搜档网
当前位置:搜档网 › 什么是结构化网格和非结构化网格

什么是结构化网格和非结构化网格

什么是结构化网格和非结构化网格
什么是结构化网格和非结构化网格

1. 什么是结构化网格和非结构化网格

1.1结构化网格

从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。

它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。

它的主要优点是:

网格生成的速度快。

网格生成的质量好。

数据结构简单。

对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。

1.2非结构化网格

同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。

2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。

3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢?

一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。

影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。

结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。

4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。

采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的

尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理?如果采用cooper 的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢?

我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent 的时候就说can not creat a bound loop,也不清楚这是什么问题。

如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface

网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本身就会引入较大的数值误差。

EquiSize Skew(尺寸扭曲率)和EquiAngle Skew(角度扭曲率)是评判网格质量最主要标准,其值越小,网格质量越高

一般来说,Fluent要求扭曲率3D小于0.85,2D小于0.75。

关于复杂模型和gambit中的实体及虚体

模型比较复杂,是在pro/E中建的模,然后用igs导入gambit,不过这样就产生了很多碎线和碎面并且在一些面交界的地方还存在尖角。我曾经做成功过把它们统统merge成一个虚面,中间设置了一个可以容忍尖角的参数,也可以划分网格,但把生成的msh文件导入fluent就会出错,这是virtual geometry的原因还是因为尖角的原因?还有,virtual geometry和普通的真实的几何体到底有什么区别?好像最大的区别是virtual geometry不能进行布尔操作,布尔操作(boolean operation)又是什么?使用virtual geometry需要注意哪些问题?virtual geometry是很头疼的问题。你把它们统统merge成一个虚面

按理说全是虚的也是可以算的。可能是因为尖角的原因,虚实最大差别:是virtual geometry不能进行布尔操作,boolean operation即是并

对于复杂外形的网格生成,不可避免的会用到virtual geometry,virtual face ,和virtual edge等,

1。作网格的时候,把所有的面全部合成一个虚面的做法不好,特别是对于复杂外形的网格生成,你最好在模型变化剧烈的地方多分几个面,这样会更有效的控制网格能够在模型表面曲率比较大的地方能够生成规则的结构或者非结构网格。2对于你输入gambit的时候产生很多碎片的问题,你可以适当的把proe里面的模型精度和它的公差降低,因为gambit的建模工具精度本事就不高。

3。布尔运算就是对于面与面,体与体的联合,相减等运算。这个在所有的cad 建模过程中是经常见到的问题。

4。对于虚体生成的计算网格,和实体生成的计算网格,在计算的时候没有区别,关键是看你网格生成的质量如何,与实体虚体无关。

我在作复杂模型计算的时候,大部分都是用的虚体,特别是从其他的建模软件里面导进来的复杂模型,基本上不能够生成实体。

至于计算的效果如何,那是你对于fluent的设置问题和网格的质量问题,与模型无关。

可以用gambit里面的check功能检查一下你的网格质量,看看质量怎么样

实体、实面与虚体、虚面的区别

在建模中,经常会遇到实...与虚...,而且虚体的计算域好像也可以进行计算并得到所需的结果,对二者的根本区别及在功能上的不同

对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格

--------------------------------------------------------------------------------

gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点:

1。实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split等功能。

2,实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,gambit的建模和网格生成的灵活性增加了很多。

3。在网格生成的过程中,如果有几个相对比较评弹的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量

fluent必知的几个关系及定义

fluent中几个压力之间的关系及定义

在fluent中会出现这么几个压力:

Static pressure(静压)Dynamic pressure(动压)Total pressure(总压)

这几个压力是空气动力学的概念,它们之间的关系为:

Total pressure(总压)= Static pressure(静压z)+ Dynamic pressure(动压)

滞止压力等于总压(因为滞止压力就是速度为0时的压力,此时动压为0.)

Static pressure(静压)就是你测量的,比如你现在测量空气压力是一个大气压

而在fluent中,又定义了两个压力:

Absolute pressure(绝对压力)

Relative pressure(参考压力)

还有两个压力:

operating pressure(操作压力)

gauge pressure(表压)

它们之间的关系为:

--------------------------------------------------------------------------------

Absolute pressure(绝对压力)= operating pressure(操作压力)+ gauge pressure(表压

结构化网格和非结构化网格

1. 什么是结构化网格和非结构化网格 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。它的主要优点是: 网格生成的速度快。 网格生成的质量好。 数据结构简单。 对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。 3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢? 一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。 影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。

结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。 4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。 采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理?如果采用cooper 的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢? 我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent 的时候就说can not creat a bound loop,也不清楚这是什么问题。 如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface 网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本身就会引入较大的数值误差。 EquiSize Skew(尺寸扭曲率)和EquiAngle Skew(角度扭曲率)是评判网格质量最主要标准,其值越小,网格质量越高 一般来说,Fluent要求扭曲率3D小于0.85,2D小于0.75。 关于复杂模型和gambit中的实体及虚体 模型比较复杂,是在pro/E中建的模,然后用igs导入gambit,不过这样就产生了很多碎线和碎面并且在一些面交界的地方还存在尖角。我曾经做成功过把它们统统merge成一个虚面,中间设置了一个可以容忍尖角的参数,也可以划分网格,但把生成的msh文件导入fluent就会出错,这是virtual geometry的原因还是因为尖角的原因?还有,virtual geometry和普通的真实的几何体到底有什么区别?好像最大的区别是virtual geometry不能进行布尔操作,布尔操作(boolean operation)又是什么?使用virtual geometry需要注意哪些问题?virtual geometry是很头疼的问题。你把它们统统merge成一个虚面 按理说全是虚的也是可以算的。可能是因为尖角的原因,虚实最大差别:是virtual geometry不能进行布尔操作,boolean operation即是并 对于复杂外形的网格生成,不可避免的会用到virtual geometry,virtual face ,和virtual edge等, 1。作网格的时候,把所有的面全部合成一个虚面的做法不好,特别是对于复杂外形的网格生成,你最好在模型变化剧烈的地方多分几个面,这样会更有效的控制网格能够在模型表面曲率比较大的地方能够生成规则的结构或者非结构网格。

关于结构化网格和非结构网格的适用性问题

? 傲雪论坛 ? 『 Fluent 专版 』 打印话题 寄给朋友 作者 关于结构化网格和非结构网格的适用性问题 [精华] 翱翔蓝天 发帖: 22 积分: 0 雪币: 22 于 2005-07-23 22:58 有些前辈认为,数值计算中应采用结构化网格,如果非结构网格则计算结果将“惨不忍睹”。搞压气机计算的同行也认为,必须用结构化网格。然而, 对复杂的计算域,如果采用结构化网格必然造成网格质量的急剧下降,扭曲加大等问题。我觉得这时,不如采用非结构网格。诸位,请提出自己的意见 waterstone 我为人人,人人为我 发帖: 78 积分: 0 雪币: 78 于 2005-07-24 09:51 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的精度,就要看 非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求 解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 liuhuafei 于 2005-07-25 13:53

发帖: 872 积分: 6 雪币: 158 来自: 上海 waterstone wrote: 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的 精度,就要看非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非 结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。 例如同样的2d 的10×10的正交网格,fluent 采用非结构化方式对网格编号,另一种软件按结构化网格处理,如果其它条件相同,二者的精度应该是一样的。 我们通常所说的非结构化网格,第一映象就是网格质量差,不正交的,编排无规律的网格的三角形网格或四面体网格,实际上一个二维区域的三角形网格,如果控制得好(如相邻控制 体中心的连线与公共边基本接近正交的话),其不结构化网格(网格正交性好)的精度是一致的 翱翔蓝天 发帖: 22 积分: 雪币: 22 于 2005-07-25 23:00 谢了,有收获,受益匪浅 edwardzhu 发帖: 60 积分: 1 于 2005-08-05 11:08 听楼上一席话,胜读一年书。

结构化网格与非结构化网格

对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 结构化网格的生成技术只要有: 代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。PDE网格生成方法。主要用于空间曲面网格的生成。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 非结构化网格技术从六十年代开始得到了发展,主要是弥补结构化网格不能够解决任意形状和任意连通区域的网格剖分的缺欠.到90年代时,非结构化网格的文献达到了它的高峰时期.由于非结构化网格的生成技术比较复杂,随着人们对求解区域的复杂性的不断提高,对非结构化网格生成技术的要求越来越高.从现在的文献调查的情况来看,非结构化网格生成技术中只有平面三角形的自动生成技术比较成熟(边界的恢复问题仍然是一个难题,现在正在广泛讨论),平面四边形网格的生成技术正在走向成熟。而空间任意曲面的三角形、四边形网格的生成,三维任意几何形状实体的四面体网格和六面体网格的生成技术还远远没有达到成熟。需要解决的问题还非常多。主要的困难是从二维到三维以后,待剖分网格的空间区非常复杂,除四面体单元以外,很难生成同一种类型的网格。需要各种网格形式之间的过度,如金字塔形,五面体形等等。 非结构化网格技术的分类,可以根据应用的领域分为应用于差分法的网格生成技术(常常成为grid generation technology)和应用于有限元方法中的网格生成技术(常常成为mesh generation technology),应用于差分计算领域的网格要除了要满足区域的几何形状要求以外,还要满足某些特殊的性质(如垂直正交,与流线平行正交等),因而从技术实现上来说就更困难一些。基于有限元方法的网格生成技术相对非常自由,对生成的网格只要满足一些形状

结构和非结构网格

CFD网格的分类,如果按照构成形式分,可以分为结构化和非结构化 结构化:只能有六面体一种网格单元,六面体顾名思义,也就是有六个面,但这里要区分一下六 面体和长方体。长方体(也就是所有边都是两两正交的六面体)是最理想完美的六面体网格。但如 果边边不是正交,一般就说网格单元有扭曲(skewed). 但绝大多数情况下,是不可能得到完全没有 扭曲的六面体网格的。一般用skewness来评估网格的质量,sknewness=V/(a*b*c). 这里V是网格 的体积,a,b,c是六面体长,宽和斜边。sknewness越接近1,网格质量就越好。很明显对于长 方体,sknewness=1. 那些扭曲很厉害的网格,sknewness很小。一般说如果所有网格sknewness>0.1也就可以了。结构化网格是有分区的。简单说就是每一个六面体单元是有它的坐标的,这些坐标用,分区号码(B),I,J,K四个数字代表的。区和区之间有数据交换。比如一个单元,它的属性是B=1, I=2,J=3,K=4。其实整个结构化单元的概念就是CFD计算从物理空间到计算空间mapping的概念。I,J,K可以认为是空间x,y,z在结构化网格结构中的变量。 非机构化:可以是多种形状,四面体(也就三角的形状),六面体,棱形。对任何网格,都是希 望网格单元越规则越好,比如六面体希望是长方形,对于四面体,高质量的四面体网格就是正四 面体。sknewness的概念这里同样适用,sknewness越小,网格形状相比正方形或者正四面体就越 扭曲。越接近1就越好。 很明显非结构化网格也可以是六面体,但非结构化六面体网格没有什么B,IJK的概念,他们就是充 满整个空间。 对于复杂形状,结构化网格比较难以生成。主要是生成时候要建立拓扑,拓扑是个外来词,英语 是topology,所以不要试图从字面上来理解它的意思。其实拓扑就是指一种有点和线组成的结构。工人建房子,需要先搭房粱,立房柱子,然后再砌砖头。拓扑其实就是房子的结构。这么理解拓 扑比较容易些,以后认识多了,就能彻底通了。 生成结构化网格的软件gridgen,icem等等都是需要你去建立拓扑,也就是结构,然后软件好根据 你的机构来建立网格,或者砌砖头,呵呵。 非结构化网格的生成相对简单,四面体网格基本就是简单的填充。非结构化六面体网格生成还有 些复杂的。但仍然比结构化的建立拓扑简单多。比如 gambit的非结构化六面体网格是建立在从一 个面到另外一个面扫描(sweep)的基础上的。Numeca公司的hexpress的非结构化六面体网格是用 的一种吸附的方法。反正你还是要花点功夫。 另外一点就是,结构化网格可以直接应与于各种非结构化网格的CFD软件,比如你在gridgen里 面生成了一个结构化网格,用fluent读入就可以了。fluent是非结构化网格CFD软件,它会忽略 那些结构化网格的结构信息(也就是B,I,J,K),当成简单的非结构网格读入。非结构化六面体网格 就不能用在结构化网格的CFD求解器了. 结构化网格仍然是CFD工程师的首选。非结构化六面体网格也还凑合,四面体网格我就不喜欢了。数量多,计算慢,后处理难看。简单说,如果非结构化即快又好,结构化网格早就被淘汰了。总 结一下,

Fluent 结构化网格与非结构化网格

简单地说:结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格再拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。 非结构三角形网格方法 复杂外形网格生成的第二方向是最近应用比较广泛的非结构三角形网格方法,它利用三角形(二维)或四面体(三维)在定义复杂外形时的灵活性,以Delaunay法或推进波阵面法为基础,全部采用三角形(四面体)来填充二维(三维)空间,它消除了结构网格中节点的结构性限制,节点和单元的分可控性好,因而能较好地处理边界,适用于模拟真实复杂外型。非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格,很容易控制网格的大小和节点的密度,它采用随机的数据结构有利于进行网格自适应。一旦在边界上指定网格的分布,在边界之间可以自动生成网格,无需分块或用户的干预,而且不需要在子域之间传递信息。因而,近年来非结构网格方法受到了高度的重视,有了很大发展。 非结构网格方法的一个不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。 非结构网格方法的另一个不利之处就是对于相同的物理空间,网格填充效率不高,在满足同样流场计算条件的情况下,它产生的网格数量要比结构网格的数量大得多(一个长方体要划分为5个四面体)。随机的数据结构也增加了流场参数交换的时间,因此此方法要求较大的计算机内存,计算时间长。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处比较难以处理。 非结构网格与结构网格一样都属于贴体网格,模型表面网格的好坏直接关系到空间网格的质量,因而它们的模型表面网格必须同时与网格拓扑结构和当地的几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面作出让步,因而往往顾此失彼。因此,在生成非结构网格和结构网格时,处理模型表面又成为一个关键而费时的工作。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。个人感觉采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。事实上,目前有的非结构网格软件,也开始借鉴结构网格的优点,在壁面处进行了类似结构网格的处理,如cfx的壁面加密功能。 一般来说,网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比较三角形网格要好。不过即便是四边形网格,fluent也是按照无结构网格进行处理的。 非结构和结构网格的计算结果如何取决于算法,除非网格实在惨不忍睹。我觉得现在已发展到了基于结构网格与非结构网格上的计算,各自的优势相差越来越不是很明显了。

结构化网格和非结构化网格特点

关于网格的经典文献你可以参看thomphson的Numecrial grid generation那本书,讲的有pde 和参数化代数方法.书后附有算例和代码. NURBS参数化曲线和曲面在自由曲线和曲面的cad造型广泛应用,也见到国内外的文献提到用这种方法生成网格,国内可能还没用这种方法来生成网格的实例. 如果网格生成算法感兴趣,可以看看。 关于结构和非结构网格,各有应用场合。个人比较喜欢结构网格。通过观察IDEAS中结构网格生成的步骤及要求,我觉得对于复杂的几何体,生成结构网格也是可以的,前提是采用适当的partition方法,将几何体分解成规则的基本几何体。而分解几何体是几何建模的任务。 个人感觉:生成网格的软件名目繁多,但是网格生成基本原理和算法可以归成下列所述的类别。 主要差别可能在于辅助的几何建模方法不同。网格生成应当辅以几何建模,只有与几何建模结合,才可以对复杂几何体生成高质量的网格。 网格生成的另外一个要素就是物体的参数化表示技术,当采用适当的参数化表示实体表面时,同样的网格生成技术有时候可以得到非常好的网格。NURBS是我所知道的CDA/CAM中应用较为广泛的构造复杂曲面的参数化表示技术。 不知道哪位朋友可以提供一些关于网格生成基本算法的源代码。 对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等 等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过 计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有 限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实 现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对 比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处 于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际 的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速 发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就 显得力不从心了。 结构化网格的生成技术只要有:代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。

结构化网格和非结构化网格

结构化网格和非结构化网格 1. 什么是结构化网格和非结构化网格 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。它的主要优点是: 网格生成的速度快。 网格生成的质量好。 数据结构简单。 对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。

3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢, 一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。 影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。 结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。 4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。 采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理,如果采用cooper的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢, 我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent 的时候就说can not creat a bound loop,也不清楚这是什么问题。如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface 网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本

结构化网格和非结构化网格

结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格在拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 非结构网格不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处难以处理。 到空间网格的质量, 几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面做出让步,因而往往顾此失彼。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。目前有的非结构网格软件,也开始借鉴结构网格,如cfx的壁面加密功能。 网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比三角形网格要好。不过即便是四边形网格,fluent 也是按照无结构网格进行处理的。主要是看流向是否与网格平行如果是平行的则计算中不容易出现假扩散,计算的结果就好,但是成角度的时候计算的结果搞不好就有扩散现象,所以不在于结构和非结构。 非结构和结构网格的计算结果如何取决于算法。GRIDGEN在结构网格方面有着强大的生命力,很多非常复杂的几何形状用它没问题;基于非结构网格方面的计算格式得到的结果的准确度也不次于基于结构网格的结果了。

NS方程的非结构化网格方法及其差分格式

西安交通大学学报 JOURNAL OF XI'AN JIAOTONG UNIVERSITY 1999年 第33卷 第9期 Vol.33 No.9  1999 NS方程的非结构化网格方法及其差分格式 张楚华, 谷传纲, 苗永淼 摘要: 采用同位非结构化网格上的有限体积法,对Navier-Stokes方程的SIMPLE算法及差分格式进行了研究.提出了适用于非结构化网格的不用求解单元顶点变量值的二阶混合差分格式.该格式的优点在于:1)减少了计算工作量;2)避免了普通混合差分格式因使用简单的一阶迎风差分格式所引起的网格界面方向相关性的问题.最后,采用三角形网格,利用提出的方法及差分格式,对方腔内的驱动层流及绕翼型湍流进行了数值计算,计算结果与基准解或实验值的符合程度优于普通混合差分格式. 关键词: 非结构化网格;差分格式;有限体积法 中国图书资料分类法分类号: O357 Unstructured Grid Method and Its Differential Schemes for NS Equations Zhang Chuhua, Gu Chuangang, Miao Yongmiao (Xi′an Jiaotong University, Xi′an 710049, China)Abstract: The SIMPLE algorithm and differential schemes are used for solving Navier-Stokes equations through finite volume method with collocated unstructured grid. A two order hybrid scheme without the necessity of computing the variables at elements vertices is presented. Compared with the ordinary hybrid scheme, the advantages are :1)computation is reduced; 2) grid dependency problem, which is resulted from one order upwind interpolation in ordinary hybrid scheme on unstructured grid, can be avoided. Finally, the proposed method and schemes are used to calculate laminar flow in a lid-driven cavity and turbulent flow around an airfoil. The numerical results fit benchmark solutions and experiments better than those calculated through ordinary hybrid scheme. Keywords: unstructured grid;differential scheme;finite volume method 长期以来,人们一直认为有限差分法(包括有限体积法)对复杂形状流动问题的处理能力不如有限元法,近年来发展起来的非结构化网格方法[1,2]正逐步改变这一看法.在非结构化网格上利用有限体积法来求解流动方程, 既能提高有限体积法处理复杂形状流动问题的能力,又能保持离散方程的局部守恒特性,而后者对数值求解非线性偏微分方程的收敛过程有时是至关重要的. 在非结构化网格上采用有限体积法求解流场,是计算流体动力学中很有发展前途的研究方向.当然这一领域仍然有一些棘手的问题亟待解决和完善,其中主要包括:

Fluent结构化网格与非结构化网格

Fluent结构化网格与非结构化网格简单地说:结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格再拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。 非结构三角形网格方法 复杂外形网格生成的第二方向是最近应用比较广泛的非结构三角形网格方法,它利用三角形(二维)或四面体(三维)在定义复杂外形时的灵活性,以Delaunay法或推进波阵面法为基础,全部采用三角形(四面体)来填充二维(三维)空间,它消除了结构网格中节点的结构性限制,节点和单元的分可控性好,因而能较好地处理边界,适用于模拟真实复杂外型。非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格,很容易控制网格的大小和节点的密度,它采用随机的数据结构有利于进行网格自适应。一旦在边界上指定网格的分布,在边界之间可以自动生成网格,无需分块或用户的干预,而且不需要在子域之间传递信息。因而,近年来非结构网格方法受到了高度的重视,有了很大发展。 非结构网格方法的一个不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物

什么是结构化网格和非结构化网格

什么是结构化网格和非结构化网格 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 它的主要优点是: 网格生成的速度快。 网格生成的质量好。 数据结构简单。 对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。 3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢? 一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。 影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。 4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。 采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理?如果采用cooper的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢? 我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent的时候就说can not creat a bound loop,也不清楚这是什么问题。 如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface 网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本身就会引入较大的数值误差。

结构化网格和非结构网格的适用性问题

关于结构化网格和非结构网格的适用性问题 有些前辈认为,数值计算中应采用结构化网格,如果非结构网格则计算结果将“惨不忍睹”。搞压气机计算的同行也认为,必须用结构化网格。然而,对复杂的计算域,如果采用结构化网格必然造成网格质量的急剧下降,扭曲加大等问题,这时是不是应该采用非结构网格?对此问题的看法是: 1、非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的精度,就要看非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent软件而言,它是用体积积分法求解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent中,进行数值计算时都是按非结构网格来处理,所以在fluent中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!以上仅代表个人看法。 2、计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。例如同样的2d的10×10的正交网格,fluent 采用非结构化方式对网格编号,另一种软件按结构化网格处理,如果其它条件相同,二者的精度应该是一样的。 3、我们通常所说的非结构化网格,第一映象就是网格质量差,不正交的,编排无规律的网格的三角形网格或四面体网格,实际上一个二维区域的三角形网格,如果控制得好(如相邻控制体中心的连线与公共边基本接近正交的话),其与结构化网格(网格正交性好)的精度是一致的。 4、我个人感觉采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。事实上,目前有的非结构网格软件,也开始借鉴结构网格的优点,在壁面处进行了类似结构网格的处理,如cfx的壁面加密功能。 5、一般来说,网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比较三角形网格要好。不过即便是四边形网格,fluent也是按照无结构网格进行处理的。 6、我觉得现在已发展到了基于结构网格与非结构网格上的计算,各自的优势相差越来越不是很明显了,各自己在不断的完善: (1)GRIDGEN在结构网格方面有着强大的生命力,很多非常复杂的几何形状用它没问题。 (2)基于非结构网格方面的计算格式得到的结果的准确度也不次于基于结构网格的结果了。

门主ICEM非结构网格1四面体网格

四面体网格生成一般流程 1、建立body 2、Global Mesh Setup(全局网格设定) ●全局网格尺寸 ●体网格尺寸:设定体网格类型及生成方法 3、Mesh Size for Parts(Part网格尺寸设定) 4、Surface Mesh Setup(面网格尺寸设定) 5、Curve Mesh Parameters(曲线网格参数设定) 6、Create Mesh Density(设定网格加密区) 7、Compute Mesh(计算生成网格) 8、Smooth Mesh Globally(网格光顺) 9、检查网格质量

示例1、运动体倾斜入水 几何模型如下图所示 步骤1 建立body 选择介于运动体与大圆柱之间屏幕的任意两个位置,单击中键确定。 (说明:在想要生成非结构网格的计算域建立Body,ICEM会根据这个点搜索包围它的最小闭合区域作为一个计算域。) 步骤2 定义全局网格尺寸 本例中定义为32 (说明: 1、最大网格尺寸最好取值为2的指数幂(帮助文 档建议) 2、实际网格生成的最大尺寸等于Scale factor与 Max element的乘积)

步骤3 定义网格类型及生成方法 选择网格类型Tetra/Mixed,生成方法为 Robust(Octree)。 (说明: 1、Tetra/Mixed默认情况下生成四面体网格,通过 设定可以创建三棱柱边界层网格(Prism),也可 以生成以六面体为主的体网格(Hexcore) 2、Robust(Octree)方法使用八叉树方法生成四面 体网格,是一种自上而下的网格生成方法,即 先生成体网格,后生成面网格。一般保持默认。) 步骤4 定义Part网格尺寸 本例中将弹体表面分别定义为三个part,最大网格尺寸分别定义为2、2、1。 (说明;由于本例中Part所定义的内容即为面,所以省略下一步的“表面网格设定”) 步骤 ..5 .建立加密区 ..... 本例中运动体尾部和头部X方向坐标分别为160、200,半径为4,要对运动体周围进行加密。 1、创建点(140,0,0)、(220,0,0) 2、单击图示Create Mesh Density按钮,在size处输入4,width处输入4,ratio 处输入1.2,选择上一步创建好的两点,Apply生成加密区如右下图黄色线。

结构与非结构网格之间的转换及应用

Applications Of Transformation Of Structured To Unstructured Meshes Liu Jing1, 2,Zhang Min1,John C. Chai2,Xu Bin1 1School of Power Eng.,Nanjing University of Science & Technology,Nanjing (210094) 2School of Mechanical and Aero spacing Eng.,Nanyang Tech. University,Singapore (639798) E-mail:mz2455@https://www.sodocs.net/doc/a113418619.html, Abstract The transformation of structured meshes to unstructured meshes is a branch of mesh generation technology. We can obtain the advantages of both grids that structure grids have the characteristics of convergence quickly and unstructured grids have the characteristics of matching sophisticated calculating domains well from this conversion. Meanwhile, it is expanding the widespread useful application of unstructured mesh codes. This paper gave the models of the transformations of the orthogonal meshes and body-fitted meshes. And, the heat conduction equation was solved using the based cell finite volume method and the secondary order accuracy. Finally, a couple of three dimension examples of heat transfer that included different geometries and boundary conditions were given. Therefore, the procedure was validated exactly and actually. Keywords:structured grids/meshes,unstructured grids/meshes,heat conduction 1.Introduction The first step of numerical simulation is mesh generation that is cutting the continuous computational space into subdomains and identifying each node. The accuracy and efficiency of engineering numerical simulation mainly defend on the meshes and algorisms. In generally, all kind of mesh has its advantages and disadvantages; also the every numerical method has its constraints. Therefore, successful numerical simulation can only be done on the conditions that meshes and algorisms match perfectly [1]. Two commonly kinds of mesh are structured and unstructured mesh/grid. The former characteristic is that the relationship between nodes is fixed and implied in the mesh. Thus, no special action is needed to ensure the relationship. But there don’t exists the property in unstructured mesh, so we must store the information about nodes such as volume nodes number, interfaces nodes number, and neighbor volume number[2-4] . It is stubborn to compare structured grid and unstructured grid exactly, besides considering the numerical algorism. In the brief, structured mesh has the good feature, simplex in generating, converging fast, and steady etc, while unstructured mesh can be more applicable for irregular domain, decomposing and encrypting in whole or part domain and used widely in later computation[4] . The paper takes advantage of two kinds of mesh to get fine results by the transformation between them. 2.Transformation Between Both Meshes Regular structured mesh in orthogonal coordination is the oldest, most basic and simplex generation technique, including rectangle mesh of Cartesian coordinates and curve mesh in cylindrical coordinates or spherical coordinates. No detail about this kind of mesh, but the paper based on orthogonal mesh and body-fitted grid. First, we have to get the grid nodes of coordination in three dimensions, and then transform them to unstructured grid nodes number. Finally, numerical simulation will be done based on the unstructured mesh. For the transformation, at first, select cells shape and nodes NCTYPE(I) and NCNODE(J,I), here they are vertex number and coordination value (X(I),Y(J),Z(K)) of cell, respectively. Secondly, get the surface information NFTYPE (I) and NFNODE (J, I) of the cells. Where, the node order conform right hand rule, which is, ensuring the direction of surface normal is outside the cells. At the end, storing all neighbor cells information and their boundary property by KBCC (I).

相关主题