搜档网
当前位置:搜档网 › 微弱信号检测装置(实验报告)

微弱信号检测装置(实验报告)

微弱信号检测装置(实验报告)
微弱信号检测装置(实验报告)

2012年TI杯四川省大学生电子设计竞赛

微弱信号检测装置(A题)

【本科组】

微弱信号检测装置(A题)

【本科组】

摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗

关键词:微弱信号MSP430G2553 INA2134

一系统方案设计、比较与论证

根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。

图1系统设计总流程图

图2微弱信号检测电路子流程图

1 加法器设计的选择

方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。

2 纯电阻分压网络的方案论证

方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。

方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。

3 微弱信号检测电路的方案论证

方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。

方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。

4 峰值数据采集芯片的方案论证

方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

方案二:采用TI 公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD ,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计

方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数字。但对于本设计而已,不需要显示字母,只需要显示数字。性价比低,程序设计较为复杂。

方案二:利用数码管作为显示电路,性价比高,程序设计简单,易于实现。 两种显示模块设计相比较,数码管价格便宜,实现简单,所有选择方案二。 二 理论分析与计算 1纯电阻分压网络

纯电阻分压网络一个电位器和一个固定的电阻值串联起来实现分压。将电位器的电阻值调整为100K Ω,固定电阻的阻值为1K Ω。

衰减系数为:221/)(R R R A +=,其中1R =100K Ω,2R =1K Ω,算出衰减系数值为A=101,可以满足设计要求。若因为电阻偏差很大,使得衰减系数小于100,则可以通过调整电位器增大1R 的阻值。 2 微弱信号检测电路 (1)电压跟随器

选用OP2134作为电压跟随器,输入电压等于输出电压。为了满足题目要求输入阻抗大于1MΩ以上,电压跟随器的输入阻抗值极高,可以达到此要求。 (2)同相比例放大电路

由于正弦信号和噪声信号一起叠加以后通过分压网络以后正弦信号峰值衰减到100倍,如果要检测到不失真理想无误差,必须再放大信号。放大器也是采用OP2134,同相比例放大。

如右图所示,放大比例为:

f n o n R U U R U /)(/)0(-=- , P f o U R R U ?+=)/1(

.)/1(i f o U R R U ?+=?

(3)带通滤波器 图3同相比例放大器

为了达到设计要求,要求检测出频率在500Hz ~2KHz 的信号,所以设计带通滤波器。带通滤波器是由低通滤波器和高通滤波器串联构成,对于低通滤波器有上限截止频率即为带通滤波器的上限截止频率,对于高通滤波器有下限截止频率即为带通滤波器的下限截止频率。

在本设计中,采用单个集成运放OP2340构成压控电压源二阶带通滤波电路。二阶带通滤波器电路如图(2.1)所示,电路的传输函数为:

?

??? ??++???

? ??-+++

=

21

232132

1111

)1(1121

)(R R C R s A R R R C

s s

C

R A s A f f

u 2

2o

o

o

uo

s Q

s s

Q

A ωωω++

=

(2.1)

o ω=是带通滤波器的中心角频率。1ω、2ω分别为带通滤波器的高、低截止角频率。 中心角频率:???? ??+=

21

2

3111

R R C R o ω 或)2/(10C R f ***=π (2.2)

???

? ??-++=

)1(1

1212130

f A R R R C Q

ω (2.3) 中心角频率o ω处的电压放大倍数: ?

?????+-+=

32

111)1(11R A R R R A A f f

uo (2.4)

式(2.4)中,4

5

1R R A f +

= 图4带通滤波电路 通带带宽: 12ωω-=BW 或 12f f f -=?

???

? ??-++=

=

)1(1

1212130

f A R R R C Q

BW ω (2.5) f

f BW

Q ?=

=

ω 时)0(ω<

Hz Hz f 150050020000=-=?;通带中心频率为Hz f 12505002)5002000(0=+÷-=。 假定下限截止频率为Hz f 5001=,上限截止频率为KHz f 22=,给定的电容的容量为200PF,由此可以算出所需要的电阻阻值。为了方便起见,固定阻值的电阻换成阻值较大的电位器。 高通滤波下限截止频率求出所需电阻:)1020012/(161-????=R f π 由计算得: =1R 1592356Ω

低通滤波上限截止频率求出所需电阻:)1020022/(162-????=R f π 由计算得: 2R =398089Ω (4)小信号峰值检测电路

小信号峰值检测电路也是一个放大器与外围电路构成,完成对信号幅度值的检测。 三 电路设计与程序框图 1 主要电路设计

(1)加法电路与纯电阻分压网络

加法电路由INA2134与电容组成,正负5V 提供电源,电容起到滤除超高频信号。纯电阻分压网络由一个0~200K Ω电位器和一个1K Ω固定阻值电阻组成,理论上电位器阻值≥99K Ω就可以实现分压系数100以上。如图6、图7所示:

图6 加法器电路 图7 纯电阻分压网络 (2)电压跟随电路与放大电路

左半部分是跟随器,输入电压等于输出电压,但输入阻抗可以达到1M Ω以上。右半部分由同相比例放大器与电阻电容组成,理想情况下是放大倍数与衰减系数相等,才能保证检测到不失真的微弱信号的峰值。如图8所示:

图8电压跟随电路与放大电路

(3)带通滤波电路

带通滤波电路由音频放大器OPA2340加上外围的电阻电容组成,实现选频500H z~2KHz。如图9所示:

图9 带通滤波电路

(4)小信号峰值检测电路

小信号峰值检测电路由一个放大器与外围电路组成,实现检测正弦信号峰值的检测。如图10所示:

图10 小信号峰值检测电路

(5)数码管显示电路

????

2 程序流程图

从检测电路输出的电压幅度值经MSP430G2253进行A/D数据采集,将采集的峰值数据信

号通过处理,最终通过LED数码管显示。程序的流程图如图11所示:

????

四性能指标

1 测试仪器

TDS 1002示波器、GPS-4303C函数信号发生器、数字交流毫伏表、数字式万用表

2 系统测试方法

3 测试性能概述

(1)基本要求部分

输入正弦信号频率为1KHz时,电压在200mV~2V之间变化,测得的数据如表1所示:

f1KHz电压200mV~2V测试结果

表1正弦信号频率=

(2)发挥部分

输入正弦信号频率固定为1500Hz时,电压在20mV~2V之间变化,测得的数据如表二所示:

f1500Hz,电压200mV~2V测试结果

表二正弦信号频率=

输入正弦信号的电压幅度值固定为1V,频率在500H z~2KHz之间变化,测得的数据如表三所示:

表二正弦信号电压V=1V,频率500H z~2KHz测试结果

4 可进一步改进的地方

五总结

参考文献:

[1]沈建华等著,MSP430系列16位超低功耗单片机原理与实践,北京:北京航空航天大学出版社,2010

[2]童诗白,华成英著,模拟电子技术基础,北京:高等教育出版社,2009

[3]冉莉,王民著,一种强噪声背景下微弱信号检测方法研究,信息技术,2012(2)

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

微弱信号检测技术练习思考题DOC

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

第四章 微弱信号检测技术

第四章 微弱信号检测技术 4.1 被动信号检测 被动检测是一种常用的检测系统,它已广泛应用于水下引信信号检测及 其它工业领域。在被动信号检测中,常用的时域检测方法有以下几种:①宽带检测、②相干检测、③频率随机分布正弦信号的检测技术、④时域同步平均检测与波形恢复技术、⑤相关技术等等;而在频域的检测方法主要是基于FFT 算法的谱分析技术。 4.1.1宽带检测 在有些应用场合,干扰噪声和输入信号都是一有限长的限带零均值的高 斯分布随机过程,在此情况下一般使用宽带检测技术。 4.1.1.1最佳宽带检测器 最佳宽带检测器的结构框图如下: 图4.1 在高斯噪声中检测高斯信号的最佳系统结构 图 4.1中)(ωS 是信号的功率谱密度,()ωN 是干扰噪声的功率谱密度。而 2/12/12/1)]()()[()()(ωωωωωS N N S H +=表示预选滤波的频率响应。 当信号和噪声都是限带高斯分布白噪声时,信号和噪声的差别是信号和 噪声的功率级不同,)(ωH 为常值,最佳检测器是一个平均功率检测器。从理论上说无论噪声多强,信号多弱,只要他们是平稳的,且他们的方差可准确求出来,那么总可通过比较N 和N+S,发现信号。如果过程)(t r 是各态遍历的,那么方差可通过下式计算出来。 ?-≈=t T t r dt t r T t r E )(1)]([222 σ (4.1.1) 不难看出,由于截取的样本时间是滑动的,从而图 4.1可简化为平方积分系统。由于截断T 不是无限长的,所以输出)(t Z 并不等于2r σ,而是随t 在2r σ的均

值附近起伏。对于限带白谱:起伏的存在将掩盖信号加噪声(H 1)与噪声(H 0) 的差别。所以系统的信噪比计算公式如下: )()]()([)/(202 012Z Z E Z E N S σ-= (4.1.2) 在各态遍历条件下,T 越长系统的最佳性越好。 当信号和噪声的功率谱不是白谱时,可利用的信息不仅有能量差异,而且还有谱形状的差异。此时的预选滤波器的传输函数)(ωH 的幅度特性如下: 2/12/12/1)]()()[()()(ωωωωωS N N S H += (4.1.3) 在小输入信噪比情况下: ) ()()(1)()()(2/12/12/12/1ωωωωωωN S N N S H =≈ (4.1.4) 式(4.1.4)所描述的滤波器称为厄卡特滤波器。若假设信号和噪声有相同的谱形状,则: ) (1)(2/1ωωN H = (4.1.5) 上式所描述的是一个白化滤波器,信号和噪声通过后一律变成白噪声。非白谱小信号情况下,其)(ωH 相当于一个白化滤波器和一个匹配滤波器的级联。当信号与噪声有相同形状功率谱时,匹配网络的频率传输函数等于常数,厄卡特滤波器退化为一个白化滤波器,此时虽然不能提高系统输出端的信噪比,但却通过改善噪声谱的形状(白化)提高了系统的等效噪声谱宽。 4.1.1.2实用宽带检测器 在实际应用中,由于信号和噪声的功率谱很难知道,因此预选滤波器一 般没有白化和对信号进行匹配的能力,因此它对系统的输出信噪比影响很小。在实用的宽带检测系统中,主要研究的是宽带能量检测器,对这种接收机一般以系统的输出信噪比的大小或系统处理增益作为衡量系统性能的指标。宽带能量检测器在判决检测前都相应有一个等效积分器,为使讨论具有一般性,可将积分器理解为一个低通滤波器,积分器的传输函数记为H(w),输入端Y 处与输出端Z 处的信噪比可按如下公式计算: )()]()([)/(20201Y Y E Y E N S Y σ-= (4.1.6) ) ()]()([)/(20201Z Z E Z E N S Z σ-= (4.1.7) 它们和系统参数的关系如下:

微弱信号检测

四川省大学生电子设计竞赛报告题目:微弱信号检测装置

微弱信号检测装置 【摘要】:为提取被噪声淹没的微弱信号,在分析了锁相放大器原理的基础上,采用基于AD630设计了一个双相位锁相放大器。实现了正弦信号的检测和显示,由于时间紧迫,AD采样显示的数值误差较大。 【关键词】:锁相放大器正交信号 AD630 MAX7490 一、方案设计与论证 图1 微弱信号检测装置示意图 1.1 微弱信号检测电路设计与方案 微弱信号检测电路要求采用模拟方法来实现。常用的微弱信号检测方法有:匹配滤波、锁相放大、取样积分等。 方案1:匹配滤波法。使用窄带滤波器,滤掉带宽噪声只让窄带信号通过;此方案电路简单,但是,由于一般滤波器的中心频率不稳定,不能满足更高的滤除噪声的要求。 方案2:单通道锁相放大法。用AD630平衡调制解调芯片、移相器及低通滤波器构成锁相放大电路,基于信号的互相关原理,移相器输出的信号必须与被测信号同频同相,由于被测信号相位未知,需移相器逐步移相,实现较为复杂。 方案3:双通道锁相放大法。用两个AD630平衡调制解调芯片、两个低通滤波器做成双通道锁相放大器,就是被测信号与两个相互正交的信号分别相乘经低通滤波器再送入AD进行采样,这样不需考虑被测信号的相位。两路正交信号由74LS74构成的分频电路产生或由单片机产生。由于只需要直流分量,低通滤波器的截止频率可以低到几百赫兹。 综合考虑,我们采用方案3。 1.2 加法电路的设计与方案 加法电路要求正弦信号与噪声信号相加,并测量噪声的均方根值;因此加法电路的内部噪声越小越好。

方案1:普通加法器。用低噪声放大器OPA2227做一个普通的加法器,但此电路接有电阻电容,会产生附加噪声。 方案2:高性能加法器。用低噪声仪表放大器INA2134做一个高性能的加法器,有独立的共模抑制能力、增益误差、噪声和失真。 方案2虽然比方案1复杂,但引入的附加噪声比方案1小,因此选用方案2。 1.3 带通滤波器设计与方案 题目中给了一个带宽很宽的强噪声,要想进可能地滤掉噪声,需一个窄带带通滤波器。 方案1:采用OPA2227设计中心频率指定的有源带通滤波器。 方案2:采用OPA2227分别设计低通滤波器和高通滤波器,组成一个带通滤波器。 方案3:用MAX7490做程控带通滤波器,参考官方电路设计。 方案1设计的带通滤波器不满足中心频率在500Hz-2000Hz内变化的设计要求;方案2设计的带通滤波器带宽太宽,引入过多噪声容易造成太大的测量误差;因此采用方案3。 1.4 整体系统电路设计 整体系统框图如下: 图2 整体系统框图 二、理论分析与参数计算 2.1锁相放大器电路中的相关器原理 锁相放大电路中最重要的部分是相关器(PSD)部分,它是锁相放大电路的核心,起着至关重要的作用。相关器是相关函数的物理模型,是一种完成被测信号和参考信号互相关函数运算的电子线路,相关器又叫相敏检波器。

微弱信号检测装置

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二 三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算

五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为 100。衰减器的输入信号频率范围为100Hz-10KHz。(2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。

基于PWM调制的微弱信号检测的毕设论文 (本科)要点

学校代码: 11059 学号: Hefei University 毕业设计(论文)BACH ELOR DISSERTATION 论文题目:基于PWM调制的微弱信号检测 学位类别:工学学士 年级专业: 作者姓名:孙悟空 导师姓名: 完成时间: 2015年5月8号

中文摘要 工程设计领域中在强噪声环境下对微弱信号的检测始终是个技术难点。因此,全面地去研究、分析微弱信号在时域、频域等方面的特点,以及微弱信号的检测技术,都非常重要且有意义的。 本文首先介绍了在电子设备中元器件内部因为载流粒子的运动及外部因素导致系统噪声产生的原理。阐述了在分析研究微弱信号的方法中,时域分析法是目前应用范围最为广泛的分析方法,比如短时Fourier、小波变换。在此基础上,本文从工程设计的角度重点分析了PWM技术检测微弱信号的原理及实现的方法。PWM检测技术是利用PWM脉冲对微弱信号的调制, 从而达到进行频谱搬移。最后,对于调制后的信号,本文中采用带通、全波整形以及低通等三种方式实现了对待调制信号的解调,并在解调端得到最终的解调信号。 在电路仿真方面本文给出了基于Multisim软件的系统电路仿真图。通过搭建各个模块然后利用仿真电路给出了系统调制解调的各个过程及波形图。利用示波器对系统调制、解调等模块的波形检测可以发现各个模块的信号波形与理论波形基本吻合,系统的设计满足对微弱信号检测的要求。 关键词:微弱信号检测;频谱搬移;PWM调制

Abstract The detection of weak signal in the field of engineering design is always a technical difficulty.. Therefore, it is very important and meaningful to study and analyze the characteristics of weak signal in time domain and frequency domain and the detection technology of weak signal.. In this paper, we first introduce the in Zhongyuan electronic equipment device for load flow particle's motion and external factors lead to system noise principle. In the research of weak signal analysis, time-domain analysis is the most widely used method, such as short time Fourier and wavelet transform.. On this basis, the paper analyzes the principle and the method of the weak signal detection from the angle of the engineering design from the point of view of the engineering design.. PWM detection technology is the use of PWM pulse modulation of the weak signal, so as to achieve the frequency shift. Finally, for modulated signals, this paper by band-pass, full wave shaping and low pass in three ways the treated signal modulation and demodulation, and the final demodulation signal at the end of the demodulation. In the circuit simulation, the paper presents the simulation chart of the system circuit based on Multisim.. By building each module and using the simulation circuit, the process and the waveform of the system modulation and demodulation are given.. Using the oscilloscope system modulation and demodulation module of waveform detection can be found that each module of signal waveform and theoretical waveforms are basically consistent, the design of the system meet the requirements of weak signal detection. .Keyword:Weak signal detection ;Frequency shift ;PWM detection

2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

微弱信号检测装置 四川理工学院刘鹏飞、梁天德、曾学明

摘要: 本设计以TI的Launch Pad为核心板,采用锁相放大技术设计并制作了一套微弱信号检测装置,用以检测在强噪声背景下已知频率微弱正弦波信号的幅度值,并在液晶屏上数字显示出所测信号相应的幅度值。实验结果显示其抗干扰能力强,测量精度高。 关键词:强噪声;微弱信号;锁相放大;Launch Pad

Abstract: This design is based on the Launch Pad of TI core board, using a lock-in amplifier technique designed and produced a weak signal detection device, to measure the known frequency sine wave signal amplitude values of the weak in the high noise background, and shows the measured signal amplitude of the corresponding value in the liquid crystal screen. Test results showed that it has high accuracy and strong anti-jamming capability. Keywords: weak signal detection; lock-in-amplifier; Launch Pad

微弱信号检测装置

微弱信号检测装置 Prepared on 24 November 2020

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二

三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算 五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为100。衰减器的输入信号频率范围为100Hz-10KHz。 (2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。 信噪比定义:, 正弦信号功率为:其中表示正弦信号的有效值。 白噪声信号功率为:其中表示白噪声信号的有效值。 表示加法电路的输入阻抗。 (5)当微弱正弦信号输入信号的幅度有效值为1mV-5mV,信噪比在-20dB 时,要求对输入微弱正弦信号幅度有效值检测误差不超过10%。 2、发挥部分: (1)实现对固定频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率分别为1KHz,5KHz,10KHz时,幅度有效值范围为10uV-50uV时,微弱正弦信号幅度有效值检测误差不超过10%。 (2)当微弱正弦信号输入信号的幅度有效值为100uV-500uV,信噪比在-20dB 时,要求对输入微弱正弦信号幅度有效值检测误差不超过10%。 二、系统方案 对于参考通道和相关器部分,拟采用题目所介绍使用的CD4046和CD4066两款芯片来做,对于信号通道,有不同的可采用方案。

微弱信检测装置修订稿

微弱信检测装置 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓

摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器

目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二 三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算 五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据

3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求: (1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为100。衰减器的输入信号频率范围为100Hz-10KHz。 (2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。

相关主题