搜档网
当前位置:搜档网 › 向量暑假复习1

向量暑假复习1

向量暑假复习1
向量暑假复习1

向量

第一节 向量的概念和基本性质

1. 向量的有关概念

(1) 向量:既有大小又有方向的量叫做向量,向量AB →

的大小叫做向量的长度(或模),记作|AB →|.

(2) 零向量:长度为0的向量叫做零向量,其方向是任意的. (3) 单位向量:长度等于1个单位长度的向量叫做单位向量.

(4) 平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.

规定:0与任一向量平行.

(5) 相等向量:长度相等且方向相同的向量叫做相等向量.

(6) 相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.

2. 向量加法与减法运算 (1) 向量的加法

① 定义:求两个向量和的运算,叫做向量的加法. ② 法则:三角形法则;平行四边形法则.

③ 运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法

① 定义:求两个向量差的运算,叫做向量的减法. ② 法则:三角形法则.

3. 向量的数乘运算及其几何意义

(1) 实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: ① |λa |=|λ||a|;

② 当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0.

(2) 运算律:设λ、μ∈R ,则:① λ(μa )=(λμ)a ;② (λ+μ)a =λa +μa ;③ λ(a +b )=λa +λb .

4. 向量共线定理

向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa . 例题:

1. 给出下列六个命题:

① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ; ③ 若AB →=DC →

,则A 、B 、C 、D 四点构成平行四边形;

④ 在 ABCD 中,一定有AB →=DC →

; ⑤ 若m =n ,n =p ,则m =p ;

⑥ 若a ∥b ,b ∥c ,则a ∥c . 其中错误的命题有________.(填序号) 答案:①②③⑥

解:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终

点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →

=DC →

,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.

2. 设两个非零向量a 与b 不共线.试确定实数k=_______,使k a +b 和a +k b 共线.

解:∵ k a +b 与a +k b 共线,∴ 存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b . 又a 、b 是两不共线的非零向量,∴ k -λ=λk -1=0.∴ k 2-1=0.∴ k =±1.

3. 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →

,则△AOB 与△AOC 的面积之比为________.

解:如图所示,设M 是AC 的中点,则OA →+OC →=2OM →.又OA →+OC →=-2OB →

, ∴ OM →=-OB →

,即O 是BM 的中点,∴ S △AOB =S △AOM =12S △AOC ,即S △AOB S △AOC =12.

4. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →

,则|AC →

||AB →

|=

________.

解: ∵OC →=23OA →+13OB →,∴OC →-OA →=-13OA →+13OB →=13(OB →-OA →),∴AC →=13AB →

,∴|AC →

||AB →|

=13

.

5. 已知点P 在△ABC 所在的平面内,若2PA →+3PB →+4PC →=3AB →

,则△PAB 与△PBC 的面积的比值为__________.

解:由2PA →+3PB →+4PC →=3AB →,得2PA →+4PC →=3AB →+3BP →,∴ 2PA →+4PC →=3AP →,即4PC →

=5AP →

.∴ |AP →||PC →|=45,S △PAB S △PBC =|AP →||PC →|=45.

6. 已知A (7,1)、B (1,4),直线y =12

ax 与线段AB 交于C ,且AC →=2CB →

,则实数a =________.

解: 设C (x ,y ),则AC →=(x -7,y -1),CB →

=(1-x,4-y ),

∵AC →=2CB →,∴????? x -7=2(1-x )y -1=2(4-y ),解得?

????

x =3y =3. ∴C (3,3).又∵C 在直线y =12ax 上,∴3=1

2

a ·3,∴a =2.

7. 在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 所对的边,S 为△ABC 的面积.若向量p =(4,a 2+b 2-c 2),q =(1,S)满足p ∥q ,则C =________. 解:由p =(4,a 2+b 2-c 2),q =(1,S)且p ∥q ,得4S =a 2+b 2-c 2,即2abcosC =4S =2absinC ,所以tanC =1. 又0<C <π,所以C =π4.

8. 给定两个长度为1的平面向量OA →和OB →

,它们的夹角为2π3.如图所示,

点C 在以O 为圆心的圆弧AB 上运动.若OC →=xOA →+yOB →

,其中x , y ∈R ,求x +y 的最大值.

解 以O 为坐标原点,OA →

所在的直线为x 轴建立平面直角坐标系,

如图所示,则A (1,0),B (-12,3

2

),设∠AOC =α(α∈[0,

2π3

]),则C (cos α,sin α),由OC →=xOA →+yOB →, 得?

??

cos α=x -1

2

y

sin α=3

2

y

所以x =cos α+

33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3

],所以当α=π

3时,x +y 取得最大值2.

第二节 平面向量的数量积

1.平面向量的数量积

已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.

规定:零向量与任一向量的数量积为__0__.

两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|.

2.平面向量数量积的几何意义

数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;

(2)非零向量a ,b ,a ⊥b ?a·b =0; (3)当a 与b 同向时,a·b =|a||b|;

当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=a·a ;

(4)cos θ=a·b

|a||b|;

(5)|a·b |__≤__|a||b|.

4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);

(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .

5.平面向量数量积有关性质的坐标表示

设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.

(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →

|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0.

例题:

1. 已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于______. 解: |a +2b |2=4+4+4a ·b =8+8cos 60°=12,∴|a +2b |=23,a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6,∴43cos θ=6,cos θ

=3

2,θ∈[0°,180°],∴θ=30°

2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为_________.

解: 由m ⊥n 得m·n =0,即3cos A -sin A =0,即2cos ???

?A +π

6=0, ∵π6

3

.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c =c sin C ,所以sin C =1,C =π2,所以B =π-π3-π2=π

6.

3. 平面上O ,A ,B 三点不共线,设OA →=a ,OB →

=b ,则△OAB 的面积等于( )

A.|a |2|b |2-(a ·b )2

B.|a |2|b |2+(a ·b )2

C.12|a |2|b |2-(a ·b )2

D.1

2|a |2|b |2+(a ·b )2

C

解: (1)∵cos ∠BOA =a ·b

|a ||b |

,则sin ∠BOA =

1-(a ·b )2|a |2|b |2,∴S △OAB =1

2|a ||b | 1-(a ·b )2

|a |2|b |

2 =1

2|a |2|b |2-(a ·b )2.

4. 已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是 _________.

解: 由已知可得Δ=|a |2+4a·b =0,即4|b |2+4·2|b |·|b |cos θ=0,∴cos θ=-12

,又∵0≤θ≤π,

∴θ=2π3

5. 已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式

0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.

解: OP →=(x ,y ),OM →=(1,1),ON →=(0,1),∴OP →·OM →=x +y ,OP →·ON →=y ,

即在?

????

0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识,当x =0,y =1

时,z max =3.

6. 已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →

|的最小值为________. 解: 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,

设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →

=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25,∴|P A →+3PB →

|的最小值为5.

7. 若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π

2

)在一个周期内的图象如图所示,

M ,N 分别是这段图象的最高点和最低点,且OM →·ON →

=0(O 为坐标原点), 则A 等于 _________.

解: 由题意知M (π12,A ),N (712π,-A ),又OM →·ON →=π

12×712π-A 2=0,∴A =712π.

8. 已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →

=-32

MQ →

,当点A 在x 轴上移动时,求动点M 的轨迹方程________. 解: 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →

=(x -a ,

y ),MQ →=(-x ,b -y ),由P A →·AM →=0,得a (x -a )+3y =0.①

由AM →

=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=(32x ,32

(y -b )),

∴???

x -a =32

x ,

y =32y -3

2b ,

∴???

a =-x 2

b =y

3.

把a =-x 2代入①,得-x 2(x +x 2)+3y =0,整理得y =1

4

x 2(x ≠0).

9. 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.

(1)求动点P 的轨迹方程;

(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →

的最值. 思维启迪 (1)直接利用数量积的坐标运算代入;

(2)将PE →·PF →转化为关于y 的函数,求函数的最值.

解 (1)设P (x ,y ),则Q (8,y ).由(PC →+12PQ →)·(PC →-12PQ →

)=0,

得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2

=0,化简得x 216+y 212

=1.

所以点P 在椭圆上,其方程为x 216+y

212

=1.

(2)∵PE →=PN →+NE →,PF →=PN →+NF →,又NE →+NF →=0.∴PE →·PF →=PN →2-NE →2

=x 2+(y -1)2-1=16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-1

3(y +3)2+19.

∵-23≤y ≤2 3.

∴当y =-3时,PE →·PF →

的最大值为19,

当y =23时,PE →·PF →

的最小值为12-4 3.

综上:PE →·PF →

的最大值为19; PE →·PF →的最小值为12-4 3.

向量

第一节 向量的概念和基本性质

1. 向量的有关概念

(1) 向量:既有大小又有方向的量叫做向量,向量AB →

的大小叫做向量的长度(或模),记作|AB →|.

(2) 零向量:长度为0的向量叫做零向量,其方向是任意的. (3) 单位向量:长度等于1个单位长度的向量叫做单位向量.

(4) 平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.

规定:0与任一向量平行.

(5) 相等向量:长度相等且方向相同的向量叫做相等向量.

(6) 相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.

2. 向量加法与减法运算 (1) 向量的加法

① 定义:求两个向量和的运算,叫做向量的加法. ② 法则:三角形法则;平行四边形法则.

③ 运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法

① 定义:求两个向量差的运算,叫做向量的减法. ② 法则:三角形法则.

3. 向量的数乘运算及其几何意义

(1) 实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: ① |λa |=|λ||a|;

② 当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0.

(2) 运算律:设λ、μ∈R ,则:① λ(μa )=(λμ)a ;② (λ+μ)a =λa +μa ;③ λ(a +b )=λa +λb .

4. 向量共线定理

向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa . 例题:

1. 给出下列六个命题:

① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ; ③ 若AB →=DC →

,则A 、B 、C 、D 四点构成平行四边形;

④ 在 ABCD 中,一定有AB →=DC →

; ⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c . 其中错误的命题有________.(填序号)

2. 设两个非零向量a 与b 不共线.试确定实数k=_______,使k a +b 和a +k b 共线.

3. 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →

,则△AOB 与△AOC 的面积之比为________.

4. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →

,则|AC →||AB →

|=

________.

5. 已知点P 在△ABC 所在的平面内,若2PA →+3PB →+4PC →=3AB →

,则△PAB 与△PBC 的面积的比值为__________.

6. 已知A (7,1)、B (1,4),直线y =12

ax 与线段AB 交于C ,且AC →=2CB →

,则实数a =________.

7. 在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 所对的边,S 为△ABC 的面积.若向量p =(4,a 2+b 2-c 2),q =(1,S)满足p ∥q ,则C =________.

8. 给定两个长度为1的平面向量OA →和OB →

,它们的夹角为2π3.如图所示,

点C 在以O 为圆心的圆弧AB 上运动.若OC →=xOA →+yOB →

,其中x , y ∈R ,求x +y 的最大值.

第二节 平面向量的数量积

1.平面向量的数量积

已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.

规定:零向量与任一向量的数量积为__0__.

两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|.

2.平面向量数量积的几何意义

数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;

(2)非零向量a ,b ,a ⊥b ?a·b =0; (3)当a 与b 同向时,a·b =|a||b|;

当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=a·a ;

(4)cos θ=a·b

|a||b|;

(5)|a·b |__≤__|a||b|.

4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);

(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .

5.平面向量数量积有关性质的坐标表示

设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.

(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →

|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0.

例题:

1. 已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于______.

2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为_________.

3. 平面上O ,A ,B 三点不共线,设OA →=a ,OB →

=b ,则△OAB 的面积等于( )

A.|a |2|b |2-(a ·b )2

B.|a |2|b |2+(a ·b )2

C.12|a |2|b |2-(a ·b )2

D.1

2|a |2|b |2+(a ·b )2

4. 已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是 _________.

5. 已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式

0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.

6. 已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →

|的最小值为________.

7. 若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π

2

)在一个周期内的图象如图所示,

M ,N 分别是这段图象的最高点和最低点,且OM →·ON →

=0(O 为坐标原点), 则A 等于 _________.

8. 已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →

,当点A 在x 轴上移动时,求动点M 的轨迹方程________.

9. 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.

(1)求动点P 的轨迹方程;

(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →

的最值.

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

向量运算法则知识讲解

(1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的 长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r 。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ? b =1212()x x y y +。 (6)两向量的夹角公式: cos θ(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式: ,A B d =||AB u u u r (A 11(,)x y ,B 22(,)x y )。 (8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有: 1)a ||b ?b =λa 12210x y x y ?-=。 2)a ⊥b (a ≠0)? a ·b =012120x x y y ?+=。 (9)线段的定比分公式: 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12 P P 的分点,λ是实数,且12P P PP λ=u u u r u u u r ,则

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

向量的基本运算

向量三阶行列式 关于三阶行列式的计算,首先给出一个实例,A、B、C、D、E、F、G、H、I都是数字。 先按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH 再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF 行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF) 法向量 先建立直角坐标系。再找平面内两条相交直线,并求出两条直线的坐标,如A(0 1 2),B (4 5 6)。三设法向量(X Y Z),再将A B 两条线的向量与法向量对应相乘,且等于0。即,Y+2Z=0,4X+5Y +6Z=0。最后,连立方程组求出(X Y Z)即为法向量。另,垂直于一个平面的直线,直线的向量即为该平面的法向量。 点乘和叉乘 点乘 也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。 向量a·向量b=|a||b|cos<a,b> 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。 叉乘 也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。 |向量c|=|向量a×向量b|=|a||b|sin<a,b> 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c

的方向)。 因此 向量的外积不遵守乘法交换率,因为 向量a×向量b=-向量b×向量a 在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘 右手定则叉乘 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c 的方向)。 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则 向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | I j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。 向量加、减、乘法运算法则 向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。 2、向量的减法如果a、b是互为相反的向量,那么a=-b ,b=-a,a+b=0.0的反向量为0 向量的减法AB-AC=CB.即“共同起点,指向被向量的减法减” a=(x,y)b=(x',y')则a-b=(x-x',y-y'). 3、数乘向量实数λ和向量a的乘积是一个向量,记作λ

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

向量公式性质总结

1. 已知,,,OA a OB b OC c ===(如图),求证:A 、B 、C 三点在一直线上的充要条件是存在不全为0的实数l 、m 、n 使得00la mb nc l m n ++=++=且. 2.设OA 、OB 不共线,点P 在AB 上,则OP =λOA +μOB 且λ+μ=1,λ当λ=μ= 21时,OP =2 1 (OA +OB ),此时P 为AB 的中点,这是向量的中点公式. 3.与向量→ a 同向的单位向量:→ → → = a a e ;与向量→a 平行的单位向量:→ → → ± =a a e 。 与向量y)(x,a =→ 平行的单位向量为:)y x y , y x x ( 2 2 2 2 ++± 与向量y)(x,a =→ 垂直的单位向量为:)y x x , y x y (-2 222++±。 4.三角形的五个“心”: 重心:三角形三条中线交点. O 为ABC ?的重心0OA OB OC ?++=. 外心:三角形三边垂直平分线相交于一点. O 为ABC ?的外心2 2 2 OA OB OC ?==. 内心:三角形三内角的平分线相交于一点. O 为ABC ?的内心0aOA bOB cOC ?++=. 垂心:三角形三边上的高相交于一点. O 为ABC ?的垂心OA OB OB OC OC OA ??=?=? 5.三角形中向量性质: 1)AB AC +过BC 边的中点.2)|| || || || ()( )AB AC AB AC AB AC AB AC + ⊥- ;3)|| || ( )(0)AB AC AB AC λλ+ ≠所在直线过ABC ?内心. 6.(1))c b (a c )b a (→ → → → → → ??≠ ??;(2)c b b a ?=?c a =.但可以推出:→ → →⊥b ) c -a (。 7.三角形重心坐标公式:△ABC 的顶点()()()332211,,,,,y x C y x B y x A ,重心坐标()y x G ,:)3 ,3( 3 21321y y y x x x ++++ 例。在等腰直角ΔABC 中,∠C=90°,|AB|=22.求(1)?的值;(2)?的值;(3)).(AB CA BC +? 练习1:在ABC ?中,?===60,8,5C b a ,则CA BC ?的值为( ) A.20 B.20- C.320 D.320- 练习2.已知ABC BC AB ABC ?>??→ → 则中,0为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 A B C O a b c

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

向量长度计算公式及中点公式讲解学习

精品文档 课 题:6.3平面向量的坐标运算--向量长度的计算公式和线段中点的坐标公式 教学目的:(1)理解平面向量长度的计算公式; (2)掌握线段中点的坐标公式; 教学重点:线段中点的坐标公式 教学难点:公式的理解及应用. 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 平面向量的坐标运算:若),(11y x a =?,),(22y x b =ρ ,则 b a ?ρ+),(2121y y x x ++=,b a ρρ-),(2121y y x x --=,),(y x a λλλ=ρ 若),(11y x A ,),(22y x B ,则2121(,)AB x x y y =--u u u r . 二、讲解新课: 1.平面向量长度的计算公式的推导: 如图,已知12(,)a xe ye x y =+=r r v ,则 11xe x e x =?=r r , 1212ye y e y =?=r r , 由勾股定理得,22 22a x y x y = +=+v , 上式即为根据向量a v 的坐标,求向量a 的长度的计算公式,简称向量长度的计算公式. 如果已知11(,)A x y ,),(22y x B ,则有向量22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--u u u r u u u r u u u r 所以,222121()()AB x x y y =-+-u u u r . 上式即为根据向量AB u u u r 的坐标,求向量AB u u u r 的长度的计算公式,也称为向量长度的计算 公式,又称为两点间的距离公式. 2.线段中点的坐标公式的推导: 方法一:设线段AB 的两个端点),(11y x A ,),(22y x B ,线段AB 的中点(,)C x y ,则

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

向量的线性运算基础测试题含答案解析

向量的线性运算基础测试题含答案解析 一、选择题 1.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b r B .如果a r 、b r 都是单位向量,那么a r =b r C .如果a r =k b r (k ≠0),那么a r ∥b r D .如果m =0或a r =0r ,那么m a r =0 【答案】C 【解析】 【分析】 根据向量的定义和要素即可进行判断. 【详解】 解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r 表示长度相等,方向相同,所以A 选项不正确; B .长度等于1的向量是单位向量,所以B 选项不正确; C . a r =k b r (k ≠0)?a r ∥b r ,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r ,不正确. 故选:C . 【点睛】 本题主要考查向量的定义和要素,准备理解相关概念是关键. 2.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a b r r 、表示为( ) A .12a b +r r B .12a b -r r C .12 a b -+r r D .12 a b --r r 【答案】A 【解析】 【分析】 根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r 即可解决问题. 【详解】 解:Q 四边形ABCD 是平行四边形, AD BC AD BC ∴∥,=,

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

向量及其运算

№2向量及其运算 1. 向量的生成 ①逐个元素直接输入向量元素需要有“[ ]”括起来,元素之间可以用空格、逗号或分号分隔。用空格和逗号分隔生成行向量,用分号分隔生成列向量。例: a=[1 2 3 0 -4 5.1] b=[0.1;3;5;8] ②利用冒号表达式生成通过设定“步长(step)”,生成一维行向量,通用格式为: x=x 0:step:x n 。x 表示向量的首元素值,x n 表示尾元素数值限,step表示从第个元素开 始,每一个元素与前一个元素的差值. step=1时,可省略此项的输入,直接写成 x=x 0:x n 。例: x=0:2:10 y=1:2:10 z=1:5 ③定数线性采样生成设定总点数n下,均匀采样生成一维行向量。通用格式为 x=linspace(a,b,n)。a,b分别是生成向量的第一个和最后一个元素,n是采样总点数。该指令生成的数组相当于由a:(a-b)/(n-1):b生成的数组。缺省n时,生成100维的行向量。 clear %清除工作空间中的所有变量. x=linspace(-5,5,11) y=-5:10/10:5 z=linspace(-5,5) ④定数对数采样生成向量设定总点数n下,经“常用对数”均匀采样生成一维行向量。通用格式为x=logspace(a,b,n) 。生成数组的第一个元素值为10a,最后一个元素值为10b,n为采样总点数,缺省时,生成50维的行向量。例如: clear %清除工作空间中的所有变量. x=logspace(1,5,5) y=1:(5-1)/(5-1):5 xx=10.^y z=logspace(1,5) 2. 向量元素的引用 格式为:向量名(下标范围或元素所满足的条件)。例: clear rand('state',0) %把均匀分布伪随机发生器置为初始状态 x=rand(1,5) %产生(1×5)的均匀分布随机数组 x(3) %引用数组x的第三个元素 y=x([1 2 5]) %引用数组x的第一、二、五个元素

空间向量及其运算测试题答案

新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a , 11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2 121 C .c b a +-2121 D .c b a +--2 1 21 2.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 3.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于( ) A .85 B .85 C .52 D .50 4.与向量(1,3,2)a =-r 平行的一个向量的坐标是( ) A .(31 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB u u u r u u u r 与的夹角是( ) A .0 B . 2 π C .π D . 32 π 6.已知空间四边形ABCD 中,c OC ,b OB , a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B . c b a 21 2132++- C .c b a 212121-+ D .c b a 2 13232-+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=?=?=?AD AB ,AD AC , AC AB ,则BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 图

高三数学教案 向量及向量的基本运算

向量及向量的基本运算 【知识点精讲】 1)向量的有关概念 ①向量:既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:。向量的大小即向量的模(长度),记作||。 ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行。<注意与0的区别> ③单位向量:模为1个单位长度的向量。 ④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上。 ⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合,记为b a =。 2)向量加法 ①求两个向量和的运算叫做向量的加法。设b BC a AB ==,,则a +b =+=。向量加法有“三角形 法则”与“平行四边形法则”。 说明:(1)a a a =+=+00; (2)向量加法满足交换律与结合律; 3)向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a -,零向量的相反向量仍是零向量。 关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 。 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:)(b a b a -+=-。求两个向量差的运算, 叫做向量的减法。 b a -的作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)。 注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。 4)实数与向量的积 ①实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的方向相反;当0=λ时, 0 =a λ,方向是任意的。 ②数乘向量满足交换律、结合律与分配律。 5)两个向量共线定理 向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ。 6)平面向量的基本定理

相关主题