搜档网
当前位置:搜档网 › L-Cysteine-Assisted Growth of Core-Satellite ZnS-Au Nanoassemblies

L-Cysteine-Assisted Growth of Core-Satellite ZnS-Au Nanoassemblies

L-Cysteine-Assisted Growth of Core-Satellite ZnS-Au Nanoassemblies
L-Cysteine-Assisted Growth of Core-Satellite ZnS-Au Nanoassemblies

5918DOI:10.1021/la904389y Langmuir 2010,26(8),5918–5925

Published on Web

12/09/https://www.sodocs.net/doc/a011930541.html,/Langmuir ?2009American Chemical Society

L -Cysteine-Assisted

Growth of Core -Satellite ZnS -Au Nanoassemblies with High Photocatalytic Efficiency

Wei-Ta Chen and Yung-Jung Hsu*

Department of Materials Science and Engineering,National Chiao Tung University,Hsinchu,Taiwan 30010,

Republic of China

Received October 12,2009

Core -satellite ZnS -Au nanoassemblies,in which each of the ZnS nanospheres was surrounded by a few Au nanoparticles,have been successfully prepared with a facile L -cysteine-assisted hydrothermal approach.The density of Au nanoparticles encircling each ZnS nanosphere can be readily controlled through suitably modulating the concentration of Au added.Because of the difference in band structures between ZnS and Au,a pronounced photoinduced charge separation was observed for the as-synthesized ZnS -Au nanoassemblies.As compared to the relevant commercial products like Au-loaded P-25TiO 2and ZnS powders,ZnS -Au nanoassemblies exhibited superior photocatalytic performance,demonstrating their potential as an efficient photocatalyst in relevant redox reactions.Furthermore,the recycling test revealed that core -satellite nanoassemblies of ZnS -Au could be promisingly utilized in the long-term course of photocatalysis.The present study provides a new paradigm for designing the highly efficient semiconductor/metal hybrid photocatalysts that can effectively produce chemical energy from light.

Introduction

Photocatalysis for water splitting and pollutant degradation using semiconductors is of great interest because of its capability of converting light energy into chemical energy.1Various semiconduc-tor photocatalysts have thus been developed to carry out chemical reactions under light illumination.Among them,ZnS is one of the most popular photocatalysts that have been extensively studied.The rapid generation of charge carriers upon light irradiation and the relatively negative reduction potential of excited electrons offer ZnS good photocatalytic activities.2Until now,many structural forms of ZnS including nanoparticles,2,3nanospheres,4porous nanoparticles,5hollow spheres,6nanowalls,7and nanorods 8have been proven effective in relevant photocatalytic processes.

Like TiO 2,ZnS possesses a wide bandgap energy (E g =3.7eV)and can absorb light only in the ultraviolet range,which may limit its practical development in photocatalysis.Furthermore,the photo-catalytic efficiency of ZnS is commonly depressed by the fast recombination of photoexcited charge carriers.Hence,an effort to either modulate the band structure of ZnS to allow photocatalysis under visible light or suppress the direct recombination of charge carriers to enhance the photocatalytic performance of ZnS is being pursued.For example,through the introduction of suitable dopants

to create an additional donor level in the energy gap,ZnS could be capable of light absorption in the visible range.9,10Besides,by alloying with other narrow-bandgap semiconductors,one may obtain ZnS-based solid solution whose bandgap energy can be readily tuned.11,12On the other hand,to retard the radiative recombination of charge carriers in ZnS,an electron trapper such as TiO 2,13carbon nanotube,14and metal 15was often introduced and put in contact with ZnS.It is worth noting that semiconductors may exhibit superior photocatalytic activities through simply combin-ing with metals.This is due to the presence of semiconductor/metal interface that can induce effective charge separation to favor the subsequent photocatalysis.16As a result,miscellaneous kinds of semiconductor/metal hybrid systems such as core -shell metal -semiconductor nanocrystals,15,17metal-decorated

*Corresponding author.E-mail:yhsu@https://www.sodocs.net/doc/a011930541.html,.tw.

(1)Linsebigler,A.L.;Lu,G.;Yates,J.T.Chem.Rev.1995,95,735.

(2)(a)Yanagida,S.;Ishimaru,Y.;Miyake,Y.;Shiragami,T.;Pac, C.;Hashimoto,K.;Sakata,T.J.Phys.Chem.1989,93,2516.(b)Yanagida,S.;Yoshiya,M.;Shiragami,T.;Pac,C.;Mori,H.;Fujita,H.J.Phys.Chem.1990,94,3104.(c)Kanemoto,M.;Shiragami,T.;Pac,C.;Yanagida,S.J.Phys.Chem.1992,96,3521.(3)(a)Fujiwara,H.;Hosokawa,H.;Murakoshi,K.;Wada,Y.;Yanagida,https://www.sodocs.net/doc/a011930541.html,ngmuir 1998,14,5154.(b)Ni,Y.;Cao,X.;Hu,G.;Yang,Z.;Wei,X.;Chen,Y.;Xu,J.Cryst.Growth Des.2007,7,280.

(4)(a)Zhao,Q.;Xie,Y.;Zhang,Z.;Bai,X.Cryst.Growth Des.2007,7,153.(b)Li,Y.;He,X.;Cao,M.Mater.Res.Bull.2008,43,3100.

(5)(a)Hu,J.-S.;Ren,L.-L.;Guo,Y.-G.;Liang,H.-P.;Cao,A.-M.;Wan,L.-J.;Bai,C.-L.Angew.Chem.,Int.Ed.2005,44,1269.(b)Yang,J.;Peng,J.;Zou,R.;Peng,F.;Wang,H.;Yu,H.;Lee,J.-Y.Nanotechnology 2008,19,255603.

(6)Yu,X.;Yu,J.;Cheng,B.;Huang,B.Chem.;Eur.J.2009,15,6731.

(7)Lu,M.-Y.;Lu,M.-P.;Chung,Y.-A.;Chen,M.-J.;Wang,Z.-L.;Chen,L.-J.J.Phys.Chem.C 2009,113,12878.

(8)(a)Xiong,S.;Xi,B.;Wang,C.;Xu,D.;Feng,X.;Zhu,Z.;Qian,Y.Adv.Funct.Mater.2007,17,2728.(b)Xi,G.;Wang,C.;Wang,X.;Zhang,Q.;Xiao,H.J.Phys.Chem.C 2008,112,1946.

(9)(a)Kudo,A.;Sekizawa,M.Catal.Lett.1999,58,241.(b)Kudo,A.;Sekizawa,https://www.sodocs.net/doc/a011930541.html,mun.2000,1371.(c)Tsuji,I.;Kudo,A.J.Photochem.Photobiol.A 2003,156,249.

(10)(a)Arai,T.;Senda,S.;Sato,Y.;Takahashi,H.;Shinoda,K.;Jeyadevan,B.;Tohji,K.Chem.Mater.2008,20,199.(b)Muruganandham,M.;Kusumoto,Y.J.Phys.Chem.C 2009,113,16144.

(11)(a)Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Am.Chem.Soc.2004,126,13406.(b)Tsuji,I.;Kato,H.;Kudo,A.Angew.Chem.,Int.Ed.2005,44,3565.(c)Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Phys.Chem.B 2005,109,7323.(d)Tsuji,I.;Kato,H.;Kudo,A.Chem.Mater.2006,18,1969.(e)Li,Y.;Chen,G.;Zhou,C.;Sun,https://www.sodocs.net/doc/a011930541.html,mun.2009,2020.

(12)(a)Liu,G.;Zhao,L.;Ma,L.;Guo,https://www.sodocs.net/doc/a011930541.html,mun.2008,9,126.(b)Zhang,X.;Jing,D.;Liu,M.;Guo,https://www.sodocs.net/doc/a011930541.html,mun.2008,9,1720.(c)Zhang,W.;Zhong,Z.;Wang,Y.;Xu,R.J.Phys.Chem.C 2008,112,17635.

(13)(a)Leez,M.-K.;Shih,T.-H.J.Electrochem.Soc.2007,154,49.

(14)(a)Feng,S.-A.;Zhao,J.-H.;Zhu,Z.-P.New Carbon Mater.2008,23,228.(b)Wu,H.;Wang,Q.;Yao,Y.;Qian,C.;Zhang,X.;Wei,X.J.Phys.Chem.C 2008,112,16779.

(15)Sun,Z.;Yang,Z.;Zhou,J.;Yeung,M.H.;Ni,W.;Wu,H.;Wang,J.Angew.Chem.,Int.Ed.2009,48,2881.

(16)(a)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Phys.Chem.B 2003,107,7479.(b)Jakob,M.;Levanon,H.;Kamat,P.V.Nano Lett.2003,3,353.(c)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.2004,126,4943.(d)Costi,R.;Cohen,G.;Salant,A.;Rabani,E.;Banin,U.Nano Lett.2009,9,2031.(17)(a)Kamat,P.V.;Shanghavi,B.J.Phys.Chem.B 1997,101,7675.(b)Hirakawa,T.;Kamat,P.V.J.Am.Chem.Soc.2005,127,3928.(c)Sakai,H.;Kanda,T.;Shibata,H.;Ohkubo,T.;Abe,M.J.Am.Chem.Soc.2006,128,4944.(d)Shi,W.;Zeng,H.;Sahoo,Y.;Ohulchanskyy,T.Y.;Ding,Y.;Wang,Z.L.;Swihart,M.;Prasad,P.N.Nano Lett.2006,6,875.(e)Lee,J.-S.;Shevchenko,E.V.;Talapin,D.V.J.Am.Chem.Soc.2008,130,9673.(f)Wu,X.-F.;Song,H.-Y.;Yoon,J.-M.;Yu,Y.-T.;Chen,https://www.sodocs.net/doc/a011930541.html,ngmuir 2009,25,6438.

Chen and Hsu Article semiconductor nanorods,18and metal-deposited semiconductor

nanoparticles19have been proposed to further the development of

photocatalysts.There are however very few studies in the literature

concerning the fabrication of ZnS/metal hybrid materials,and their

performance in photocatalysis is rarely reported.Therefore,creation

of a synthetic route to fabricate ZnS/metal hybrid photocatalysts is

still a challenging task at present.

In this work,we present a prototype ZnS/metal hybrid system

by synthesizing core-satellite ZnS-Au nanoassemblies,in which

each of the ZnS nanospheres was surrounded by a few Au

nanoparticles,with a facile hydrothermal method.We analyzed

the details of hydrothermal growth,discussed the optical proper-

ties of the nanoassembly products,and investigated for the first

time the photocatalytic performance of ZnS/Au hybrid system.

The formation of ZnS-Au nanoassemblies involved the binding

of Au nanoparticles toward L-cysteine-Zn2tcomplexes(Cys/

Zn),followed by the hydrothermal decomposition of Cys/Zn and

the subsequent growth of ZnS nanospheres that were surrounded

by Au nanoparticles.By suitably modulating the concentration

of Au added,a controllable density of Au nanoparticles that

encircled each ZnS nanosphere can be achieved.Because of the

difference in band structures between ZnS and Au,a pronounced

photoinduced charge separation was observed for the as-synthe-sized ZnS-Au nanoasssembles.For ZnS-Au,the satellite Au can serve as an effective electron trapper for the core ZnS due to its lower Fermi energetic level(t0.5V vs NHE)17a than the conduction band of ZnS(-1.85V vs NHE).20Consequently,the photoexcited free electrons in ZnS would preferentially transfer to Au,leaving positively charged holes in ZnS to achieve charge carrier separation.These separated charge carriers are highly reactive in redox reactions,giving rise to a promising performance in the course of photocatalysis.Scheme1illustrates the hydro-thermal growth of ZnS-Au nanoassemblies and depicts the interfacial charge transfer processes that occurred in ZnS-Au. We evaluated the photocatalytic performance of ZnS-Au na-noassemblies through the photodegradation of an organic dye, thionine(TH),under ultraviolet(UV)illumination.As compared to the relevant commercial products like Au-loaded P-25TiO2 and ZnS powders,the as-synthesized ZnS-Au nanoassemblies exhibited superior photocatalytic performance toward TH photo-degradation,attributable to the effective charge separation that took place at the interface of ZnS/Au.Moreover,no appreciable decay of photocatalytic activity was found for ZnS-Au nanoas-semblies after repeated uses and recycled,demonstrating their promising potential in the long-term course of photocatalysis.

Experimental Section

Chemicals.All chemicals were of analytic grade and used without further purification.

Preparation of Au Colloids.Au colloids were synthesized by the conventional citrate reduction method.21In a typical synthesis,an aqueous solution of tetrachloroauric acid (HAuCl4,100mL,0.25mM)was heated to boiling,followed by the rapid addition of trisodium citrate solution(Na3C6H5O7, 200μL,0.5M).The resulting solution was kept boiling for about 10min,producing a stable,deep-red dispersion of Au nanopar-ticles with an average diameter of about15nm.The well-dispersed Au colloids were then cooled to room temperature for later use. Preparation of Core-Satellite ZnS-Au Nanoassem-blies.An aqueous solution of L-cysteine(C3H7NO2S,denoted as Cys,50mM)was mixed with zinc nitrate(Zn(NO3)2)in a1:0.5 molar ratio of Cys to Zn2t.The resulting mixture was stirred for 30min to form the stable complexes of L-cysteine-Zn2t(denoted as Cys/Zn).The freshly prepared Cys/Zn(4mL,50mM)was then added to a given amount of Au colloids(9mL,45μM)under vigorous stirring for30min,leading to a complete coupling between amine groups of Cys and Au surfaces.Subsequently, the Au-coupled Cys/Zn(denoted as(Cys/Zn)-Au)were diluted to a total volume of50mL with deionized water and transferred into a Teflon-lined stainless-steel autoclave with a capacity of 100mL.After being sealed,the autoclave was heated and main-tained at130°C for6h and then cooled to room temperature naturally.The product(ZnS-Au nanoassemblies)was collected by centrifugation at8500rpm for10min and washed with distilled water and ethanol to remove remaining ions and impurities. Density Control for Satellite Au.Au colloids of four various concentrations(45,90,180,and225μM)were employed in this work to produce four ZnS-Au samples with increasing densities of satellite Au(denoted as ZnS-Au-1,ZnS-Au-2,ZnS-Au-3, and ZnS-Au-4,respectively).

Preparation of ZnS@Au Counterpart.ZnS@Au counter-part was prepared by mixing pure ZnS nanospheres with Au colloids(with the concentration of180μM),which resulted in a random distribution of Au nanoparticles around ZnS nano-spheres.

Preparation of Au-Loaded P-25TiO2.Au-loaded P-25 TiO2(denoted as TiO2@Au)was prepared by mixing Degussa P-25TiO2powder with Au colloids(with the concentration of 180μM).A random distribution of Au around TiO2nanoparticles also resulted.

Photocatalytic Performance Measurement.The photoca-talytic performance of ZnS-Au nanoassemblies was evaluated by the photodegradation of thionine(denoted as TH)under UV illumination.A quartz tube with a capacity of15mL was used as the photoreactor vessel.The optical system used for photocata-lytic reaction was consisted of a xenon lamp(500W)with a light Scheme1.Schematic Illustration of the Synthesis of Core-Satellite ZnS-Au Nanoassemblies and the Interfacial Charge Transfer Pro-

cesses That Occurred in ZnS-

Au

(18)(a)Zheng,Y.;Zheng,L.;Zhan,Y.;Lin,X.;Zheng,Q.;Wei,K.Inorg.

Chem.2007,46,6980.(b)Elmalem,E.;Saunders,A.E.;Costi,R.;Salant,A.;Banin,U.

Adv.Mater.2008,20,4312.(c)Costi,R.;Saunders,A.E.;Elmalem,E.;Salant,A.;

Banin,U.Nano Lett.2008,8,637.(d)Formo,E.;Lee,E.;Campbell,D.;Xia,Y.Nano

Lett.2008,8,668.(e)Chen,H.;Chen,S.;Quan,X.;Yu,H.;Zhao,H.;Zhang,Y.

J.Phys.Chem.C2008,112,9285.(f)Cheng,W.-Y.;Chen,W.-T.;Hsu,Y.-J.;Lu,S.-Y.

J.Phys.Chem.C2009,113,17342.

(19)(a)Zeng,H.;Cai,W.;Liu,P.;Xu,X.;Zhou,H.;Klingshirn,C.;Kalt,H.

ACS Nano2008,2,1661.(b)Zeng,H.;Liu,P.;Cai,W.;Yang,S.;Xu,X.J.Phys.

Chem.C2008,112,19620.(c)Li,J.;Xu,J.;Dai,W.-L.;Fan,K.J.Phys.Chem.C2009,

113,8343.

(20)Reber,J.-F.;Meier,K.J.Phys.Chem.1984,88,5903.

(21)(a)Turkevich,J.;Hillier,J.;Stevenson,P.C.Discuss.Faraday Soc.1951,11,

55.(b)Ji,X.;Song,X.;Li,J.;Bai,Y.;Yang,W.;Peng,X.J.Am.Chem.Soc.2007,129,

13939.

DOI:10.1021/la904389y5919 Langmuir2010,26(8),5918–5925

5920DOI:10.1021/la904389y

Langmuir 2010,26(8),5918–5925

Article

Chen and Hsu

intensity of 175mW/cm 2.All the photocatalysis experiments were conducted at room temperature.Four kinds of photocata-lysts including Au-loaded P-25TiO 2,commercial ZnS powders (Sigma-Aldrich,with the particle size of 100-200nm),ZnS@Au counterpart,and ZnS -Au nanoassemblies were used and com-pared in the photodegradation of TH.In a typical experiment,3.0mg of photocatalyst was added into 15mL of TH solution in the photoreactor vessel.The TH solution was prepared by dissolving thionine acetate (C 14H 13N 3O 2S)in deaerated ethanol with a concentration of 2.5?10-5M.Note that ethanol was used as the sacrificial hole scavenger for photocatalyst to facilitate the further utilization of photoexcited electrons.Prior to irradiation,the suspension was stirred in the dark for 30min to reach the adsorption equilibrium of TH with photocatalyst.At certain time intervals of irradiation,1.5mL of the reaction solution was withdrawn and centrifuged to remove the photocatalyst particles.The filtrates were analyzed with a UV -vis spectrophotometer to measure the concentration variation of TH through recording the corresponding absorbance of the characteristic peak at 605nm.To investigate the reusability and stability of photocatalyst,three cycles of photocatalytic reactions were conducted by using na-noassemblies of ZnS -Au-3as the representative sample.

Characterizations.The morphology and dimensions of the products were examined with a transmission electron microscope (TEM,JEOL,JEM-2100)operated at 200kV.The crystallo-graphic structures of the samples were investigated with a X-ray diffractometer (XRD,MAC Sience,MXP18)and high-resolution TEM (HRTEM,JEOL,JEM-3000)operated at 300kV.The compositional information was obtained with an energy disper-sive spectrometer (EDS),an accessory of the HRTEM (JEM-3000),and X-ray photoelectron spectroscope (XPS,VG Scienti-fic,Microlab 350).XPS measurement was performed using Mg K R (h ν=1253.6eV)as X-ray source under a base pressure of 1.0?10-9Torr.Samples were prepared by dripping the solution of a sufficient amount onto Si wafers (0.5cm ?0.5cm),followed by a heat treatment at 70°C for 20min to remove the solvent.The spectrum resolution was 0.1eV,and the pass energy for survey and fine scans of core levels was 40eV.All the binding energies were calibrated by C 1s at 284.6eV.In this work,N 1s and C 1s XPS spectra of samples were fitted using XPSPEAK software.The deconvolution peaks,corrected by a linear baseline,were 15%Lorentzian and 85%Gaussian with the full widths at half-maximum (fwhm)ranging from 1.3to 3.3eV.The fwhm values of all the deconvolution peaks are basically in agreement with those reported in the literature.UV -vis absorption spectra were re-corded using a Hitachi U-3900H.For photoluminescence spec-troscopy,a Hitachi F-4500equipped with a xenon lamp (150W)was used.The excitation wavelength was set at 300nm.

Results and Discussion

First,Au nanoparticles with an average diameter of 15nm were obtained with the citrate reduction method.21A coupling event between Au nanoparticles and Cys/Zn complexes was then conducted through the direct mixing of them.The subsequent hydrothermal treatment at 130°C for 6h resulted in a purple-gray suspension.TEM observations revealed that the product con-sisted of a large quantity of nanospheres surrounded by a few tiny particles,as shown in Figure 1.These nanospheres were with a typical diameter of 180-230nm,while the size of tiny particles was about 15nm.Interestingly,as increasing the concentration of Au added,there is increasing density of tiny particles that encircled each nanosphere in the resulting products.In addition,a slight increase in size and partial aggregation among particles were observed for those tiny particles when Au colloids with higher concentrations (180and 225μM)were employed.On the basis of the above survey as well as the evident TEM con-trast between nanospheres and tiny particles,we supposed that

nanospheres were composed of ZnS,while the tiny particles were the first-added Au.Such core -satellite architecture of ZnS -Au in the products can be further confirmed with the corresponding XPS,XRD,and HRTEM analyses.

The compositions and chemical states of the as-synthesized products were analyzed with XPS.In Figure 2a,both of the Zn and S XPS spectra exhibit signals consistent with the presence of ZnS with the binding energies of 1022.1and 162.3eV for Zn 2p 3/2and S 2p core levels,respectively.22This result implies the formation of ZnS upon the hydrothermal reaction.For the S 2p spectrum of products,note that no sulfate-related peak,which is located at around 168.4eV,23was observed.It is well-known that sulfides such as CdS and ZnS easily undergo serious photo-corrosive oxidation in the presence of oxygen and water.Such photocorrosion usually results in the production of sulfate ions.20,24The absence of sulfate-related peak in S 2p spectrum indicates that the as-synthesized ZnS-based products did not suffer significant photocorrosive oxidation and exhibited consi-derably high stability in air,which is important to the durability performance during their use as photocatalysts.XRD patterns of Figure 2b reveal the existence of wurtzite ZnS along with fcc Au in the products.To further ascertain the compositions within each nanoassembly,we performed TEM-EDS measurements.The TEM-EDS elemental mapping of Au,Zn,and S shown in Figure 3a confirms the core -satellite feature of ZnS -Au nanoassem-blies.Figure 3b,c further shows the detailed crystallographic structures of the as-obtained ZnS -Au nanoassemblies.In Figure 3b,an HRTEM image taken at the interface of core and satellite regions of a single assembly,two distinct sets of lattice fringes were revealed.An interlayer spacing of 0.33nm was observed in the core nanosphere,in good agreement with the d spacing of the (100)lattice planes of the wurtzite ZnS crystal.25For the satellite particle,an interlayer spacing of 0.24nm

was

Figure 1.TEM images of ZnS -Au nanoassemblies with the Au

concentrations of (a)45,(b)90,(c)180,and (d)225μM.

(22)(a)Chen,S.;Liu,https://www.sodocs.net/doc/a011930541.html,ngmuir 1999,15,8100.(b)€Ozn €u l €u er,T.;Erdo g an,:

I.;

Demir,https://www.sodocs.net/doc/a011930541.html,ngmuir 2006,22,4415.

(23)Antoun,T.;Brayner,R.;Al terary,S.;Fi e vet,F.;Chehimi,M.;Yassar,A.Eur.J.Inorg.Chem.2007,1275.

(24)Meissner,D.;Memming,R.;Kastening,B.J.Phys.Chem.1988,92,3476.(25)For bulk wurtzite ZnS,d (100)=0.3309nm from JCPDS 05-0492.

DOI:10.1021/la904389y 5921

Langmuir 2010,26(8),5918–5925Chen and Hsu Article

obtained,complying with the lattice spacing of the (111)planes of the fcc Au.26The corresponding electron diffraction pattern in Figure 3c further verifies the presence of both ZnS and Au nano-crystals with two sets of diffraction patterns indexed as wurtzite ZnS and fcc Au,respectively.This result,together with those of XPS,XRD,HRTEM,and TEM-EDS analyses,confirms the formation of core -satallite ZnS -Au nanoassemblies by using (Cys/Zn)-Au as the starting material in the hydrothermal reaction.The success of this work to fabricate core -satellite nanoas-semblies relied on the utilization of Cys as the trifunctional rea-gent in the hydrothermal process.With three functional groups (SH,COOH,NH 2),Cys was typically used as the sulfur source and reaction stabilizer for the growth of sulfide nanocrystals.27

In the current synthetic system,Cys provided thiol groups forming fairly stable Cys/Zn complexes with Zn 2tions,28amine groups binding Au to Cys/Zn complexes,29and carboxyl groups stabilizing the core ZnS.A plausible mechanism for the formation of ZnS -Au nanoassemblies is proposed as follows.At the beginning of synthesis,Au nanoparticles coupled with Cys/Zn complexes through the linkage between Au atoms and amine groups of Cys.Note that both thiol and amine groups of Cys exhibit binding abilities toward Au particles.30In the current synthetic system,since the thiol groups of Cys were predominately bonded to Zn 2tto form Cys/Zn complexes,the available sites of Cys allowed for further coupling with Au would mainly be amine groups.On the other hand,the pH value of Cys/Zn solution was around 3.5.Under this acidic regime,the amine groups of Cys were certainly capable of binding with Au particles.31The coupling event between Au and Cys/Zn can be further confirmed by the formation of nitride constituent (Au -N bonds)observed in the corresponding XPS analysis of Figure 4a.In Figure 4a,the deconvolution of N 1s peak produced three chemical states:the N1component at 398.5eV,which was assigned to a nitride constituent (Au -N),the N2component at 399.6eV,resulting from the amine groups (C -N)of Cys,and the N3component at 401.2eV,corresponding to the protonated amine (NH 3t)of Cys.32Upon the hydrothermal reaction at 130°C for 6h,Cys/Zn complexes decomposed to yield ZnS nanospheres,while the initially bound Au nanoparticles remained at the surfaces of ZnS,producing the architecture of core -satellite ZnS -Au.It should be noted that Au-free ZnS nanospheres or free-standing Au particles were rarely observed in the products,demonstrating the advantage of the current synthetic approach to obtain core -satellite nanoassemblies.Additionally,the as-synthesized core -satellite nanoassemblies of ZnS -Au retained high disper-sity in water,attributable to the remaining carboxyl groups of Cys at their surfaces.As shown in Figure 4b,the C 1s XPS peak at 288.9eV (C2component)reveals the existence of carboxyl groups 33at the surfaces of nanoassemblies.The good dispersion for nanoassemblies may facilitate their future processing in wet media,which is crucial to the performance of practical use.As a final note,the substantial interface of ZnS/Au that formed in ZnS -Au nanoassemblies (highlighted by the dashed line in Figure 3b)may ensure the successful transfer of photoexcited electrons from ZnS to Au upon light irradiation and thus the achievement of charge separation.

We previously reported that core -shell Au -CdS nanocrystals can be obtained with a hydrothermal approach similar to the present one.34The difference in the growth habits between CdS and ZnS during the hydrothermal process may account for the structural divergence observed correspondingly.For core -shell Au -CdS nanocrystals case,it was believed that the first added Au nanoparticles acted as the seeds for the later growth of CdS.With the coupling between Au and Cys/Cd,CdS could

nucleate

Figure 2.(a)Zn 2p and S 2p XPS spectra and (b)XRD pattern recorded for ZnS -Au nanoassemblies.In (b),the patterns of reference wurtzite ZnS (JCPDS 05-0492)and fcc Au (JCPDS 04-0784)were also included for comparison.Concentration of Au =45μM.

(26)For bulk fcc Au,d (111)=0.2355nm from JCPDS 04-0784.

(27)(a)Tong,H.;Zhu,Y.-J.;Yang,L.-X.;Li,L.;Zhang,L.;Chang,J.;An,L.-Q.;Wang,S.-W.J.Phys.Chem.C 2007,111,3893.(b)Xiong,S.;Xi,B.;Xu,D.;Wang,C.;Feng,X.;Zhou,H.;Qian,Y.J.Phys.Chem.C 2007,111,16761.(c)Xiang,J.;Cao,H.;Wu,Q.;Zhang,S.;Zhang,X.;Watt,A.A.R.J.Phys.Chem.C 2008,112,3580.

(28)(a)Bae,W.;Mehra,R.K.J.Inorg.Biochem.1998,70,125.(b)Chatterjee,A.;Priyam,A.;Bhattacharya,S.C.;Saha,A.Colloids Surf.,A 2007,297,258.(c)Rebilly,J.-N.;Gardner,P.W.;Darling,G.R.;Bacsa,J.;Rosseinsky,M.J.Inorg.Chem.2008,47,9390.

(29)(a)Yang,Y.;Shi,J.;Chen,H.;Dai,S.;Liu,Y.Chem.Phys.Lett.2003,370,1.(b)Sheeney-Haj-Ichia,L.;Pogorelova,S.;Gofer,Y.;Willner,I.Adv.Funct.Mater.2004,14,416.

(30)Zhong,Z.;Subramanian,A.S.;Highfield,J.;Carpenter,K.;Gedanken,A.Chem.;Eur.J.2005,11,1473.

(31)Zhong,Z.;Patskovskyy,S.;Bouvrette,P.;Luong,J.H.T.;Gedanken,A.J.Phys.Chem.B 2004,108,4046.

(32)Adenier,A.;Chehimi,M.M.;Gallardo,I.;Pinson,J.;Vila,https://www.sodocs.net/doc/a011930541.html,ngmuir 2004,20,8243.

(33)Ramanathan,T.;Fisher,F.T.;Ruoff,R.S.;Brinson,L.C.Chem.Mater.2005,17,1290.

(34)Chen,W.-T.;Yang,T.-T.;Hsu,Y.-J.Chem.Mater.2008,20,7204.

5922DOI:10.1021/la904389y

Langmuir 2010,26(8),5918–5925

Article Chen and Hsu

heterogeneously and grow more readily at the surfaces of Au,resulting in the formation of core -shell structures.As for the case of ZnS -Au nanoassemblies,Au nanoparticles instead were less involved in the growth of ZnS.The coupling between Au and Cys/Zn was more significant and accountable to the direct contact of Au with ZnS that existed in the resulting ZnS -Au nanoassem-blies.The above argument can be validated by the fact that without the addition of Au,ZnS itself can grow as nanospheres as it did in ZnS -Au case.This phenomenon implies the prevalence of homogeneous nucleation of ZnS in the hydrothermal growth of ZnS -Au nanoassemblies.In fact,the concentration of Cys/Zn (50mM)employed here is substantially higher than that of Cys/Cd (5mM)used in the Au -CdS system.When a reduced Cys/Zn concentration is applied,the resultant relatively low supersatura-tion may alter the growth habit of ZnS,enabling ZnS to nucleate heterogeneously and grow at the surfaces of Au.Under this circumstance,core -shell Au -ZnS nanocrystals may result.34

The optical properties of ZnS -Au nanoassemblies prepared with four various Au concentrations were characterized with UV -vis and photoluminescence (PL)spectroscopy.For com-parison purposes,pure ZnS nanospheres were also prepared and analyzed here.As displayed in Figure 5a,all the ZnS-based samples showed an absorption edge at around 330nm,consistent with the bulk bandgap energy of ZnS (E g =3.7eV).Moreover,an

additional absorption band at about 570nm was observed for ZnS -Au with higher Au concentrations (ZnS -Au-3and ZnS -Au-4).This band can be attributed to the typical surface plasmon resonance (SPR)35absorption that originated from the satellite Au in nanoassemblies.In addition to the emergence of SPR absorption,the color change of ZnS upon the introduction of Au was also evident.As illustrated in the inset of Figure 5a,the color of ZnS -Au solutions turned purple with increasing Au concentration,which is also characteristic of the SPR of Au.The present core -satellite ZnS -Au nanoassemblies provide an ideal platform to investigate the photoinduced charge transfer property for the ZnS/Au hybrid system.Note that the satellite Au can serve as an effective electron scavenger for the core ZnS.The conduc-tion band of ZnS is located at around -1.85V vs NHE,20higher in the energetic state than the Fermi level of Au (t0.5V vs NHE).17a Consequently,the photoexcited free electrons in core ZnS would preferentially transfer to satellite Au,leading to the depletion of free electrons in ZnS domain and the subsequent suppression of excitonic emission of ZnS.Figure 5b shows the PL spectra of the as-synthesized ZnS -Au nanoassemblies compared with that of pure ZnS nanospheres.A rather broad

emission

Figure 3.(a)TEM-EDS elemental mapping,(b)HRTEM image,and (c)the corresponding SAED pattern taken on a single ZnS -Au nanoassembly.In (b),the boundary of ZnS nanosphere and the interface of ZnS/Au were highlighted with the dotted and dashed lines,respectively.Concentration of Au =45μM.

(35)(a)Mulvaney,https://www.sodocs.net/doc/a011930541.html,ngmuir 1996,12,788.(b)Eustis,S.;El-Sayed,M.A.Chem.Soc.Rev.2006,35,209.

DOI:10.1021/la904389y 5923

Langmuir 2010,26(8),5918–5925Chen and Hsu Article

band,ranging from 330to 480nm,was observed for all the ZnS-based samples.Peak deconvolution revealed four primary emis-sions centered at 350,380,420,and 454nm.The emission at 350nm was attributed to the typical excitonic band-to-band radiative emission of ZnS due to its location near the absorption edge.The other three peaks were however assigned to the trap-state emissions,presumably coming from the various point defects present in ZnS.36More importantly,a significant quenching in the PL emission was observed for ZnS -Au nanoassemblies as compared to pure ZnS nanospheres.Such quenching became more noticeable as the concentration of Au was increased,implying the successful electron transfer from core ZnS to satellite Au.This demonstration supports our argument that Au acts as an effective electron scavenger for ZnS,leading to the pronounced photo-induced charge separation observed for ZnS -Au nanoassemblies.To investigate the potential as a photocatalyst for the current ZnS -Au nanoassemblies,we performed a series of photocatalysis

experiments.A cationic dye (TH),which is capable of accepting electrons following the UV irradiation on ZnS -Au nanoassem-blies,was utilized as the indicator.The time-dependent absorp-tion spectra of TH solutions under UV illumination in the presence of nanoassembly sample (ZnS -Au-1)were first shown in Figure 6a.It can be seen that the intensity of the characteristic peak at 605nm decreased dramatically with the irradiation time.The bleaching of the absorption at 605nm implies the reduction of TH to its leuco form,37verifying the successful transfer of photoexcited electrons from ZnS -Au to TH.To quantitatively understand the photodegradation of TH in the nanoassemblies,we analyzed the normalized concentration of TH (C /C 0)as a function of irradiation time.Figure 6b compares the photocata-lytic performance among all the ZnS-based samples.Experiment in the absence of photocatalyst showed slight degradation of TH,indicating a minor extent of self-photolysis for TH molecules under UV illumination.For pure ZnS nanospheres,about 72%of TH was degraded after 75min of irradiation.A higher extent

of

Figure 4.(a)XPS spectrum of N 1s peak for Au-coupled Cys/Zn complexes.(b)XPS spectrum of C 1s peak for ZnS -Au nano-assemblies.Concentration of Au =45μ

M.

Figure 5.(a)UV -vis absorption and (b)PL emission spectra for

pure ZnS nanospheres and ZnS -Au nanoassemblies with various Au concentrations.Inset in (a)shows the corresponding solution colors.

(36)(a)Jiang,Y.;Meng,X.-M.;Liu,J.;Hong,Z.-R.;Lee,C.-S.;Lee,S.-T.Adv.Mater.2003,15,1195.(b)Hu,P.;Liu,Y.;Fu,L.;Cao,L.;Zhu,D.J.Phys.Chem.B 2004,108,936.(c)Shen,X.-P.;Han,M.;Hong,J.-M.;Xue,Z.;Xu,Z.Chem.Vap.Deposition 2005,11,250.(d)Murugadoss,A.;Chattopadhyay,A.Bull.Mater.Sci.2008,31,533.

(37)Hirakawa,T.;Kamat,https://www.sodocs.net/doc/a011930541.html,ngmuir 2004,20,5645.

5924DOI:10.1021/la904389y Langmuir 2010,26(8),5918–5925

Article Chen and Hsu

TH photodegradation to around 81%at the same irradiation time was achieved when using nanoassemblies of ZnS -Au-1.This is mainly a result of the satellite Au that can facilitate charge separation by attracting the photoexcited electrons of ZnS,thus providing more electrons for the reduction of TH.For ZnS -Au with higher Au concentration (ZnS -Au-3),an even better performance in TH photodegradation can be attained,presum-ably due to the much more conspicuous charge separation caused by the increasing amount of Au.Further increase in the concen-tration of Au for nanoassemblies (ZnS -Au-4)however led to a depressed efficiency of TH photodegradation.The excess content of Au may cover a large part of ZnS surfaces,which in turn decreases the number of active sites for photocatalysis.The high coverage of Au may also retard the access of UV irradiation to ZnS surfaces,resulting in a reduced amount of photoexcited charge carriers to decline the photocatalytic performance.38Moreover,as increasing the concentration of Au added,ZnS

nanospheres were surrounded by more and more Au nanoparti-cles which tended to aggregate,as observed in Figure 1.These aggregated Au nanoparticles are more likely to play a role of electron -hole recombination center instead the electron trap-per,39leading to a significant depletion of photoexcited charge carriers and thus the depression of photocatalytic efficiency.Since nanosized Au is catalytic to many chemical reactions,a concern about the possible contribution of Au toward TH photodegrada-tion arises.To address this issue,we performed a control experi-ment by using Au nanoparticles as the catalyst for TH photodegradation.As shown in Figure 6b,a slight extent of TH degradation,which was mainly attributed to the self-photolysis effect of TH,was observed for Au nanoparticles.This outcome indicates that no significant contribution toward TH photode-gradation was made by Au nanoparticles in the current system.This demonstration can further emphasize the beneficial effect of ZnS/Au interface on the photocatalytic performance of ZnS -Au

nanoassemblies.

Figure 6.(a)Absorption spectra of TH solutions undergoing photodegradation in the presence of ZnS -Au nanoassemblies with different irradiation times.Concentration of Au =45μM.(b)C /C 0vs irradiation time plots for TH photodegradation with-out any catalyst and in the presence of ZnS -Au nanoassemblies with various Au concentrations.The results by using Au nanopar-ticles (180μM)and pure ZnS nanospheres were also included for

comparison.

Figure 7.(a)C /C 0vs irradiation time plots for TH photodegrada-

tion in the presence of different photocatalysts.(b)Recycling test on ZnS -Au nanoassemblies for TH photodegradation.Insets in (a)show the TEM images of ZnS@Au counterpart and TiO 2@Au,and the scale bar is 250nm.Concentration of Au =180μM.

(38)Arabatzis,I.M.;Stergiopoulos,T.;Andreeva,D.;Kitova,S.;Neophytides,S.G.;Falaras,P.J.Catal.2003,220,127.

(39)(a)Sclafani,A.;Herrmann,J.M.J.Photochem.Photobiol.A 1998,113,181.(b)Tahiri,H.;Ichou,Y.A.;Herrmann,J.M.J.Photochem.Photobiol.A 1998,114,219.(c)Lu,W.;Gao,S.;Wang,J.J.Phys.Chem.C 2008,112,16792.

Chen and Hsu Article

To demonstrate the remarkable photocatalytic efficiency for ZnS-Au nanoassemblies,further comparative experiments were conducted.Four kinds of photocatalysts including Au-loaded P-25TiO2(TiO2@Au),commercial ZnS powders,ZnS@Au counterpart,and core-satellite ZnS-Au nanoassemblies were used for TH photodegradation under the same experimental conditions.Note that ZnS@Au counterpart was prepared by simply mixing pure ZnS nanospheres with Au colloids,resulting in a random distribution of Au nanoparticles around ZnS nano-spheres.The comparative results are shown in Figure7a,from which several points can be observed.First,as compared to the relevant commercial products like TiO2@Au and ZnS powders, ZnS-Au nanoassemblies exhibited superior photocatalytic performance,demonstrating their potential as an efficient photo-catalyst in relevant redox reactions.Second,ZnS-Au nanoas-semblies performed better toward TH photodegradation than ZnS@Au counterpart did,which can be accounted for by the effective contact of Au with ZnS that existed in ZnS-Au.As shown in Figure3b,a direct contact of Au with ZnS to form the substantial ZnS/Au interface was observed in ZnS-Au,with which the transfer of photoexcited electrons from ZnS to Au can proceed to achieve charge carrier separation.As regards the ZnS@Au counterpart,very less contact of Au with ZnS was existent,as can been clearly seen from the TEM image shown in the inset of Figure7a.The limited contact of Au with ZnS in ZnS@Au may further retard the occurrence of charge carrier separation,leading to a poor photocatalytic performance as observed.This result reaffirms the effective charge separation that occurred in ZnS-Au nanoassemblies and its benefit to the photocatalytic performance.This demonstration also addresses the uniqueness of the current synthetic route,through which core-satellite nanoassemblies of ZnS-Au with remarkable photocatalytic efficiency can be obtained.To evaluate the reusa-bility and stability of ZnS-Au nanoassemblies,we further performed a recycling test by using ZnS-Au-3as the representa-tive photocatalyst.As shown in Figure7b,no appreciable decay of photocatalytic activity was found for ZnS-Au nanoassemblies after they were repeatedly used and recycled in TH photodegra-dation for three times.This result reveals that the current core-satellite nanoassemblies could be promisingly utilized in the long-term course of photocatalysis.

Conclusions

In conclusion,we have developed a facile L-cysteine-assisted hydrothermal approach for preparing core-satellite ZnS-Au nanoassemblies.The growth of ZnS-Au nanoassemblies in-volved the binding of Au nanoparticles toward Cys/Zn com-plexes,followed by the hydrothermal decomposition of Cys/Zn and the subsequent growth of ZnS nanospheres that were surrounded by Au nanoparticles.By suitably modulating the concentration of Au added,a controllable density of Au nano-particles that encircled each ZnS nanosphere can be achieved. Because of the band offsets between ZnS and Au,a pronounced photoinduced charge separation was observed for the as-synthe-sized ZnS-Au nanoassemblies.As compared to the relevant commercial products like Au-loaded P-25TiO2and ZnS powders, ZnS-Au nanoassemblies exhibited superior photocatalytic per-formance toward TH photodegradation,attributable to the effective charge separation that took place at the interface of ZnS/Au.The current ZnS-Au nanoassemblies may find poten-tial applications in relevant photocatalytic reactions such as water splitting and organics degradation.Moreover,ZnS-Au nanoas-semblies retained comparable photocatalytic activity after re-peated uses and recycled,revealing that ZnS-Au could be promisingly utilized in the long-term course of photocatalysis. The present study provides a new paradigm for designing the highly efficient semiconductor/metal hybrid photocatalysts that can effectively produce chemical energy from light. Acknowledgment.This work was financially supported by the National Science Council of the Republic of China(Taiwan)under Grants NSC-97-2221-E-009-073and NSC-98-2218-E-009-003.

DOI:10.1021/la904389y5925

Langmuir2010,26(8),5918–5925

磊科无线路由器设置方法

磊科Netcore配置,进入系统信息页面,打开界面后,看到的是系统信息下的状态页面。我们可以在这里找到WAN、LAN、无线以及路由状态。 转播到腾讯微博 点击统计信息按钮还可以获得相关统计信息。 2. 设置路由器参数。首先进入WAN设置页面。需注意,每个页面右上角都有一个向导按钮,点击它可以通过向导对路由器进行设置。 路由器提供了三种连接方式,其中有动态IP用户,PPPoE用户以及静态IP 用户。我们可以根据自己的实际情况作出选择,选择不同的方式需要输入不同的参数。 如果通过动态IP用户方式上网的话先选中该选项,接着设置DHCP客户端参数。先输入路由器MCA地址,如果不知道确切MAC地址的话可以点击后面的MAC 地址克隆按钮获得。或者点击恢复缺省MAC按钮使用默认地址。最后输入MTU 以及主从DNS参数点击应用即可。 转播到腾讯微博

3. PPPoE拨号上网方式设置。用户可以选择PPPoE用户选项,然后填写下面的参数框。 PPPoE帐户和密码就是ISP互联网服务提供商给我们的拨号上网的帐号和密码,其它的设置和动态IP用户的设置完全一样。 转播到腾讯微博 最后我们可以决定路由器是否自动联网,保持网络联通状态。或者选择没有操作一定时间后自动断网。又或者手动连接网络。

4. 静态IP设置,这种连接方式所需要进行的设置也不会麻烦,只需输入ISP 给我们提供的固定IP地址,子网掩码以及默认网关即可。其它设置和前面两种连接方式一样,不再详述。 转播到腾讯微博 5. LAN局域网设置。在“LAN设置”选项卡下面,填入路由器所在的局域网IP、子网掩码。如果需要启用DHCP服务器自动分配IP地址功能的话,先将前面的选框勾上,然后在后面的框内输入分配的起始和结束IP以及租期即可。 转播到腾讯微博

磊科中继设置教程w设置

磊科735 235w 设置 ,在计算机网络配置中手动配置一下IP,最好不要自动获取,至于ip地址,只要在NR235W网段内都行。然后输入网关进行配置。 第一部,打开“内网接入配置”---“DHCP服务”在这里禁用DHCP 服务。\

然后,打开“无线管理”--“无线基本配置”,在网络模式中选择“Repeater”模式,6 X. @' |. f! w( d其中,上面的SSID号就是你转发后的无线信号的名字,自己随便起。 然后点击“AP探测”b5E2RGbCAP

3 W! m5 u& y7 R( `, ]> q7 i! G 会出来很多信号,然后选择你所需要中继的信号,点击“链接”2 S& D。 a9 b。 N: s7 I/ g& ]! r- N> V/ g- ] 4 M* {然后点击保存。!p1EanqFDPw 9 R* _' z/ k> D8 Z- q然后再来到,“无线安全管理”,在网络模式中有 AP和Repeater两个选择,Repeater就是你所要中继的

信号,我们先选择它,% q( U3 E. i> ^然后点击下面的“安全模式”有密码就输入密码,加密模式也要选择和被中继网络加密一样的,没有密码就选择“无”。DXDiTa9E3d CMCC.和Chinanet,选择“无”。 p$ f3 X2 m: K/ ~- x, k8 ^: e在网络模式中“AP”是指被中继后,你自己需要设置的信号。在下面的“安全模式”中选择你想要的加密算法和密码。填写就行行了,这个和普通路由设置AP模式是一样的。 配置完成后,点击下面的“保存生效” : RTCrpUDGiT 最后!请把网络地址改为自动获取IP!等10S-30S就可以上网了。如果还不能上网,请检查一下几点、

无线路由器【磊科】问题排查及解决

无线路由器【磊科】问题排查及解决 网速慢问题排查 磊科无线路由器网速慢这个问题真的很常见,其中的原因比较多,我把几个比较常见的原因告诉你,你可以逐一排查一下。不过最主要的还是路由器的原因吧,你看看是不是要换个好点的,极路由什么的就很好啊,完全没有安装路由器后网速变慢这个问题。 1.宽带接入的带宽大小 如果说接入的带宽是2M,但使用的人数达到了2人以上,而且中间还有人看视频、在电影,开启了迅雷、bps、快车、电炉、旋风等下载软件这会导致上网速度肯定会很慢。 2.路由器上是否有进行过带宽设置 如IP带宽控制,设置的带宽过小,出现网速很慢。将路由器上设置都去除后,网速是否恢复正常。 你可以参考下面的图来进行设置。2M的宽带,最大下载速度是256KB/S,一般都有损耗的,基本上很难达到标准值。 3.局域网内电脑是否中毒(如蠕虫病毒) 如果局域网内有电脑中毒,你可以在电脑上安装杀毒软件,并将杀毒软件升级到最新版本,对电脑进行全盘杀毒。同时,计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。 4.网线问题导致网速变慢 单机进行拨号上网的时候,不通过路由器,网速是否正常。若单机上网的时候,仍然很慢,则有可能是线路的问题。 5.系统资源不足(如CPU的使用率过高) 您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的。如:CPU非常繁忙的工作,会直接影响网络和计算机速度。怎么样看CPU使用率能?可以使用快捷键CTRL+ALT+DEL 6.网络自身问题 您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。

Netcore路由器的账号密码忘记了怎么办

Netcore路由器的账号密码忘记了怎么办? 2013年已经有非常多的电脑用户在使用Netcore路由器,毕竟现在电脑普及率太高了,许多用户都有还几台电脑,所以个别家庭都会有五台电脑以上,家里电脑多了自然需要安装使用路由器才能共享上网,Netcore又是目前非常著名的品牌,Netcore路由器也是比较受广大电脑用户的欢迎。有一些新用户忘记Netcore路由器的登录密码就不知道怎么办了,其实忘记密码后只要给路由器复位就行了,复位后就恢复到出厂设置,登陆用户名以及密码都会恢复到默认的。 一、Netcore SOHO有线路由器恢复出厂设置的方法: 1、我们首先要找到路由器的前/后面板上有一个小孔,旁有单词:Default; 2、接通路由器电源,找一个细铁丝或者牙签等尖物按住Default键; 3、等待约3-10秒钟,待SYS闪烁三次后可松手,这样就复位成功了; 4、注意复位后路由器将会恢复为出厂设置,默认登陆IP是192.168.1.1;默认用户名和密码是guest/guest,如果是其它品牌的路由器默认用户名和密码会不相同,登陆时请注意你的电脑的IP地址设置是否在路由器同网段。 二、Netocre无线路由器回复出厂设置方法: 1、在路由器的前/后面板上有一个小孔,旁有单词:Default; 2、找一如牙签,笔尖类的尖物按住Default键,然后再接通电源,注意顺序; 3、等待约3-10秒钟,待SYS闪烁三次后可松手,复位成功; 4、注意复位后路由器将会恢复为出厂设置,默认登陆IP是192.168.1.1;默认用户名和密码是guest/guest,登陆时请注意你的电脑的IP地址设置是否在路由器同网段。 总结:

局域网中的无线路由器设置方法

局域网中的无线路由器设置 局域网中的无线路由器设置-磊科、腾达、D-link等设置方法我住在单位里,家里的网络接自单位的宽带,前些日子,买了两个笔记本,和我对象一人一个,上网不方便了,便买了个无线路由器,迅捷的,在家里用,买回来后看说明书却看不懂怎么设置,翻来覆去的没弄明白?上网查了半天也是没有说的很明白的,好在摸索了半天终于设置成功了。后来又陆续给单位的其他同事设置,有TP-link、D-Link、磊科等各种品牌的无线路由器,总结经验,写在这里。由于刚买无线路由器的大多是菜鸟,不是很懂,所有我尽量的写的明白,傻瓜化操作,有不明之处可以问我,微博:@hyshiyong,发私信即可。 先以TP-link为例说明,如果你的是单独的ip,既是电话线上网的,那就不用这么麻烦了,可以按照说明书很快就可以了,我们这里主要是以在有路由器的局域网中的无线路由器设置,我们用的主要是他的无线交换机功能,专业的术语就不说了,我也不懂。 第一步:用一条网线将无线路由器和电脑连接,注意无线路由器那端要插入lan 口,一至四lan口哪个都可以,最好在lan1口。 第二步:修改电脑的本地连接属性的ip地址为:192.168.1.,X(X为2-50任一数字),子网掩码:255.255.255.0,网关:192.168.1.1,dns:202.102.152.3即可,当然不同的路由器也不尽相同,这个看说明书。 第三步:打开ie浏览器,在地址栏内输入192.168.1.1然后回车键,这时应该出现一个要求你输入名字和密码的界面,名字一般的是admin,密码为admin,磊科的名字是guest,密码也是guest,D-Link的名字是admin,没有密码,空着就行,然后按回车键就是enter键。 第四步:这时应该进入设置界面了,此处为关键。在“网络设置”中,先设置wan口的ip,这个就是你能上网的ip,就是你在单位用网线上网的ip,如果不知道,可以再设置之前查找你自己的电脑的ip地址。 比如我这里设置为 ip:172.22.140.x, 子网掩码:255.255.255.0, 网关:192.168.1.1,

磊科路由器怎么桥接

磊科路由器怎么桥接---简单步骤大道理 磊科路由器怎么桥接呢?最近把路由器进行桥接的人越来越多了,比如说两个相同牌子的路由器桥接啦,或者更高级点儿的两款路由器直接的桥接,这些都是现下比较常见,也是比较普遍的了,那么,磊科路由器怎么桥接呢? 第一步:中心无线路由器1设置登陆无线路由器设置1管理界面,在无线设置-基本设置中设置“SSID号”、“信道” 在“无线设置”——“无线安全设置”中设置无线信号加密信息; 记录无线路由器1设置后的SSID、信道和加密设置信息,在后续无线路由器2的配置中需要应用; 二、无线路由器A设置1.修改LAN口IP地址。在网络参数-LAN口设置中,修改IP 地址和B路由器不同(防止IP地址冲突),如192.168.1.2,保存,路由器会自动重启; 2.启用WDS功能。重启完毕后,用更改后的LAN口IP地址重新登陆无线路由器2,在无线设置-基本设置中勾选“开启WDS”。大家注意这里的SSID跟B路由器的是不一样的,当然也可以设置成相同的,这样你在这三个路由器覆盖范围内可以漫游,也就是说只要你在这个范围内随意一点连上了网,到这个范围内的另一点也能上网,不用重新连接,重新输入SSID很方便形象的说就是两个路由器组成了一个相同的大; 3.开启WDS设置。点击“扫描”,搜索周围无线信号; 在扫描到的信号列表中选择1路由器SSID号,如下图中TP-LINK_841_B,点击“连接“; 将信道设置成与1路由器信道相同; 填写无线路由器1的密码,点”保存“; 4.关闭DHCP服务器。在DHCP服务器中,选择“不启用”,“保存”,重启路由器; 无线路由器2配置完成。此时无线路由器2与无线路由器1已成功建立WDS;、 以上的两个路由器桥接方法不只是适用于磊科路由器怎么桥接的,还同样适用于其他,我觉得自己做的比较好的路由器桥接就是极壹s和普联之间的桥接了,网速快的没话说,不管这个是针对于磊科路由器怎么桥接的步骤,还是对所有的桥接都适用,路过看到的有需要的,就留下吧。

2019年磊科无线网卡怎样设置

2019年磊科无线网卡怎样设置 篇一:磊科NW360无线网卡电脑设置 无线网卡磊科NW360(电视网卡)用在电脑上设置: 安装驱动——在桌面上找到“在Netcore客户端应用程序(SU)设置”——找可用网络(刷新)——找到无线路由(击活)——配置文件(击活)——编辑——网络验证:WPA-PSK——日期加密:TKIP ——密码:——OK 篇二:磊科Netcore无线路由器设置图文教程 磊科Netcore无线路由器设置图文教程 磊科是专业的数据通讯网络设备及解决方案供应商,以优秀的技术、卓越的品质和完善的服务提供客户化的网络产品和解决方案。磊科专注于以IP技术为核心的数据通讯网络,产品覆盖路由、交换、DSL、WiFi,并且正在逐步涉及到存储、安防、多媒体等领域。 磊科无线路由器设置方法

一、在电脑的桌面打开IE浏览器,并在IE地址栏中输进磊科无线路由器的默认IP地 址:192.168.1.1,再按回车键。 二、在弹出的窗口输进磊科无线路由器的用户名:guest、密码:guest,然后按下确 认键即可。 三、在确定之后打开了磊科无线路由器的配置界面,就说明已经成功登陆了磊科无线 路由器的配置界面。 四、配置路由器联网 1、首先我们选择页面左边“Internet接进配置”这个选项,在这为大家提供了很多上网 类型,请先参照以下说明确定您所用的宽带上网类型。

2、PPPoE用户(ADSL):适用于大多数中国、中国网通用户,此类用户大多都带有一 个Modem,并且需要账号和密码才能上网。 3、动态IP用户(CableModem):一般用于小区宽带,以前的电脑是开机即可上网,并 且网络配置是“自动获得IP地址”。 4、静态IP用户:电脑是通过指定IP地址上网的用户,以前的电脑都配置了固定的IP 地址 5、网络尖兵配置:适用于某些限制了上网电脑台数的地区,一般保持封闭状态。 PPPoE用户(ADSL)设置

磊科无线路由器连接

磊科无线路由器连接方法讲解 磊科无线路由器连接感觉对于不太会用电脑的人来说不太好办,往往会在专业的问题上卡住,比如PPPoE这个项目的选择等等。但是其实有些路由器已经智能到你根本就不用考虑这些,像极路由智能路由器,包括磊科只要掌握方法,很快就能解决问题。 磊科无线路由器安装完成之后,我们打开电脑,然后打开IE浏览器,在浏览器地址里边输入:192.168.1.1,然后按回车键(Enter)确认,即可进入磊科无线路由器设置界面 2、之后会弹出磊科无线路由器登录对话框,磊科无线路由器默认的登录账户名与密码都是小写的guest,这与其他很多无线路由器默认登录用户名与密码都是admin不同,这点新手朋友要特别注意,不然无法登录到磊科无线路由器内部设置 3、输入好用户名与密码后,点击确认后即可打开磊科无线路由器设置界面,所有的设置,包括上网账号以及无线设置都将在以下界面里面设置 4、设置路由器参数。首先进入W AN设置页面,每个页面右上角都有一个向导按钮,首先点击“向导”来对路由器进行设置,进入设置向导后,我们点击下一步,首先进入的是WAN设置,这里的作用主要是将网络商提供的上网账号密码填入进去。 5、W AN设置中路由器提供了三种连接方式,其中有动态IP用户,PPPoE用户以及静态IP用户。我们可以根据自己的实际情况作出选择,选择不同的方式需要输入不同的参数,通常我们使用的都是拨号上网,也就是PPPoE用户。若不清楚您的上网类型可以致电磊科服务热线或者向当地宽带运营商询。其三者的主要区别为: PPPoE用户(ADSL):适用于大多数中国电信、中国网通用户,此类用户大多都带有一个Modem,并且需要账号和密码才能上网。 动态IP用户(Cable Modem):一般用于小区宽带,以前的电脑是开机即可上网,并且网络配置是“自动获得IP地址”。 静态IP用户:电脑是通过指定IP地址上网的用户,以前的电脑都配置了固定的IP地址。 方式一:我们最常见的上网方式PPPOE用户:填入账号密码即可,其他所有设置保持不变,直接点“保存生效”等待1分钟之后即可上网 如果通过动态IP用户方式上网的话先选中该选项,接着设置DHCP客户端参数。先输入路由器MCA地址,如果不知道确切MAC地址的话可以点击后面的MAC地址克隆按钮获得。或者点击恢复缺省MAC按钮使用默认地址。最后输入MTU以及主从DNS参数点击应用即可(这个一般家庭用户都用的很少)。 方式二:如上图,动态IP用户:选择“动态IP用户(Cable Modem)”即可,其他都不用改动,直接点击“保存生效”。 方式三:如果是静态IP用户:选择“静态IP用户”用户,并且如图所示,将所有原空

TP-link路由器设置教程.doc

TP-link路由器设置教程 TP-LINK产品涵盖以太网、无线局域网、宽带接入终端,在既有的传输、交换、路由等主要核心领域外,正大力扩展移动互联网终端、数字家庭、网络安全等领域。公司总部位于中国深圳,同时在北京...... 阅读更多 斐讯k2路由器怎么隐藏wifi 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,斐讯K2怎么设置才能... TPLINK WR340G路由器wan ip 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,今天我们来看看路由... 家用路由器购买攻略介绍 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,如何选择一款适合自... 光纤猫正常亮哪几个灯 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,光纤猫上网的时候,... 华为HS8545M光猫怎么开启路 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,华为HS8545M光猫默... 如何增强wifi信号穿墙能力

网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,现在家家都有都有WI... 无线路由器安装与设置教程大 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,在家里安装宽带或无... WiFi网速越来越慢怎么办有哪 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,很多朋友反映家里wi... 斐讯k2路由器怎么隐藏wifi 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,斐讯K2怎么设置才能不被别人蹭网呢?最好的办法就是隐藏自己的WiFi网络。下面是具体 ... TPLINK WR340G路由器wan ip和外网ip不一致怎么办 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,今天我们来看看路由器设置的时候发现wan ip和外网ip不一样的设置的方法,需要的朋友 ... 家用路由器购买攻略介绍 ... 光纤猫正常亮哪几个灯

2019年netcore磊科路由器设置.doc

2019年netcore磊科路由器设置 篇一:磊科Netcore无线路由器设置图文教程 磊科Netcore无线路由器设置图文教程 磊科是专业的数据通讯网络设备及解决方案供应商,以优秀的技术、卓越的品质和完善的服务提供客户化的网络产品和解决方案。磊科专注于以IP技术为核心的数据通讯网络,产品覆盖路由、交换、DSL、WiFi,并且正在逐步涉及到存储、安防、多媒体等领域。 磊科无线路由器设置方法 一、在电脑的桌面打开IE浏览器,并在IE地址栏中输进磊科无线路由器的默认IP地 址:192.168.1.1,再按回车键。 二、在弹出的窗口输进磊科无线路由器的用户名:guest、密码:guest,然后按下确 认键即可。 三、在确定之后打开了磊科无线路由器的配置界面,就说明已经成功登陆了磊科无线 路由器的配置界面。 四、配置路由器联网 1、首先我们选择页面左边“Internet接进配置”这个选项,在这为大家提供了很多上网 类型,请先参照以下说明确定您所用的宽带上网类型。 2、PPPoE用户(ADSL):适用于大多数中国、中国网通用户,此

类用户大多都带有一 个Modem,并且需要账号和密码才能上网。 3、动态IP用户(CableModem):一般用于小区宽带,以前的电脑是开机即可上网,并 且网络配置是“自动获得IP地址”。 4、静态IP用户:电脑是通过指定IP地址上网的用户,以前的电脑都配置了固定的IP 地址 5、网络尖兵配置:适用于某些限制了上网电脑台数的地区,一般保持封闭状态。 PPPoE用户(ADSL)设置 1、使用PPPoE的用户,请先选择“PP PoE用户(ADSL)”选项,在下面的PPPoE设置里面填进您上网的用户名和密码,也就是或者网通等运营商,在装宽带的时候告诉您的上网 账号和密码。 2、填进账号密码即可,其他所有设置保持不变,直接点“保存生效”等待1分钟之后即 可上网。 动态IP用户(CableModem)设置 在“Internet接进配置”里面选择“动态IP用户(CableModem)”即可,其他都不用改动, 直接点击“保存生效”。

磊科无线路由器设置方法

3、静态IP用户(CableModem):你看怎样设置无线路由器。一样平常用于小区宽带,我不知道如何设置无线路由器。以前的电脑是开机即可上网,你知道腾达无线路由器设置。并且网络配置是“主动得到IP地址”。磊科无线路由器设置方法无线路由器设置。想知道无线。 4、静态IP用户:看看腾达无线路由器设置。电脑是经由过程指定IP地址上网的用户,听听无线路由器怎么设置。以前的电脑都配置了巩固的IP地址 5、网络尖兵配置:适用于某些限制了上网电脑台数的区域,一般维系封闭形态。 PPPoE用户(ADSL)设置 1、操纵PPPoE的用户,如何设置无线路由器。请先选择“PPPoE用户(ADSL)”选项,对比一下方法。在上面的PPPoE设置内里填入您上网的用户名和密码,事实上https://www.sodocs.net/doc/a011930541.html,。相比看磊科无线路由器设置方法。也就是电信大概网通等运营商,在装宽带的时间通告您的上网账号和密码。 2、填入账号密码即可,无线路由器的设置。其他统统设置保持不变。设置。间接点“存在见效”等候1分钟之后即可上网。fast无线路由器设置。 动态IP用户(CableModem)设置 在“Internet接入配置”里面选择“动态IP用户(CableModem)”即可,其他都不消改动,腾达无线路由器设置。直接点击“保存生效”。 静态IP用户设置 在Internet接入配置里面选择“静态IP用户”用户,并且如图所示,将所有原空白的选项都填入您的参数。 五、磊科无线路由器无线功效 无线根基配置 首先选择主页面左边的“无线管理”选项,在基本配置里面将无线状态选择“启用”;网络称号(SSID)也就是您电脑将摸索到的无线信号名称,能够批改成15位以内随意数字或字母组合;更改频道是为了预防滋扰,一般无线产品出厂都用6频道,若您规模无线产品过多会存在干扰,提倡改成1频道或者11频道以防止干扰。 但是,需要指挥细心的就是,为了使磊科路由器作事于300M形式,需要在频道带宽处选择倍速模式。 无线加密 接着请选择无线管理页面左边的安静管理选项,磊科无线产品为保证用户安全提供了多种加密方式,建议您选用除WEP之外的其他安全模式,WEP加密安全性低,只吻合对安全哀求不高的冷僻地区,其他几种

局域网内路由器设置路由器教程

局域网内快速设置路由器 我们公司目前的上网方式是:采用静态IP连接至外网(电信100Mbps),采用DHCP给内网用途提供上网服务(100Mbps)。局域网采用树形网络拓扑结构。该结构易于扩展,但缺点也很明显,无冗余,某根线路故障出问题后,接在此线路上的所有设备将无法上网,也很容易因为各节点错连入路由器导致广播风暴发生。 由于局域网中专业的、带回路检测及ARP攻击检测的交换机价格较高,我们公司在组网时只选用了小型家用路由器(包括TP-link、水星、磊科等品牌的有线和无线路由器)。路由器必须进行设置后才能连入公司局域网,否则容易导致广播风暴,具体的表现就是ARP攻击。通过相应设置,有线路由器可以作为普通小型交换机使用,无线路由器可以作为普通小型交换机和AP①使用。 路由器具体设置步骤如下(以TP-link无线路由器为例): ①找一根网线,一端连接到路由器的LAN口,一端连接到电脑,路由器接 通电源。 ②电脑端打开浏览器,在地址栏内输入 192.168.1.1(有部分路由器输入192.168.0.1,具 体参见路由器说明书),账号密码一栏均填写 admin(请参见路由器说明),登陆到路由器管理 界面。

③点选“无线设置”→“基本设置”,在右侧的SSID号一栏内填入你想改的名字。 ④点选:“无线设置”→“无线安全设置”,选中 右侧的“WPA-PSK/WPA2-PSK”,在PSK密码 一栏内填入你想要设置的密码。 ⑤点选“DHCP②服务器”一栏,将右侧的DHCP服务器改 为“不启用”。 ⑥点选“网络参数”→“LAN口设置”,将IP地址 进行改动(具体数据请询行政部)。 ⑦完成以上设置后,点保存路由器自动重启,重启后即可将路由器连入公司 局域网了。(注意:所有网线均连入LAN口,WAN口什么线也不要连接,切记!)PS:有线路由器可以忽略步骤③④。 怎么样,局域网内设置路由器是不是很简单呢,其实本来就是这么简单。 (名词解释:①AP:WirelessAccessPoint无线访问接入点,提供WIFI上网方式的网络设备;②DHCP:动态主机配置协议(Dynamic Host Configuration Protocol, DHCP)是一个局域网的网络协议,给内部网络终端自动分配IP地址;)

磊科Power3无线路由器怎么恢复出厂设置-磊科恢复出厂设置

磊科Power3无线路由器怎么恢复出厂设置|磊科恢复出厂设置 磊科(Netcore)Power3无线路由器是一款性价比比较高的无线路由设备,其配置方法简单、信号稳定。有两种方法可以把磊科Power3路由器恢复出厂设置,下面由小编告诉大家具体方法! 磊科Power3无线路由器恢复出厂设置的操作方法 一、设置界面恢复出厂设置 1、登录设置界面:在浏览器的地址栏中输入192.168.1.1,然后按下键盘上的回车键(Enter)。(如果输入192.168.1.1后,打不开设置页面,请点击阅读教程:磊科(Netcore)路由器192.168.1.1打不开解决办法) 登录到Power3路由器设置页面 2、在跳转的页面中,点击高级设置 进入磊科Power3路由器的高级设置页面 3、点击左边的系统工具>恢复出厂设置>点击右侧的恢复出厂设置按钮。 在Power3路由器设置页面,点击恢复出厂设置 二、Defaul按钮恢复出厂设置 在磊科Power3路由器的机身上,有一个Default按钮/小孔;在磊科Power3路由器接通电源的情况下,一直按住Default按钮不要松开;当Power3路由器上的所有指示灯全部熄灭

并重新闪烁的时候松开Default按钮,路由器会自动重启,重启以后Power3路由器就恢复到出厂设置了。 按住Default按钮,把磊科Power3路由器恢复出厂设置 注意问题: (1)、把磊科Power3路由器恢复出厂设置后,会清除之前该路由器中的所有配置,此时电脑、手机将无法通过Power3路由器上网了。需要重新设置磊科Power3路由器上网、重新设置无线WiFi,设置成功后,才能够正常使用。 (2)、注意Power3路由器恢复出厂设置后,默认登陆IP 是192.168.1.1,没有默认的用户名、密码,可以直接登录到设置页面。 看了磊科Power3无线路由器怎么恢复出厂设置的人还看了 1.磊科无线路由器如何恢复出厂设置 2.磊科无线路由器怎么样恢复出厂设置 3.磊科power3路由器恢复出厂设置 4.磊科无线路由器怎么恢复出厂设置 5.磊科Power3无线路由器怎么设置上网 6core怎么恢复出厂设置

磊科路由器常见故障的解决方法

磊科路由器常见故障的解决方法 磊科路由器: 一、线路不通 1、在确保路由器电源正常的前提下首先查看宽带接入端,路由器上的指示灯可以说 明宽带线路接入端是否正常,观察其灯闪亮状态,连续闪烁为正常,不亮或长亮不闪烁为 故障,我们可以换一根宽带胶线代替原来的线路进行连接。 2、如果是无线路由器,查看路由器的摆放位置与笔记本的距离是否过远或中间有大 型障碍物阻隔,重新放置路由器,使无线路由器与笔记本不要间隔太多障碍物,并使接收 电脑在无线路由器的信号发射范围之内即可。 3、检查无线网卡,更换新的网卡并重新安装驱动程序进行调试,再网卡中点击查看 可用的无线连接刷新网络列表后设置网卡参数,并在属性中查看有无数据发送和接收情况,排除故障。 4、当然路由器自身的硬件故障也是导致线路不通的直接原因,但这并不是我们所能 解决的范围,应及时联系厂商进行维修或更换。 二、设置不当无法连接 三、网络攻击导致网络异常 1、ARP攻击以及非法入侵未设防的局域网已经是最常见的现象了,由于安全设置的疏忽以及后期安全防护的不足,导致少数具有恶意的入侵者对电脑内的重要信息及保密数据 造成了极大的危害,ARP攻击会造成网络IP冲突,数据的丢失及溢出,更有甚者会导致网络瘫痪。这些现象对局域网的威胁都是很大的。 2、进入路由器安全设置选项进行高级设置,现在的大部分路由器都具有MAC绑定功能,利用MAC地址和手动设定的IP来限制哪些电脑离可以进入网络,这样就可以完全可 以确保网络安全。 3、如查没有特殊的需要,那么就不要开启路由器中的远程WEB管理功能。 四、部分功能无法使用 1、首先要查看下路由器系统的版本,看该功能是否支持这个版本的路由器系统,路 由器的系统通常有许多版本,每个版本支持不同的功能,如果你当前的软件版本不支持这 个功能,那就应该找到相应的软件,先进行升级。 2、升级时要注意,选择与当前硬件版本一致的软件进行升级,在升级过程中千万不 要关闭路由器的电源,否则将导致路由器损坏而无法使用,在网络稳定的情况下升级过程

路由器[磊科]设置步骤及限制网速

路由器[磊科]设置步骤及限制网速 ●磊科路由器设置步骤 1.打开浏览器,在地址栏输入“http://19 2.168.1.1”在弹出界面上输入用户名:guest,密码:guest。然后点击“确定”按钮。 2.设置时的默认用户名和密码都是“guest”,如果有误,可参看说明书或者路由器背面标签。 3.登陆后,点击右上角“向导”按钮 4.在弹出的窗口点击“开始”按钮。 5.在出现的窗口中,选中“PPPoE”,然后点击“下一步”按钮。 6.在弹出窗口中输入ISP服务上提供给你的用户名,密码,也就是你家宽带的上网账号和密码。然后点击“下一步”按钮。7、如果弹出窗口提示是否让Windows保存密码,则选择“否”。 7.设置完毕。 这个磊科路由器设置步骤简单吗,还可以吧,我是照着我的极贰智能路由器给你写下来的,我之前也有用过磊科,所以写着还比较容易,你看看磊科路由器设置步骤是否还和你的胃口。 ●磊科路由器限制网速 亲问的是磊科路由器设置网速是吧,有参考说明书上的磊科路由器设置网速的方法吗?不过好像说明书上的磊科路由器设置网速的方法太复杂了,没有极路由智能路由器的那么简单呢,我来看看哈。。 第一步:登录路由器。 第二步:找到“QOS配置菜单” 第三步:启用QOS,并添加相关的规则。 注意:如果是ADSL上传带度尽量控制在50K以内,不要低于10K(低于10K会影响用户的正常上网行为)。因为ADSL带宽上传资料比较紧张,一条10M的带宽上传的带宽一般不会超过100K。 下载带宽可以相应的多给一些,因为下载带宽相对充足一些。 磊科路由器设置网速的方法给你写在上面了,我也不确定我的这个磊科路由器设置网速的方法比说明书上的是否简单点儿,你自己看着操作吧。。。

磊科路由器 动态域名(DDNS)配置方法

DDNS配置手册 V 1.1 客服部 深圳市磊科实业有限公司

版本控制

目录 第1章适用范围 (2) 1.1 文档适用于磊科所有路由器本文档以NR286为例 (2) 第2章DDNS 功能 (2) 2.1 什么是DDNS (2) 2.2 DDNS作用 (2) 第3章DDNS 配置 (3) 3.1 支持型号 (3) 3.2 配置步骤 (3) 第4章常见问题 (7) 4.1 用户名和密码错误 (7) 4.2 用户名和密码正确DDNS链接不成功 (7) 4.3 DDNS连接成功远程不能访问 (8)

第1章适用范围 1.1文档适用于磊科所有路由器本文档以NR286为例 第2章DDNS 功能 2.1什么是DDNS Internet 上的域名解析一般是静态的,即一个域名所对应的IP地址是静态的,长期不变的。动态域名的功能,就是实现固定域名到动态IP 地址之间的解析。 DDNS是将用户的动态IP地址映射到一个固定的域名解析服务上,用户每次连接网络的时候客户端程序就会通过信息传递把该主机的动态IP地址传送给位于服务商主机上的服务器程序,服务器程序负责提供DNS服务并实现动态域名解析。 也就是说DDNS捕获用户每次变化的IP地址,然后将其与域名相对应,这样其他上网用户就可以通过域名来进行交流。而最终客户所要记忆的全部,就是记住动态域名商给予的域名即可,而不用去管他们是如何实现的。 2.2 DDNS作用 1、目前ISP大多提供动态IP(如拨号上网),我们若想在网际网络上以自己的网域公布,DDNS 提供了解决方案,它可以自动更新用户每次变化的浮动IP,然后将其与网域相对应,这样其他上网用户就可以透过网域来交流了 2、DDNS可以让我们在自己的或家里架设WEB\MAIL\FTP等服务器,而不用花钱去付虚拟主机租金。 3、主机是自己的,空间可根据自己的需求来扩充,维护也比较方便。有了网域与空间架设网站,FTP 服务器、EMAIL服务器都不成问题。 4、如果您有对VPN的需求,有了DDNS就可以用普通上网方式方便地建立Tunnel。透过网域的方式连结,实现远端管理、远端存取、远端打印等功能。 怎样设置动态域名? 当用户外线是动态拨号接入时,每次重启路由器之后,外网口IP 地址是变化的,为了便于管理,需要在路由器上配置动态域名。

Netcore磊科路由器设置.doc

Netcore磊科路由器设置 迅捷无线路由器设置: 把网线和modem连接,再将modem 中那根两水晶头的网线一头连modem一头连路由,笔记本的无线打开,然后你的笔记本会收到一个FAST开头的无线信号,点击此信号连接。...... 阅读更多 H3C Magic B1值得买吗 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,华三(H3C) 魔术家M... tplink ac1750双频无线路由 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,tplink ac1750双频... 无法进入路由器管理页面怎么 想要免费用上无线网络必须对路由器进行一定的设置,但是最近有用户在浏览器地址栏中输入路由器的管理地址后发现无法显示管理页面,这是怎么回事呢?首先检查网络... 交换机和路由器主要区别在哪 交换机和路由器都是重要网络连接设备,学习计算机硬件的朋友们肯定了解过。那交换机和路由器主要区别在哪里呢?下面我们就来说说交换机和路由器主要区别在哪里。... 磊科无线路由器参数设置教程 可能不是很了解磊科无线路由器设置网络的方法,毕竟不同品牌路由器设置方法有所不同,用户们不太清楚。那磊科无线路由器要如何设置?下面就和大家说一下磊科无线... 磊科NW330无线网卡设置方法

netcore路由器怎么桥接 netcore路由器怎么安装设置 H3C Magic B1值得买吗 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,华三(H3C) 魔术家Magic B1 1200M无线路由器采用了颠覆式设计直径仅为140mm的圆形机 ... tplink ac1750双频无线路由器该怎么设置 路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,tplink ac1750双频无线路由器该怎么设置?入手了tplink ac1750,想要设置无线网,该 ... 无法进入路由器管理页面怎么回事 想要免费用上无线网络必须对路由器进行一定的设置,但是最近有用户在浏览器地址栏中输入路由器的管理地址后发现无法显示管理页面,这是怎么回事呢?首先检查网络问题,其次检查地址是否有错,包括ip地址,登录地址等。具体情况 ... 交换机和路由器主要区别在哪里 交换机和路由器都是重要网络连接设备,学习计算机硬件的朋友们肯定了解过。那交换机和路由器主要区别在哪里呢?下面我们就来说说交换机和路由器主要区别在哪里。具体步骤如下:一、路由器路由器和交换机的区别:交换机主要是 ...

磊科Netcore无线路由器设置图文教程

磊科无线路由器设置图文教程 磊科是专业的数据通讯网络设备及解决方案供应商,以优秀的技术、卓越的品质和完善的服务提供客户化的网络产品和解决方案。磊科专注于以技术为核心的数据通讯网络,产品覆盖路由、交换、、,并且正在逐步涉及到存储、安防、多媒体等领域。 磊科无线路由器设置方法 一、在电脑的桌面打开浏览器,并在地址栏中输进磊科无线路由器的默认地址:,再 按回车键。 二、在弹出的窗口输进磊科无线路由器的用户名:、密码:,然后按下确认键即可。 三、在确定之后打开了磊科无线路由器的配置界面,就说明已经成功登陆了磊科无线 路由器的配置界面。 四、配置路由器联网 、首先我们选择页面左边“接进配置”这个选项,在这为大家提供了很多上网类型,请先 参照以下说明确定您所用的宽带上网类型。 、用户():适用于大多数中国、中国网通用户,此类用户大多都带有一个,并且需要账 号和密码才能上网。 、动态用户():一般用于小区宽带,以前的电脑是开机即可上网,并且网络配置是“自 动获得地址”。 、静态用户:电脑是通过指定地址上网的用户,以前的电脑都配置了固定的地址 、网络尖兵配置:适用于某些限制了上网电脑台数的地区,一般保持封闭状态。 用户()设置 、使用的用户,请先选择“用户()”选项,在下面的设置里面填进您上网的用户名和密码,也就是或者网通等运营商,在装宽带的时候告诉您的上网账号和密码。 、填进账号密码即可,其他所有设置保持不变,直接点“保存生效”等待分钟之后即可上 网。 动态用户()设置 在“接进配置”里面选择“动态用户()”即可,其他都不用改动,直接点击“保存生效”。 静态用户设置

在接进配置里面选择“静态用户”用户,并且如图所示,将所有原空缺的选项都填进您的 参数。 五、磊科无线路由器无线功能 无线基本配置 首先选择主页面左边的“无线治理”选项,在基本配置里面将无线状态选择“启用”;网络名称()也就是您电脑将搜索到的无线信号名称,可以修改成位以内任意数字或字母组合;更改频道是为了防止干扰,一般无线产品出厂都用频道,若您四周无线产品过多会存在干扰,建议 改成频道或者频道以防止干扰。 但是,需要提醒留意的就是,为了使磊科路由器工作于模式,需要在频道带宽处选择 倍速模式。 无线加密 接着请选择无线治理页面右边的安全治理选项,磊科无线产品为保障用户安全提供了多种加密方式,建议您选用除之外的其他安全模式,加密安全性低,只适合对安全要求不高的偏僻地区,其他几种加密方式能彻底杜尽越来越多的“非法蹭网”。 . 磊科配置,进入系统信息页面,打开界面后,看到的是系统信息下的状态页面。我们可以在这里找到、、无线以及路由状态。 转播到腾讯微博

磊科无线路由器动态域名DDNS怎样配置.doc

磊科无线路由器动态域名DDNS怎样配置磊科无线路由器动态域名DDNS怎样配置 磊科无线路由器动态域名DDNS的配置方法 磊科无线路由器上的动态域名是通过嵌入花生壳、每步和希网来实现的;在路由器上登录注册的域名成功后即可在外网通过访问域名实现访问路由外网(WAN口)IP的功能。本文用磊科NW705P无线路由器为例,来介绍动态域名的配置方法。 设置方法 1、在管管理界面点击高级设置动态域名动态域名服务器状态选择:启用输入注册的用户账号和密码,点击应用. 2、如果没有动态域名的帐号和密码,可以点击服务商链接进行注册,本文里花生壳为例 选择个人注册,然后按照相应的信息进行注册,注册完成后需要提交姓名和身份证信息,然后系统会自动分配一个域名,最后回到磊科路由器的动态域名设置界面,填写刚才注册的用户名和米进行连接,上连接成功后,就可以在互联网上用这个域名访问路由器了。 淮北工业艺术学校会计技能大赛机房建设采购项目 采购需求

1、.项目建设背景 随着我国市场经济的不断发展和进一步规范,社会对会计人员的数量和质量提出了更高的要求:未来的会计人员必须具有较高的专业水平,必须具备较强的财务核算和财务管理能力,紧跟会计信息化步伐,熟知企业业务流程,熟练操作会计信息化软件。 “畅捷通T3-企业管理信息化软件教育专版(行业版)”(简称T3-教育专版)专门面向高校、中等职业教育学校、职业培训学校等教育行业教学使用,它以企业实际运营为基础,为广大师生展现了精细化财务与业务控制一体化的企业信息管理平台,让使用者形象的感受到,软件是怎么帮企业优化运营流程,提高日常操作效率,创建方便、快捷的实时动态信息交互平台,进而提高企业的整体管理水平。该软件是安徽省中职学校普遍使用的会计电算化软件,也是安徽省中职会计技能大赛电算化赛项指定使用软件。 2、学校目前会计专业建设现状 学校现有的早期建设机房,电脑运行慢,电脑配置已不能满足目前教学需要,财会专业软件设备不足,远远不能满足会计信息化的发展和会计专业教学要求,这些与学校的建设目标还相差很远,需要在现有的基础上丰富教学资源、建立实训基地满足学生就业和升学的需要。

磊科NETCORE路由器设置

磊科NETCORE路由器配置 默认分类 2010-06-05 23:56:23 阅读3329 评论0字号:大中小订阅 具体设置步骤 ①把从modem接过来的网线插到路由器的WAN口上,再用网线将两台电脑与接口连接好,插上路由器的电源。 ②开一台电脑,网上邻居--属性--本地连接--属性--tcp/ip协议--属性,设置ip地址为 192.168.1.100,网关为192.168.1.1(路由器的默认网关地址),子网掩码255.255.255.0。设置好后,打开浏览器,在地址栏输入路由器的管理地址(此地址可以从路由器的说明书上得到)192.168.1.1,输入默认的管理用户名和密码,这里均为guest, 登陆成功以后可以看到当前路由器的状态,首次登陆路由器会弹出设置向导。提示如下:

单击开始。提示 我们选择第二个PPPOE(即adsl账号)虚拟拨号,然后点下一步

填入从中国网通那获得的账号密码单击下一步提示设置完成: 这样就设置成功了。点击退出结束设置向导。 ③现在回到路由器管理首页,点击连接进行拨号, 成功后“连接”两字变成“断开”

现在我们就完成了路由器对ADSL拨号的设置, 下面设置路由器的一些基本参数(经查看,所有设置都是默认,所以这一部分可以略去不用操作) 1.在WAN口设置选项卡单击,设置连接方式,选择自动连接,(本路由器为默认选项,查看一下就可以)如图

2.然后设置DHCP服务器(lan设置选项卡的第二个选项dhcp) 此时显示的是已经连接到路由上且已开机的电脑的信息,(此时路由连接两台电脑但是只有一台开机了,故只显示一台) 最后一步: 将所有电脑开机,设置ip地址为自动获取

相关主题