搜档网
当前位置:搜档网 › 如何利用Maple创建矩阵和向量

如何利用Maple创建矩阵和向量

如何利用Maple创建矩阵和向量
如何利用Maple创建矩阵和向量

如何利用Maple创建矩阵和向量

在使用Maple 2015解决数学问题时,Maple的符号计算能力很强大,但是Maple也能处理矩阵的相关问题,下面就介绍Maple矩阵的创建方法。

更多Maple基本功能介绍与命令语句的调用请访问Maple中文版官网。

创建矩阵:

可以通过多种方式创建矩阵:Matrix命令,尖括号快捷符号,矩阵面板。

当使用Matrix命令创建矩阵时,有多个输入格式。例如,输入一列列表。矩阵的维数由给出元素项的数目确定。

使用Maple的Matrix命令创建矩阵

也可以使用尖括号“<>”。使用逗号分隔元素项,用垂直线“|”分割列。

使用Maple的尖括号创建矩阵

也可以使用矩阵面板创建矩阵,无需命令。

使用Maple面板创建矩阵

在矩阵面板中,用户可以定义矩阵的维数和属性。要插入一个矩阵,点击插入矩阵按钮。

点击Maple面板“插入矩阵”命令

在插入矩阵后:

1.输入元素项的值。按Tab键移到下一个占位符。

2.定义完所有的元素项后,按回车键。

补全矩阵元素后按下回车

创建向量:

用户可以使用尖角括“< >”创建向量。创建一个单列向量,定义一个逗号分隔的序列,。元素的数目由表达式的数据推断得到。

利用尖括号创建向量

创建一个行向量,定义一个由垂直线分割“|”的序列。元素的数目由表达式的数据推断得到。

利用垂直分割线创建向量

以上内容向大家介绍了Maple矩阵的创建方法,这几种方法都可以使用,对于Mapl入门学习的朋友来说使用Maple面板是最直观的方法,当熟练以后会发现Matrix命令会非常方便,不需要用鼠标点来点去。如果需要了解更多Maple数学命令,可以参考Maple中文版官网教程:常见的Maple微分命令有哪些。

矩阵等价与向量组等价的关系

矩阵等价与向量组等价的关系矩阵是指排成n行m列的一个数表。在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节内容都有牵连。 向量是一个数组。如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。在几何上与线性代数中向量的运算具有相同或相应的法则。向量可以作为特殊的矩阵,也可作为矩阵的一部分。n个m维列向量组成的向量组即可作成一个m×n矩阵。 所以矩阵与向量组之间有着千丝万缕的联系。例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。但是矩阵的等价与向量组的等价却没有任何必然的联系! 矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。 向量组的等价,是指两个向量组能相互线性表示。 矩阵等价与向量组等价有如下关系: 1.两矩阵等价,它们的行向量组与列向量组不一定等价!(《2012考研数学复习大全》理工类338页有说明及具体反例) 2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数) 在什么情况下矩阵等价其行向量组或列向量组等价呢? 1.若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为 (α1,α2,…,αn)Q=(β1,β2,…,βn),

此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q-1,有A=BQ-1,故A的列向量组可以由B的列向量组线性表示。此时可得A的列向量组与B的列向量组等价。 2.同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。 3.矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(见《2012考研数学复习大全》理工类312页注) 在什么情况下向量组等价其对应的矩阵也等价呢? 1.若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B 作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价) 2.要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

矩阵等价与向量组等价的关系

矩阵等价与向量组等价的关系 向量组等价 12 ,,, n ααα ???和 12 ,,, n βββ ???可以相互线性表示. 记作:()() 1212 ,,,,,, n n αααβββ ???=??? % 矩阵等价(必须含有相同的行数m,相同的列数n,即必为同型矩阵) 矩阵的等价与向量组的等价没有任何必然的联系! 如果两个n维向量组等价(说明矩阵有相同的行数),则以它们为列向量组成的矩阵A,B的秩相等,但是不一定等价, 因为这两个矩阵的列数可能不同.比如,一个3行1列的矩阵与一个 3行2列的矩阵根本谈不上等价与不等价.(如果A,B 的列数相同,则它们等价)例如向量组I: 1 ?? ? ? ? ?? 与向量组II: 21 0,0 00 ???? ? ? ? ? ? ? ???? 等价,但变为矩阵就不等价。 两向量组等价是指两向量组可以互相线性表示,应注意两向量组等价他们所含向量个数可以不一样的!!! 但矩阵等价,两矩阵必定具有相同的行数与列数!!! 如果矩阵A,B等价,则它们的行向量组与列向量组也未必等价.比如,4阶单位矩阵从中间划一竖线分成两个矩阵A,B,这两个矩阵是等价的,但是它们的列向量组不是等价的.

看一个具体的例子: 3131100100101010010010000100101A r r B c c C ?????? ? ? ?=+=+= ? ? ? ? ? ??????? u u u u u r u u u u u u r 矩阵A 经初等行变换化为矩阵B ,矩阵,A B 行等价,,A B 的行向量组等价,但列向量组不等价! 矩阵B 经初等列变换化为矩阵C ,矩阵,B C 列等价,,B C 的列向量组等价,但行向量组不等价! 矩阵A 经初等变换(包含行变换和列变换)化为矩阵C ,矩阵A,C 等价,但他们的行、列向量组均不等价! 所以,矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价! 显然,两矩阵,A B 等价,不能推出他们的行向量组一定等价或者列向量组一定等价。 在什么情况下矩阵等价其行向量组或列向量组等价呢? 若矩阵A 经初等列变换成为矩阵B ,即存在可逆矩阵Q ,使AQ =B ,也可以写为 (α1,α2,…,αn )Q =(β1,β2,…,βn ),此时可知B 的列向量组可以由A 的列向量组线性表示,因为Q 为初等矩阵的乘积,所以可逆,对AQ =B 两边右乘Q -1,有A =BQ -1 ,故A 的列向量组可以由B 的列向量组线性表示。此时可得A 的列向量组与B 的列向量组等价。 同理可知:若矩阵A 经初等行变换成为矩阵B ,则A 的行向量组与B 的行向量组等价。 在什么情况下向量组等价其对应的矩阵也等价呢? 若m 维向量组A 与向量组B 均有n 个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A 与B 等价!(因向量组A 与向量组B 等价,所以它们有相同的秩,则以它们为列(行)向量组成的矩阵A,B 的秩相等,因向量组A 与B 作成的矩阵A 与B 有相同的行与列,且秩相等,故矩阵A 与B 等价),要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n 个向量的两个m 维向量组A 与B ,才有可能讨论其对应的矩阵A 与B 是否等价。

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

向量组及其线性组合分布图示n维向量的概念向量组与矩阵

第一节 向量组及其线性组合 分布图示 ★ n 维向量的概念 ★ 向量组与矩阵 ★ 向量的线性运算 ★ 例1 ★ 例2 ★ 线性方程组的向量形式 ★ 向量组的线性组合 ★ 例3 ★ 例4 ★ 例5 ★ 定理1 ★ 例6-8 ★ 例9 ★ 向量组间的线性表示 ★ 内容小结 ★ 课堂练习 ★ 习题3-2 内容要点 一、n 维向量及其线性运算 定义 1 n 个有次序的数n a a a ,,,21 所组成的数组称为n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. 注:在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),此即上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象. 若干个同维数的列向量(或行向量)所组成的集合称为向量组. 例如,一个n m ?矩阵 ????? ?? ??=mn m m n n a a a a a a a a a A 21222 2111211 每一列 ???? ?? ? ??=mj j j j a a a 21α),2,1(n j = 组成的向量组n ααα,,,21 称为矩阵A 的列向量组,而由矩阵A 的的每一行 ),,2,1(),,,(21m i a a a in i i i ==β 组成的向量组m βββ,,,21 称为矩阵A 的行向量组. 根据上述讨论,矩阵A 记为 ),,,(21n A ααα = 或 ???? ?? ? ??=n A βββ 21. 这样,矩阵A 就与其列向量组或行向量组之间建立了一一对应关系. 矩阵的列向量组和行向量组都是只含有限个向量的向量组. 而线性方程组 0=?X A n m 的全体解当n A r <)(时是一个含有无限多个n 维列向量的向量组.

相关主题