搜档网
当前位置:搜档网 › 人细小病毒B19的环介导等温扩增快速检测方法的建立

人细小病毒B19的环介导等温扩增快速检测方法的建立

人细小病毒B19的环介导等温扩增快速检测方法的建立
人细小病毒B19的环介导等温扩增快速检测方法的建立

恒温扩增技术综述

摘要:恒温扩增技术是继PCR技术后发展起来的一门新型的体外核酸扩增技术。目前主要的恒温扩增技术有:滚环核酸扩增、环介导等温扩增、链替代扩增、依赖核酸序列扩增和解链酶扩增。它们都具有共同的特点:恒温、高效、特异、不需要特殊的仪器设备。本文就现阶段恒温扩增技术的特点及其在动物疫病检测中的应用情况和前景做一综述。 关键词:恒温扩增;PCR 引言: 近年来,随着分子生物学技术的迅速发展,基于核酸检测的诊断方法已大量建立并广泛应用于动物疾病的实验室检测中,恒温扩增技术就是在此背景下出现的。与其它的核酸扩增技术相比,恒温扩增有快速、高效、特异的优点且无需专用设备。所以它一经出现就被许多学者认为是一种有可能与PCR 媲美的检测方法,目前主要的恒温扩增技术有:滚环核酸扩增(rolling circle amolification,RCA)、环介导等温扩增(loop-mediated isothermal amplification,LAMP)、链替代扩增(strand displacement amplification,SDA)、依赖核酸序列扩增(nucleicacid sequence based amplification,NASBA)和解链酶扩增(helix dependent amplification,HAD),这些技术各有特点,这也决定了它们在动物疾病检测中的应用情况,下面就它们的原理、特点及其在动物疫病检测中的应用情况进行综述。 1滚环核酸扩增 1. 1 滚环核酸扩增的原理 滚环核酸扩增(rolling circleamolification, RCA)是通过借鉴病原生物体滚环复制DNA 的方式而提出的[1],可分为线性扩增与指数扩增两种形式。线性RCA 是引物结合到环状DNA 上后,在DNA 聚合酶作用下被延伸,产物是具有大量重复序列(与环状DNA 完全互补)的线状单链。线性RCA 用于靶核酸扩增仅限于一些具有环状核酸的病毒、质粒和环状染色体,线性扩增倍数为105。指数RCA 原理与线性RCA 相同,采用与环状DNA 序列完全一致的第二种引物,该引物与第一次线性RCA 产物结合并酶促延伸,其产物又作为第一种探针 的模板,这样一来在很短的时间内(1h),产物呈指数递增。指数RCA 可用于非

核酸环介导等温扩增技术原理及引物设计与实例

核酸环介导等温扩增技术原理及引物设计与实例 1.LAMP引物的设计: LAMP引物的设计主要是针对靶基因的六个不同的区域,基于靶基因3’ 端的F 3c、F2c和Flc区以及5’ 端的Bl、B2和B3区等6个不同的位点设计4种引物。 FIP(Forward Inner Primer):上游内部引物,由F2区和F1C区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基因5’端的Flc区域序列相同。 F3引物:上游外部引物(Forward Outer Primer),由F3区组成,并与靶基因 的F3c区域互补。 BIP引物:下游内部引物(Backward Inner Primer ),由B1C和B2区域组成,B2区与靶基因3’ 端的B2c区域互补,B1C域与靶基因5’端的Blc区域序列相同。 B3引物:下游外部引物(Backward Outer Primer ),由B3区域组成,和靶基 因的B3c区域互补。 如图所示:

2.扩增原理 60—65℃是双链DNA复性及延伸的中间温度,DNA在65℃左右处于动态平衡状态。因此,DNA在此温度下合成是可能的。利用4种特异引物依靠一种高活性链置换DNA聚合酶。使得链置换DNA合成在不停地自我循环。扩增分两个阶段。 第1阶段为起始阶段,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链。上游内部引物FIP的F2序列首先与模板F2c 结合(如图B所示),在链置换型DNA聚合酶的作用下向前延伸启动链置换合成。外部引物F3与模板F3c结合并延伸,置换出完整的FIP连接的互补单链(如图C 所示)。FIP上的F1c与此单链上的Fl为互补结构。自我碱基配对形成环状结构(如图C所示)。以此链为模板。下游引物BIP与B3先后启动类似于FIP和F3的合成,形成哑铃状结构的单链。迅速以3’末端的Fl区段为起点.以自身为模板,进行DNA合成延伸形成茎环状结构。该结构是LAMP基因扩增循环的起始结构。

环介导等温扩增技术快速检测结核分枝杆菌核酸.

文章编号:1001-764X(201105-378-03 ·研究生园地·环介导等温扩增技术快速检测结核分枝杆菌核酸* 沈会平1,张耀祺1,杨坚2,石磊1,陈涛3,李国周4,赵红波5,莫自耀5(1.华南理工大学轻工与食品学院,广州510640;2.迪澳生物科技有限公司,广州510663;3.广东省结核病防治研究所,广州510630;4.东莞市慢性病防治院,广东东莞 523008;5.广州医学院呼吸疾病国家重点实验室,广州510230 摘要:目的建立一种快速准确的检测结核分枝杆菌(MTB核酸的环介导等温扩增(LAMP方法。方法以重复插入序列IS6110为目的基因,设计LAMP引物,特异检测MTB核酸。用本法与痰涂片抗酸染色镜检法、实时荧光PCR法对100例可疑患者痰标本进行对比检查。结果LAMP法特异性强,仅扩增MTB复合群核酸;灵敏度高,检测限达100fg;而实时荧光PCR 检测限为1pg。对100例疑似结核病患者痰液标本检测,涂片抗酸染色法、LAMP法、实时荧光PCR法的阳性率分别为28%、39%和38%。结论本研究建立的LAMP方法检测MTB核酸特异性强、灵敏度高、时间短且操作简便,有望成为临床快速检测MTB的新方法。 关键词:结核分枝杆菌;环介导等温扩增法;IS6110基因;实时浊度仪 中图分类号:R378.91文献标志码:A Rapid detection for Mycobacterium tuberculosis by loop-mediated isothermal amplification SHEN Hui-ping1,ZHANG Yao-qi1,YANG Jian2,SHI Lei1,CHEN Tao3,LI Guo-zhou4,ZHAO Hong-bo5,MO Zi-yao5(1.College of Light Industry and Food Science,South China University of Technology,Guangzhou510640,Guangdong;2.Diao Bio-Technology Co.Ltd,Guangzhou510663,Guangdong;3.Guangdong Research Institute for Mycobacterium tuberculosis Control,Guangzhou510630, Guangdong;4.Dongguan Hospital for Chronic

核酸环介导等温扩增技术

作者单位:430030武汉,华中科技大学同济医学院(蔡哲钧、冯杰雄);310006杭州,浙江大学医学院(朱圣禾)?综述? 核酸环介导等温扩增技术 蔡哲钧综述 冯杰雄 朱圣禾审校 【摘要】 介绍环介导等温扩增技术的基本原理、特点及应用前景。环介导等温扩增技术具有简单、快速、特异性强和扩增效率高等特点,目前可检测乙型肝炎病毒、流感病毒、疱疹病毒、水痘2带状疱疹病毒、腮腺炎病毒、麻疹病毒、腺病毒、SARS冠状病毒、呼吸道合胞病毒、西尼罗河病毒、结核分支杆菌、痢疾志贺菌、大肠杆菌、螺旋体、肺炎链球菌和耶氏菌等。 【关键词】 核酸类; 基因扩增 上世纪90年代以来,出现了几种新的核酸扩增方法:核酸等温扩增法(nucleic acid sequence2based amplification,NAS2BA)、自序列复制法(self2sus2 tained sequence replication,3SR)和链置换扩增法(st rand displacement amplification,SDA)等。Noto2 mi等[1]于2000年开发了一种新颖的恒温核酸扩增方法,即环介导等温扩增法(loop2mediated isot hermal amplification,LAM P),其特点是针对靶基因的6个区域设计4种特异引物,利用一种链置换DNA聚合酶(Bst DNA polymerase)在等温条件(65℃左右)保温几十分钟,即可完成核酸扩增反应。不需要模板的热变性、长时间温度循环、繁琐的电泳、紫外观察等过程。LAM P是一种崭新的DNA扩增方法,具有简单、快速、特异性强的特点,具有替代PCR方法的可能性。现将该项技术的研究进展作一综述。 L AM P法的原理 该方法主要是利用4种不同的特异性引物识别靶基因的6个特定区域,且可在等温条件进行扩增反应。基因的扩增和产物的检测可一步完成,扩增效率高,可在15~60min扩增109~1010倍;特异性高,所有靶基因序列的检测可只通过扩增产物的有、无来判别。有、无扩增反应是利用荧光定量PCR仪检测反应的荧光强度或利用核酸扩增过程中产生的焦磷酸镁沉淀反应用浊度仪检测沉淀浊度来判定的[2]。 1.引物的设计:基于靶基因3′端的F3c、F2c和F1c区以及5′端的B1、B2和B3区等6个不同的位点设计4种引物。FIP引物:上游内部引物,由F2区组成,F2区与靶基因3′端的F2c区域互补,与靶基因5′端的F1c区域序列相同。F3引物:上游外部引物,由F3区组成,并与靶基因的F3c区域互补。B IP引物:下游内部引物,由B2区组成,B2区与靶基因3′端的B2c区域互补,与靶基因5′端的B1c区域序列相同。 B3引物:下游外部引物,由B3区域组成,和靶基因的B3c区域互补。 2.扩增原理:DNA在65℃左右处于动态平衡状态,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链。在链置换型DNA聚合酶的作用下,以FIP引物F2区段的3′末端为起点,与模板DNA互补序列配对,启动链置换DNA合成。F3引物与F2c前端F3c序列互补,以3′末端为起点,通过链置换型DNA聚合酶的作用,一边置换先头FIP引物合成的DNA链,一边合成自身DNA,如此向前延伸。最终F3引物合成而得的DNA 链与模板DNA形成双链。由FIP引物先合成的DNA链被F3引物进行链置换产生一单链,这条单链在5′末端存在互补的F1c和F1区段,于是发生自我碱基配对,形成环状结构。同时,BIP引物同该单链杂交结合,以B IP引物的3′端为起点,合成互补链,在此过程中环状结构被打开。接着,类似于F3,B3引物从B IP引物外侧插入,进行碱基配对,以3′端为起点,在聚合酶的作用下,合成新的互补链。通过上述两过程,形成双链DNA。而被置换的单链DNA两端存在互补序列,自然发生自我碱基配对,形成环状结构,于是整条链呈现哑铃状结构。该结构是LAM P法基因扩增循环的起始结构。至此为止的所有过程都是为了形成L AM P法基因扩增循环的起点结构。LAM P 法基因扩增循环:首先在哑铃状结构中,以3′末端的F1区段为起点,以自身为模板,进行DNA合成延伸。与此同时,FIP引物F2与环上单链F2c杂交,启动新一轮链置换反应。解离由F1区段合成的双链核酸。同样,在解离出的单链核酸上也会形成环状结构。在环状结构上存在单链形式B2c,B IP引物上的B2与其杂交,启动新一轮扩增。经过相同的过程,又形成环状结构。通过此过程,结果在同一条链上互补序列周而复始形成大小不一的结构[2]。 3.L AM P扩增产物的检测:(1)荧光定量检测:利用S Y BR GreenⅠ荧光染料只与双链DNA小沟结合,当它与DNA双链结合时,发出较原先强800~

相关主题