是增补,在翻译时增补文言文省略句中的省略成分。 注意:补出省略的成分或语句,要加括号。 1、增补原文省略的主语、谓语或宾语 例1:“一鼓作气,再而衰,三而竭。”“再”“三”后省略了谓语“鼓”,翻译时要补上。 例2:“见渔人,乃大惊,问所从来。”译句:“(桃源中人)一见渔人,大为惊奇,问他是从哪里来的。” 例3:“君与具来。”“与”后省略了宾语“之”。 2、增补使语义明了的关联词 例:“不治将益深”是一个假设句,译句:“(如果)不治疗就会更加深入”。 二 .删就是删除,凡是古汉语中的发语词、在句子结构上起标志作用的助词和凑足音节的助词等虚词,因在现代汉语中是没有词能代替,故翻译时无须译出,可删去。 例1:“师道之不传也久矣。”译句:“从师学习的风尚已经很久不存在 了。”“也”为句中语气助词,起到舒缓语气的作用,没有实在意义。在翻译时,完全可以去掉。 例2:“孔子云:何陋之有?”译句:“孔子说:有什么简陋的呢?”“之”为宾语前置的标志,删去不译。 例3:“夫战,勇气也。”译句:“战斗,靠的是勇气”。“夫”为发语词,删去不译。 三.调就是调整,在翻译文言文倒装句时,应把古汉语倒装句式调整为现代汉语句式,使之符合现代汉语的表达习惯、译句通顺。这就需要调整语句语序, 大体有三种情况:

1、后置定语前移例:“群臣吏民,能面刺寡人之过者,受上赏。”可调成“能面刺寡人之过群臣吏民,受上赏。” 2、前置谓语后移例:“甚矣!汝之不惠。”可调成“汝之不惠甚矣。” 3、介宾短语前移。例:“还自扬州”可调成“自扬州还”。 4、前置宾语后移例:“何以战?”可调成“以何战?” 四.留就是保留,凡是古今意义相同的词、专有名词、国号、年号、人名、物名、人名、官职、地名等,在翻译时可保留不变。 例:“庆历四年春,滕子京谪守巴陵郡。”译句:“庆历四年的春天,滕子京被贬到巴陵郡做太守。”“庆历四年”为年号,“巴陵郡”是地名,可直接保留。 五.扩就是扩展。 1、言简义丰的句子,根据句义扩展其内容。 例:“怀敌附远,何招而不至?”译句:“使敌人降服,让远方的人归附,招抚谁,谁会不来呢?” 2、单音节词扩为同义的双音节词或多音节词。 例:“更若役,复若赋,则如何?”译句:“变更你的差役,恢复你的赋税,那么怎么样呢?”“役”“赋”扩展为双音节词。 六.缩就是凝缩,文言文中的有些句子,为了增强气势,故意实用繁笔,在翻译时应将其意思凝缩。 例:“有席卷天下,包举宇内,囊括四海之意,并吞八荒之心。”译句:“(秦)有吞并天下,统一四海的雄心。” 七.直即直译,就是指紧扣原文,按原文的词句进行对等翻译的今译方法。对于文言文的实词、大部分虚词、活用词和通假字,一般是要直接翻译的,否则, 在考查过程中是不能算作准取得翻译。 例:“清荣峻茂,良多趣味。”译句:“水清,树茂,山高,草盛,实在是趣味无穷。”

智能门禁管理系统说明书.doc

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

民歌篇教案

民歌篇教案 《xx四方》——民歌篇教学设计 【教学年级】:高一年级 【教学课时】:一课时 【设计思路】:通过聆听,了解民歌的风格特征,感受民歌的艺术魅力,培养学生对中国民歌的喜爱和兴趣,体现以音乐审美为核心的理念。通过民歌的学习让学生认识到:民族音乐是中华民族数千年来劳动人民智慧的结晶,是劳动人民创造的宝贵文化遗产,是中华民族传统文化的组成部分;同时帮助学生树立“音乐作为文化”和“文化中的音乐”的观念,培养学生“弘扬民族音乐文化”、理解多元文化的理念,从而达到理解和尊重多元的世界文化的目的。 【教学目标】: 、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 【教学重点,难点】: 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西 xx民歌的不同风格,感受民歌的绚丽风采。 【教学准备】:多媒体、视频、音频等 【教学过程】:

一、导入: 、欣赏流行音乐视频片段:《茉莉花》——梁静茹师提问:大家熟悉这首流行歌吗?喜欢吗? 这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法 有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。 我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感受民歌的绚丽风采。(点出本课围绕的中心话题,引发学生的关注。) 、以“花”为题材的各地民歌 ①、xx民歌《槐花几时开》 (介绍“晨歌”,聆听歌曲,体验歌曲中富有地方特色的“啥子”的唱段) ②、xx民歌《拔根芦柴花》

2019年高三语文一轮总复习(文言文阅读+翻译)第02课 典型例题(含解析)

2019年高三语文一轮总复习(文言文阅读+翻译)第02课典型例题 (含解析) 一、(2016年高考新课标I卷)阅读下面的文言文,完成4~7题。 曾公亮,字明仲,泉州晋江人。举进士甲科,知会稽县。民田镜湖旁,每患湖溢。公亮立斗门,泄水入曹娥江,民受其利。以端明殿学士知郑州,为政有能声盗悉窜他境至夜户不闭尝有使客亡橐中物移书诘盗公亮报吾境不藏盗殆从之者度耳索之果然公亮明练文法,更践 久,习知朝廷台阁典宪,首相 ..,与公亮等共定大议。密 ..韩琦每咨访焉。仁宗末年,琦请建储 州民田产银,或盗取之,大理当以强。公亮日:“此禁物也,取之虽强,与盗物民家有间矣。” 固争之,遂下有司 ..纵人渔界河,又数通盐舟,吏不敢禁,..议,比劫禁物法,盗得不死。契丹 皆谓:与之校,且生事。公亮言:“萌芽不禁,后将奈何?雄州赵滋勇而有谋,可任也。”使谕以指意,边害讫息。英宗即位,加中书侍郎兼礼部尚书,寻加户部尚书。帝不豫,辽使至不能见,命公亮宴于馆,使者不肯赴。公亮质之曰:“锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎?”使者即就席。熙宁三年,拜司空兼侍中、河阳三城节度使。明年,起判永兴军。居一岁,还京师。旋以太傅致仕。元丰元年卒,年八十。帝临哭,辍朝三日。公亮方厚庄重,沉深周密,平居谨绳墨,蹈规矩;然性吝啬,殖货至巨万。初荐王安石,及同辅政,知上方向之,阴为子孙计,凡更张庶事,一切听顺,而外若不与之者。常遣子孝宽参其谋,至上前略无所异,于是帝益信任安石。安石德其助己,故引擢孝宽至枢密以报之。苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 (节选自《宋史·曾公亮传》) 7.把文中画横线的句子翻译成现代汉语。 (1)锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎? 译文:________________________________________________________________ ______________________________________________________________________ (2)苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 译文:________________________________________________________________ ______________________________________________________________________ 【答案】(1)赐宴不到场,这是对君主命令的不敬。君主有病,却一定要他亲临宴会,做这样的事能心安吗?(2)苏轼曾从容地责备公亮不能纠正弊病,世人讥讽他保持禄位加固宠幸。

花飘四方

《花飘四方》——民歌篇教学设计 【教学年级】:高一年级 【教学课时】:一课时 【设计思路】:通过聆听,了解民歌的风格特征,感受民歌的艺术魅力,培养学生对中国民歌的喜爱和兴趣,体现以音乐审美为核心的理念。通过民歌的学习让学生认识到:民族音乐是中华民族数千年来劳动人民智慧的结晶,是劳动人民创造的宝贵文化遗产,是中华民族传统文化的组成部分;同时帮助学生树立“音乐作为文化”和“文化中的音乐”的观念,培养学生“弘扬民族音乐文化”、理解多元文化的理念,从而达到理解和尊重多元的世界文化的目的。 【教学目标】: 1、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 【教学重点,难点】: 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西北民歌的不同风格,感受民歌的绚丽风采。

【教学准备】:多媒体、视频、音频等 【教学过程】: 一、导入: 1、欣赏流行音乐视频片段:《茉莉花》——梁静茹 师提问:大家熟悉这首流行歌吗?喜欢吗? 这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。 我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感

Hey Jude 歌词流程图及英文歌词与翻译

Hey Jude, don't make it bad. 嘿!Jude,不要这样沮丧 Take a sad song and make it better 唱首悲伤的歌曲让事情好转Remember to let her into your heart 将她牢记在心底 Then you can start to make it better. 然后开始让事情好转 Hey Jude, don't be afraid 嘿Jude,不要害怕 You were made to go out and get her. 你生来就是要得到她 The minute you let her under your skin, 在你将她放在心上的时候

Then you begin to make it better. 你就开始做的更好 And anytime you feel the pain, 无论何时,当你感到痛苦 hey Jude, refrain, 嘿Jude 停下来 Don't carry the world upon your shoulders. 不要把全世界都扛在你肩膀上 For well you know that it's a fool who plays it cool 你应该很清楚谁耍酷谁就是笨蛋 By making his world a little colder. 这会使他世界更加冰冷 Hey Jude don't let me down 嘿Jude 不要让我失望 You have found her, now go and get her. 你已遇见她现在去赢的她芳心 Remember to let her into your heart, 记住将她牢记在你心中 Then you can start to make it better. 然后你就可以开始做的更好 So let it out and let it in, hey Jude, begin, 所以遇事要拿得起放得下嘿!jude ,振作起来 You're waiting for someone to perform with. 你一直期待的那个和你一起表演的人 And don't you know that it's just you, hey Jude, you''ll do 你不知道那个人就是你自己吗?嘿jude 你办得到的The movement you need is on your shoulder 下一步该怎么做就全看你自己 Hey Jude, don't make it bad. 嘿Jude 不要这样消沉 Take a sad song and make it better 唱首伤感的歌曲会使你振作一些 Remember to let her under your skin 记得心中常怀有她 Then you'll begin to make it better 然后你就会使它变得更好 Better better better better better better, Oh. 更好、更好、更好、更好、更好 Na na na, na na na na, na na na

精典文言文翻译

译文:有一天,晋平公同著名的音乐家师旷闲谈。晋平公叹了口气说:“我今年已经七十岁了,很想学习,但恐怕太晚了。” “说:“哪有身为臣子而取笑君主的呢?” 师旷连忙起身下拜,谢罪道:“臣下怎敢取笑大王?我听人家说,少年时好学,如同初升的太阳一样阳气充沛;壮年时好学,如同中午的阳光,还很强烈;老年时好学,只像蜡烛照明一样。但是,点亮蜡烛走路,与摸黑行走相比,那一个(更好)呢?” 说得好。” 秦穆公对伯乐说:“您的年纪大了,您的子孙中间有没有可以派去寻找好马的呢” 伯乐回答说:“我的子孙都是些下等之才,有个叫九方皋的人,他识别好马的本领,决不在我以下,可以告诉他识别天下最好的马的方法。请让我引见他” 秦穆公接见了九方皋,派他去寻找好马。过了三个月,九方皋回来报告说:“我已经在沙丘 找到好马了。”秦穆公问道:“是匹什么样的马呢”九方皋回答说:“是匹黄色的母马。” 秦穆公派人去把那匹马牵来,一看,却是匹纯黑色的公马。报知秦穆公,秦穆公很不高兴,把伯乐找来对他说:“您所推荐的那个找好马的人,毛色公母都不知道,又怎么能懂得什么是天下最好的马呢?”伯乐说道:“九方皋他所观察的是马的天赋的内在素质,深得它的精妙,而忘记了它的粗糙之处;明悉它的内部,而忘记了它的外表。九方皋只看见所需要看见的,看不见他所不需要看见的;只视察他所需要视察的,而遗漏了他所不需要观察的。”等到把那匹马牵回驯养使用,它果然是一匹天下难得的好马。 魏郑公(魏征)进谏劝阻唐太宗前往泰山封禅,说:“如今有一个人,患病十年,经过治疗将要痊愈。此人瘦得皮包骨头,却想要让他背着一石米,一天走上一百里路,肯定做不到。隋朝末年社会动乱,不止是十年的时间,陛下作为天下良医,百姓的疾苦虽然已经解除,但还不很富裕。要祭祀天地(向它)报告大功完成,我心里还是有疑虑。”唐太宗无言反驳。 当初,范文正公(范仲淹)被贬到饶州,朝廷正纠治朋党,士大夫都不敢前去告别,只有待制顾质独自抱病在国都城门(为范仲淹)饯行,大臣们责怪他说:“你,是长者,为什么要把自己搅进朋党里面去?”顾质说:“范先生是天下的贤人,我哪敢和他比,如果让我做了范先生的朋党,那我感到太荣幸了。”听到的人都惭愧得缩脖子。 陈寔,字仲弓,为太丘县令。一天,有一个小偷伏在屋梁上准备行窃,陈寔见到后,把自己的儿子喊过来,教训说:“不好的人,并不一定是生性如此,乃是习惯所养成的,屋梁上那一位就是这样的人。”一会儿,屋梁上的小偷跳下来,跪在地上认罪。陈寔说:“从你的外貌上看,您并不是恶人,应该是由贫困造成的。”于是,赠给他两匹布,教他一定要改正。此后,这人再没有做过小偷。 刘瞻的父亲是个贫寒的读书人,十多岁的时候,他就在郑纟因身旁管理笔墨砚台等书房用具。十八九岁的时候,郑纟因当上了御史,前往荆部商山巡视,中途在亭子里休息,俯瞰山水。当时刚刚雨过天晴,山峦秀美岩石奇丽,泉水山石分外好看。郑纟因坐了很久,起来走了五六里地,说:“如此美景,却没有作诗,就是观赏到天黑又有什么关系?”于是又返回亭子,想要往亭子上题一首诗。他忽然发现亭子上已经题了一首绝句,墨迹还没有干。郑纟因惊讶于这首诗作得出色。而当时南北方向又都没有行人。随行的人对郑纟因说:“刚才只有刘景落在后面二三里地。”郑纟因同刘景开玩笑说:“莫非是你题的吗?”刘景拜了拜说:

博克门禁系统使用说明书

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

hey,jude含义解析

Hey Jude The Beatles

?这首歌就是英国的难忘今宵!!!伦敦奥运会的压轴歌曲,我觉得很适合大合唱由麦卡特尼创作的,鼓励列农的儿子朱利安勇敢面对现实,在约翰列侬离婚后希望朱利安不要消沉其实这首歌的原名是Hey Julian,后来改为Hey Jules, 最终变成Hey Jude

?《Hey Jude》是Paul McCartney(保罗·麦卡特尼,The Beatles(披头士乐队,又称甲壳虫乐队)成员之一)为一个五岁的孩子写下的一首歌。这个男孩叫Julian,是John Lennon(约翰·列侬)与前妻Cynthia 的儿子。1968年夏天,John Lennon开始和Yoko Ono(小野洋子)同居了,他与前妻Cynthia的婚姻也到了崩溃的边缘

?Paul一直非常喜爱John Lennon的儿子Julian,他担心大人之间的婚姻变故会对一个小孩子带来心理上的阴影。(不过,当时Paul也正和相恋5年的未婚妻Jane Asher分手,开始与Linda Eastman 的感情)他曾说:“我总是为父母离异的孩子感到难过。大人们也许没什么,但是孩子……”同时,他也想要安慰一下Cynthia。于是有一天,他去了Cynthia的家里,还给她带了一枝红玫瑰,开玩笑的对她说:“Cyn,你说咱俩结婚怎么样?”说完两人同时大笑起来,Cynthia从他的玩笑中感受到了温暖和关心。

?Paul在车里为Julian写下了这首Hey Jude (Hey,Julian),可当时的Julian并不知道。直到二十年后,Julian才明白这首歌是写给自己的。他一直很喜爱爸爸的这个朋友,像一个叔叔一样的Paul。John Lennon也非常喜爱这一首歌。自从第一次 听到,他就觉得,“噢,这首歌是写给我 的!”Paul 说“Hey,John!去吧,离开我们和Yoko在一起吧。”他似乎又在说:“Hey,John!不要离开!来 自:”https://www.sodocs.net/doc/ac15629634.html,/view/965993.htm

高考文言文翻译十年试题例析(一)

高考文言文翻译难点实词十年试题总结(一)你在读书上花的任何时间,都会在某一个时刻给你回报。——董卿《中国诗词大会》 你在学习上花的任何努力,都会在高考时刻给你回报。----寄同学们 声明:部分内容来源网络,版权归原作者。 1【谙】①熟悉,知晓。例1、江南好,风景旧曾谙。例2、二人久居江东,谙习水性。(《三国演义·群英会蒋干中计》)②熟记,记诵。虽复一览便谙。(《南齐书·陆澄传》)2【按】①查看,察看。按西域书,阿罗汉诺矩罗居震旦东南大海际雁荡山……(《雁荡山》) ②审查,核查。例1、以吴民之乱请于朝,按诛五人。(《五人墓碑记》) 例2、安到郡,不入府,先往按狱,理其无明验者,条上出之。(《后汉书·袁张韩周列传》袁安到郡后,不进官府,先去审查案件,查出那些没有明确证据的犯人,上奏要求放他们出狱。) ③巡查,巡行。例1、部使者臧,新贵,将按郡至袁。(2007福建卷,高启《书博鸡者事》江西湖东道肃政廉访司有一个姓臧的,新近做了高官,将要巡查所管各州郡,来到袁地。)例2、曩胡公按部,令所过毋供张。(《明史·海瑞转》刚才胡公巡查所部地区,命令经过的地区不要办礼物准备招待。) ④压抑,止住。按助强弱。⑤于是,就。 3【案】①通“按”,察看,查看。召有司案图,指从此以往十五都予赵。(《廉颇蔺相如列传》) ②通“按”,考察,核实。案贤圣之言,上下多相违(互相矛盾)。 ③通“按”,巡行,巡查。宣王案行其营垒,曰:“天下奇才也。” ④通“按”,用手压或按。例1、案灌夫项令谢(道歉)。 例2、(高进之)案腰间刀伺道济,有异言,则杀之。道济趋下阶,叩头曰:“武皇帝在上,臣道济如有异心,速殛之。”(2007广东卷,高进之此时用手按住腰间的刀窥探檀道济,如果他有异言,就杀掉他。檀道济快步走下台阶,叩头说:“武皇帝在上,我檀道济如有异心,就赶快诛杀我。”) ⑤文书,案卷。无丝竹之乱耳,无案牍之劳形。 4【暗】①愚昧,糊涂。例1、水府幽深,寡人暗昧,夫子不远千里,将有为乎?(《柳毅传》) 例2、刘璋暗弱。(《三国志·隆中对》,昏庸无能,胆小懦弱。)例3、兼听则明,偏信则暗。 ②悄悄地,默默地。寻声暗问弹者谁?(《琵琶行》)群书万卷常暗诵。(杜甫《可叹》) ③私下里,不公开的;隐蔽地,隐藏不露的。例1、明察暗访例2、龙门水尤湍急,多暗石。 5【媪】①对老年妇女的尊称。老臣以媪为长安君计短也。(《触龙说赵太后》)②泛指妇女。其父郑季,为吏,给事平阳侯家,与侯妾卫媪通,生青。(《史记·卫将军骠骑列传》) B 6【拔】①攻取,攻下。例1、其后秦伐赵,拔石城。(《廉颇蔺相如列传》)例2、汉乃进军攻广都,拔之。(2008江苏卷,吴汉挥师直攻广都,迅速攻克。) ②突出,超出。例1、天姥连天向天横,势拔五岳掩赤城。出类拔萃。例2、吾读严子祺先之文,深叹其能矫然拔俗也。(2011湖南卷,) ③提拔。山涛作冀州(的长官),甄(审查)拔三十余人。 7【罢】①停止,结束。例1、于是罢酒,侯生遂为上客。(《史记·信陵君窃符救赵》)例 2、曲罢曾教善才服,妆成每被秋娘妒。例 3、语罢暮天钟。 ②散,散集。罢市。

相关主题