搜档网
当前位置:搜档网 › Bayesian models of inductive generalization

Bayesian models of inductive generalization

Bayesian models of inductive generalization
Bayesian models of inductive generalization

Neville E.Sanjana&Joshua B.Tenenbaum

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Cambridge,MA02139

nsanjana,jbt@https://www.sodocs.net/doc/ab11643070.html,

Abstract

We argue that human inductive generalization is best explained in a

Bayesian framework,rather than by traditional models based on simi-

larity computations.We go beyond previous work on Bayesian concept

learning by introducing an unsupervised method for constructing?ex-

ible hypothesis spaces,and we propose a version of the Bayesian Oc-

cam’s razor that trades off priors and likelihoods to prevent under-or

over-generalization in these?exible spaces.We analyze two published

data sets on inductive reasoning as well as the results of a new behavioral

study that we have carried out.

1Introduction

The problem of inductive reasoning—in particular,how we can generalize after seeing only one or a few speci?c examples of a novel concept—has troubled philosophers,psy-chologists,and computer scientists since the early days of their https://www.sodocs.net/doc/ab11643070.html,putational approaches to inductive generalization range from simple heuristics based on similarity matching to complex statistical models[5].Here we consider where human inference falls on this spectrum.Based on two classic data sets from the literature and one more comprehensive data set that we have collected,we will argue for models based on a ra-tional Bayesian learning framework[10].We also confront an issue that has often been side-stepped in previous models of concept learning:the origin of the learner’s hypothesis space.We present a simple,unsupervised clustering method for creating hypotheses spaces that,when applied to human similarity judgments and embedded in our Bayesian frame-work,consistently outperforms the best alternative models of inductive reasoning based on similarity-matching heuristics.

We focus on two related inductive generalization tasks introduced in[6],which involve reasoning about the properties of animals.The?rst task is to judge the strength of a gen-eralization from one or more speci?c kinds of mammals to a different kind of mammal: given that animals of kind and have property,how likely is it that an animal of kind also has property?For example,might be chimp,might be squirrel,and might be horse.is always a blank predicate,such as“is susceptible to the disease blick-etitis”,about which nothing is known outside of the given examples.Working with blank predicates ensures that people’s inductions are driven by their deep knowledge about the general features of animals rather than the details they might or might not know about any

one particular property.Stimuli are typically presented in the form of an argument from premises(examples)to conclusion(the generalization test item),as in

Chimps are susceptible to the disease blicketitis.

Squirrels are susceptible to the disease blicketitis.

max-similarity model based on its match to their intuitions for these particular tasks.We examine both models in our experiments.

Sloman[8]developed a feature-based model that encodes the shared features between the premise set and the conclusion set as weights in a neural network.Despite some psycho-logical plausibility,this model consistently?t the two data sets signi?cantly worse than the max-similarity model.Heit[3]outlines a Bayesian framework that provides qualitative explanations of various inductive reasoning phenomena from[6].His model does not con-strain the learner’s hypothesis space,nor does it embody a generative model of the data, so its predictions depend strictly on well-chosen prior probabilities.Without a general method for setting these prior probabilities,it does not make quantitative predictions that can be compared here.

3A Bayesian model

Tenenbaum&colleagues have previously introduced a Bayesian framework for learning concepts from examples,and applied it to learning number concepts[10],word meanings [11],as well as other domains.Formally,for the speci?c inference task,we observe posi-tive examples of the concept and want to compute the probability that a particular test stimulus belongs to the concept given the observed examples:

.These generalization probabilities are computed by averaging the predictions of a set of hypotheses weighted by their posterior probabilities:

(1)

Hypotheses pick out subsets of stimuli—candidate extensions of the concept—and is just1or0depending on whether the test stimulus falls under the subset. In the general inference task,we are interested in computing the probability that a whole test category falls under the concept:

(2)

A crucial component in modeling both tasks is the structure of the learner’s hypothesis space.

3.1Hypothesis space

Elements of the hypothesis space represent natural subsets of the objects in the domain —subsets likely to be the extension of some novel property or concept.Our goal in build-ing up is to capture as many hypotheses as possible that people might employ in concept learning,using a procedure that is ideally automatic and unsupervised.One natural way to begin is to identify hypotheses with the clusters returned by a clustering algorithm[11][7]. Here,hierarchical clustering seems particularly appropriate,as people across cultures ap-pear to organize their concepts of biological species in a hierarchical taxonomic struc-ture[1].We applied four standard agglomerative clustering algorithms[2](single-link, complete-link,average-link,and centroid)to subjects’similarity judgments for all pairs of 10animals given in[6].All four algorithms produced the same output(Figure1),sug-gesting a robust cluster structure.We de?ne the base set of clusters to consist of all 19clusters in this tree.The most straightforward way to de?ne a hypothesis space for Bayesian concept learning is to take;each hypothesis consists of one base cluster. We refer to as the“taxonomic hypothesis space”.

It is clear that alone is not suf?cient.The chance that horses can get a disease given that we know cows and squirrels can get that disease seems much higher than if we know only

Horse Cow Elephant Rhino Chimp Gorilla Mouse Squirrel Dolphin Seal Figure1:Hierarchical clustering of mammals based on similarity judgments in[6].Each node in the tree corresponds to one hypothesis in the taxonomic hypothesis space.

that chimps and squirrels can get the disease,yet the taxonomic hypotheses consistent with the example sets cow,squirrel and chimp,squirrel are the same.Bayesian generaliza-tion with a purely taxonomic hypothesis space essentially depends only on the least similar example(here,squirrel),ignoring more?ne-grained similarity structure,such as that one example in the set cow,squirrel is very similar to the target horse even if the other is not.This sense of?ne-grained similarity has a clear objective basis in biology,because a single property can apply to more than one taxonomic cluster,either by chance or through convergent evolution.If the disease in question could af?ict two distinct clusters of ani-mals,one exempli?ed by cows and the other by squirrels,then it is much more likely also to af?ict horses(since they share most taxonomic clusters with cows)than if the disease af?icted two distinct clusters exempli?ed by chimps and squirrels.Thus we consider richer hypothesis subspaces,consisting of all pairs of taxonomic clusters(i.e.,all unions of two clusters from Figure1,except those already included in),and,consisting of all triples of taxonomic clusters(except those included in lower layers).We stop with because we have no behavioral data beyond three examples.Our total hypothesis space is then the union of these three layers,.

The notion that the hypothesis space of candidate concepts might correspond to the power set of the base clusters,rather than just single clusters,is broadly applicable beyond the domain of biological properties.If the base system of clusters is suf?ciently?ne-grained, this framework can parameterize any logically possible concept.It is analogous to other general-purpose representations for concepts,such as disjunctive normal form(DNF)in PAC-Learning,or class-conditional mixture models in density-based classi?cation[5]. 3.2The Bayesian Occam’s razor:balancing priors and likelihoods

Given this hypothesis space,Bayesian generalization then requires assigning a prior

and likelihood for each hypothesis.Let be the number of base clusters, and be a hypothesis in the th layer of the hypothesis space,corresponding to a union of base clusters.A simple but reasonable prior assigns to a sequence of i.i.d. Bernoulli variables with successes and parameter,with probability

the correspondence is not exact because each hypothesis may be expressed as the union of base clusters in multiple ways,and we consider only the minimal union in de?ning .For,instantiates a preference for simpler hypotheses—that is,hy-

potheses consisting of fewer disjoint clusters(smaller).More complex hypotheses re-ceive exponentially lower probability under,and the penalty for complexity increases as becomes smaller.This prior can be applied with any set of base clusters,not just those which are taxonomically structured.We are currently exploring a more sophisticated domain-speci?c prior for taxonomic clusters de?ned by a stochastic mutation process over the branches of the tree.

Following[10],the likelihood is calculated by assuming that the examples are a random sample(with replacement)of instances from the concept to be learned.Let

,the number of examples,and let the size of each hypothesis be simply the number of animal types it contains.Then follows the size principle,

4.1A new experiment:Varying example set composition

In order to provide a more comprehensive test of the models,we conducted a variant of the speci?c experiment using the same10animal types and the same constant test category, horses,but with example sets of different sizes and similarity structures.In both data sets 1and2,the number of examples was constant across all trials;we expected that varying the number of examples would cause dif?culty for the max-similarity model because it is not explicitly sensitive to this factor.For this purpose,we included?ve three-premise arguments,each with three examples of the same animal species(e.g.,chimp,chimp, chimp),and?ve one-premise arguments with the same?ve animals(e.g.,chimp).We also included three-premise arguments where all examples were drawn from a low-level cluster of species in Figure1(e.g.,chimp,gorilla,chimp).Because of the increasing preference for smaller hypotheses as more examples are observed,Bayes will in general make very different predictions in these three cases,but max-similarity will not.This manipulation also allowed us to distinguish the predictions of our Bayesian model from alternative Bayesian formulations[5][3]that do not include the size principle,and thus do not predict differences between generalization from one example and generalization from three examples of the same kind.

We also changed the judgment task and cover story slightly,to match more closely the nat-ural problem of inductive learning from randomly sampled examples.Subjects were told that they were training to be veterinarians,by observing examples of particular animals that had been diagnosed with novel diseases.They were required to judge the probability that horses could get the same disease given the examples observed.This cover story made it clear to subjects that when multiple examples of the same animal type were presented,these instances referred to distinct individual animals.Figure3(row3)shows the model’s pre-dicted generalization probabilities along with the data from our experiment:mean ratings of generalization from24subjects on28example sets,using either,or examples and the same test species(horses)across all arguments.Again we show predictions for the best values of the free parameters and.All three models?t best at different parameter values than in data sets1and2,perhaps due to the task differences or the greater range of

Figure2:Human generalization

to the conclusion category horse

when given one or three examples

of a single premise type.

of the Bayesian model,

data.Most notably,we found a difference between generalization from one example and generalization from three exam-ples of the same kind,in the direction predicted by our Bayesian model.Generalization to the test category of horses was greater from singleton examples(e.g.,chimp)than from three examples of the same kind(e.g.,chimp,chimp,chimp),as shown in Figure2.This effect was relatively small but it was observed for all?ve animal types tested and it was

statistically signi?cant()in a25(number of examples animal type)ANOV A. The max-similarity model,however,predicts no effect here,as do Bayesian accounts that do not include the size principle[5][3].

It is also of interest to ask whether these models are suf?ciently robust as to make reason-able predictions across all three experiments using a single parameter setting,or to make good predictions on held-out data when their free parameter is tuned on the remaining data. On these criteria,our Bayesian model maintains its advantage over max-similarity.At the single value of,Bayes achieves correlations of,and on the three data sets,respectively,compared to,and for max-similarity at its single best parameter value().Using Monte Carlo cross validation[9]to estimate (1000runs for each data set,80%-20%training-test splits),Bayes obtains average test-set correlations of and on the three data sets,respectively,compared to

and for max-similarity using the same method to tune.

5Conclusion

Our Bayesian model offers a moderate but consistent quantitative advantage over the best similarity-based models of generalization,and also predicts qualitative effects of varying sample size that contradict alternative approaches.More importantly,our Bayesian ap-proach has a principled rational foundation,and we have introduced a framework for un-supervised construction of hypothesis spaces that could be applied in many other domains. In contrast,the similarity-based approach requires arbitrary assumptions about the form of the similarity measure:it must include both“similarity”and“coverage”terms,and it must be based on max-similarity rather than sum-similarity.These choices have no a priori justi?cation and run counter to how similarity models have been applied in other domains, leading us to conclude that rational statistical principles offer the best hope for explaining how people can generalize so well from so little data.Still,the consistently good perfor-mance of the max-similarity model raises an important question for future study:whether a relatively small number of simple heuristics might provide the algorithmic machinery implementing approximate rational inference in the brain.

We would also like to understand how people’s subjective hypothesis spaces have their ori-gin in the objective structure of their environment.Two plausible sources for the taxonomic hypothesis space used here can both be ruled out.The actual biological taxonomy for these 10animals,based on their evolutionary history,looks quite different from the subjective taxonomy used here.Substituting the true taxonomic clusters from biology for the base clusters of our model’s hypothesis space leads to dramatically worse predictions of peo-ple’s generalization behavior.Taxonomies constructed from linguistic co-occurrences,by applying the same agglomerative clustering algorithms to similarity scores output from the LSA algorithm[4],also lead to much worse predictions.Perhaps the most likely possibil-ity has not yet been tested.It may well be that by clustering on simple perceptual features (e.g.,size,shape,hairiness,speed,etc.),weighted appropriately,we can reproduce the tax-onomy constructed here from people’s similarity judgments.However,that only seems to push the problem back,to the question of what de?nes the appropriate features and fea-ture weights.We do not offer a solution here,but merely point to this question as perhaps the most salient open problem in trying to understand the computational basis of human inductive inference.

Acknowledgments

Tom Grif?ths provided valuable help with statistical analysis.Supported by grants from NTT Communication Science Laboratories and MERL and an HHMI fellowship to NES.

References

[1]S.Atran.Classifying nature across cultures.In An Invitation to Cognitive Science,volume3.

MIT Press,1995.

[2]R.Duda,P.Hart,and D.Stork.Pattern Classi?cation.Wiley,New York,NY,2001.

[3] E.Heit.A Bayesian analysis of some forms of induction.In Rational Models of Cognition.

Oxford University Press,1998.

[4]https://www.sodocs.net/doc/ab11643070.html,ndauer and S.Dumais.A solution to Plato’s problem:The Latent Semantic Analysis

theory of the acquisition,induction,and representation of knowledge.Psychological Review, 104:211–240,1997.

[5]T.Mitchell.Machine Learning.McGraw-Hill,Boston,MA,1997.

[6] D.Osherson,E.Smith,O.Wilkie,A.L′o pez,and E.Sha?r.Category-based induction.Psycho-

logical Review,97(2):185–200,1990.

[7]N.Sanjana and J.Tenenbaum.Capturing property-based similarity in human concept learning.

In Sixth International Conference on Cognitive and Neural Systems,2002.

[8]S.Sloman.Feature-based induction.Cognitive Psychology,25:231–280,1993.

[9]P.Smyth.Clustering using Monte Carlo cross-validation.In Second International Conference

on Knowledge Discovery and Data Mining,1996.

[10]J.Tenenbaum.Rules and similarity in concept learning.In S.Solla,T.Keen,and K.-R.M¨u ller,

editors,Advances in Neural Information Processing Systems12,pages59–65.MIT Press,2000.

[11]J.Tenenbaum and F.Xu.Word learning as Bayesian inference.In Proceedings of the22nd

Annual Conference of the Cognitive Science Society,2000.

column shows the results for a particular model.Each row is a different inductive generalization experiment,where indicates the number of examples(premises)in the stimuli.

Tesla Model S底盘全透视..

水平对置、后置后驱、低重心、前双横臂后多连杆、全铝合金车架、5门5座,你以为笔者说的是保时捷新车型吗?那笔者再补充多几个关键词好了,后置的水平对置双电刷电动机、0油耗、藏在地板下的笔记本电池组,同时拥有这些标签的,便是Tesla第二款车型Model S。Model S是五门五座纯电动豪华轿车,布局设计及车身体积与保时捷Panamera相当,并且是目前电动车续航里程的纪录保持者(480公里)。虽然现在纯电动在我国远未至于普及,但是在香港地区却是已经有Tesla的展厅,在该展厅内更是摆放了一台没有车身和内饰,只有整个底盘部分的Model S供人直观了解Model S的技术核心。 图:Tesla Model S。

图:拆除车壳之后,Model S的骨架一目了然。

图:这套是Model S的个性化定制系统,可以让买家选择自己喜爱的车身颜色、内饰配色和轮圈款式,然后预览一下效果。可以看到Model S共分为普通版、Sign at ure版和Performance版,后面两个型号标配的是中间的21寸轮圈,而普通版则是两边的19寸款式。Signature版是限量型号,在美国已全部售罄,香港也只有少量配额。 图:笔者也尝试一下拼出自己心目中的Model S,碳纤维饰条当然是最爱啦。

图:参观了一下工作车间,不少Roadster在等着检查保养呢,据代理介绍,不同于传统的汽车,电动车的保养项目要少很多,至少不用更换机油和火花塞嘛,换言之电动车的维护成本要比燃油汽车要低。 Tesla于2010年5月进军香港市场,并于翌年2011年9月成立服务中心。由于香港政府对新能源车的高度支持,香港的电动车市场发展比起大陆地区要好得多。例如Tesla的第一款车型Roadster(详见《无声的革命者——Tesla Roadster Sport 》),在香港获得豁免资格,让车主可以节省将近100万港元的税款。在这样的优惠政策之下,Tesla Roadster尽管净车价达100万港元,但50台的配额已经基本售罄。而Model S目前在香港已经开始接受报名预定,确定车型颜色和配置之后约两个月左右可以交车。

特斯拉整体介绍

Tesla Model S 特斯拉Model S是一款纯电动车型,外观造型方面,该车定位一款四门Coupe车型,动感的车身线条使人过目不忘。此外在前脸造型方面,该车也采用了自己的设计语言。另值得一提的是,特斯拉Model S的镀铬门把手在触摸之后可以自动弹出,充满科技感的设计从拉开车门时便开始体现。该车在2011年年中正式进入量产阶段,预计在2012年年内将有5000台量产车投放市场。 目录 1概述 2售价 3内饰 4动力 5车型 6技术规格 7性能表现 8荣誉 9对比测试 10车型参数 1概述

Tesla Model S是一款由Tesla汽车公司制造的全尺寸高性能电动轿车,预计于2012年年中投入销售,而它的竞争对手则直指宝马5系。该款车的设计者Franz von Holzhausen,曾在马自达北美分公司担任设计师。在Tesla汽车公司中,Model S拥有独一无二的底盘、车身、发动机以及能量储备系统。Model S的第一次亮相是在2009年四月的一期《大卫深夜秀》节目中 4 Tesla Model S 。 2售价 Model S的电池规格分为三种,分别可以驱动车辆行驶260公里、370公里和480公里。而配备这三种电池的Model S的售价则分别为57400美元、67400美元和77400美元。下线的首批1000辆签名款车型将配有可以行驶480公里的蓄电池。尽管官方尚未公布该签名款车型的具体售价,但据推测,价格将会保持在50000美元左右。 Tesla汽车公司称其将会对市场出租可以提供480公里行驶距离的电池。而从Model S中取得的收益将为第三代汽车的发展提供资金保障。 3内饰

详解特斯拉Model S

详解特斯拉Model S 1、Model S的核心技术是什么? 核心技术是软件,主要包括电池管理软件,电机以及车载设备的电控技术。最重要的是电池控制技术。 Model S的加速性能,续航里程、操控性能的基础都是电池控制技术,没有电池控制技术,一切都就没有了。 2、Model S的电池控制技术有什么特色? 顶配的Model S使用了接近7000块松下NCR 18650 3100mah电池,对电池两次分组,做串并联。设置传感器,感知每块电池的工作状态和温度情况,由电池控制系统进行控制。防止出现过热短路温度差异等危险情况。 在日常使用中,保证电池在大电流冲放电下的安全性。 其他厂商都采用大电池,最多只有几百块,也没有精确到每块电池的控制系统。 3、为什么要搞这么复杂的电池控制系统? 为了能够使用高性能的18650钴锂电池。高性能电池带来高性能车。因为18650钴锂电池的高危性,没有一套靠谱的系统,安全性就不能保证。这也是大多数厂商无论电力车,插电车,混合动力车都不太敢用钴锂电池,特别是大容量钴锂电池的原因。 松下NCR 18650 3100mah,除了测试一致性最好,充放电次数多,安全性相对较好以外,最重要的是能量大,重量轻,价格也不高。 由于能量大,重量轻,在轿车2吨以内的车重限制下,可以塞进去更多的电池,从而保证更长的续航里程。因为电池输出电流有限制,电池越多,输出电流越大,功率越大,可以使用的电机功率也就越大。电机功率越大,相当于发动机功率大,车就有更快的加速性能,而且可以保持较长的一段时间。 4、作为一辆车,Model S有哪些优点?这些优点是电动车带来的吗? 作为一辆车,Model S主要具有以下几个优点 (1)起步加速快,顶配版本0-100公里加速4秒多,能战宝马M5

TESLA特斯拉解析

TESLA 硅谷工程师、资深车迷、创业家马丁·艾伯哈德(Martin Eberhard)在寻找创业项目时发现,美国很多停放丰田混合动力汽车普锐斯的私家车道上经常还会出现些超级跑车的身影。他认为,这些人不是为了省油才买普锐斯,普锐斯只是这群人表达对环境问题的方式。于是,他有了将跑车和新能源结合的想法,而客户群就是这群有环保意识的高收入人士和社会名流。 2003年7月1日,马丁·艾伯哈德与长期商业伙伴马克·塔彭宁(Marc Tarpenning)合伙成立特斯拉(TESLA)汽车公司,并将总部设在美国加州的硅谷地区。成立后,特斯拉开始寻找高效电动跑车所需投资和材料。

由于马丁·艾伯哈德毫无这方面的制造经验,最终找到AC Propulsion公司。当时,对AC Propulsion公司电动汽车技术产生兴趣的还有艾龙·穆思科(Elon Musk)。在AC Propulsion公司CEO汤姆·盖奇(Tom Gage)的引见下,穆思科认识了艾伯哈德的团队。2004年2月会面之后,穆思科向TESLA投资630万美元,但条件是出任公司董事长、拥有所有事务的最终决定权,而艾伯哈德作为创始人任TESLA的CEO。 在有了技术方案、启动资金后,TESLA开始开发高端电动汽车,他们选择英国莲花汽车的Elise作为开发的基础。没有别的原因,只是因为莲花是唯一一家把TESLA放在眼里的跑车生产商。

艾伯哈德和穆思科的共同点是对技术的热情。但是,作为投资人,穆思科拥有绝对的话语权,随着项目的不断推进,TESLA开始尝到“重技术研发轻生产规划、重性能提升轻成本控制”的苦果。2007年6月,离预定投产日期8月27日仅剩下两个月时,TESLA还没有向零部件供应商提供Roadster的技术规格,核心的部件变速箱更是没能研制出来。另一方面,TESLA在两个月前的融资中向投资人宣称制造Roadster的成本为6.5万美元,而此时成本分析报告明确指出Roadster最初50辆的平均成本将超过10万美元。 生意就是生意,尤其硅谷这样的世界级IT产业中心,每天都在发生一些令人意想不到的事情。投资人穆思科以公司创始人艾伯哈德产品开发进度拖延、成本超支为由撤销其

Tesla Model S电池组设计全面解析

Tesla Model S电池组设计全面解析 对Tesla来说最近可谓是祸不单行;连续发生了3起起火事故,市值狂跌40亿,刚刚又有3名工人受伤送医。Elon Musk就一直忙着到处“灭火”,时而还跟公开表不对Tesla“不感冒”的乔治·克鲁尼隔空喊话。在经历了首次盈利、电池更换技术·穿越美国、水陆两栖车等头条新闻后,Elon Musk最近总以各种负面消息重返头条。这位"钢铁侠。CE0在201 3年真是遭遇各种大起大落。 其中最为人关注的莫过于Model S的起火事故,而在起火事故中最核心的问题就是电池技术。可以说,牵动Tesla股价起起落落的核心元素就是其电池技术,这也是投资者最关心的问题。在美国发生的两起火事故有着相似的情节Model S 撞击到金属物体后,导致电池起火,但火势都被很好地控制在车头部分。在墨西哥的事故中,主要的燃烧体也是电池;而且在3起事故中,如何把着火的电池扑灭对消防员来说都是个难题。 这让很多人产生一个疑问:Model S的电池就这么不禁撞吗?在之前的一篇文章中,我跟大家简单讨论了一下这个问题,但只是停留在表面。读者普遍了解的是,Model S的电池位于车辆底部,采用的是松下提供的18650钴酸锂电池,整个电池组包含约8000块电池单元;钴酸锂电池能量密度大,但稳定性较差,为此Tesla研发了3级电源管理体系来确保电池组正常运作。现在,我们找到了Tesla的一份电池技术专利,借此来透彻地了解下Model S电池的结构设计和技术特征。 电池的布局与形体

FIG3 如专利图所示,Model S的电池组位于车辆的底盘,与轮距同宽,长度略短于轴距。电池组的实际物理尺寸是:长2.7m,宽1.5m,厚度为0.1 m至0.1 8m。其中0.1 8m较厚的部分是由于2个电池模块叠加而成。这个物理尺寸指的是电池组整体的大小,包括上下、左右、前后的包裹面板。这个电池组的结构是一个通用设计,除了18650电池外,其他符合条件的电池也可以安装。此外,电池组采用密封设计,与空气隔绝,大部分用料为铝或铝合金。可以说,电池不仅是一个能源中心,同时也是Model S底盘的一部分,其坚固的外壳能对车辆起到很好的支撑作用。 由于与轮距等宽,电池组的两侧分别与车辆两侧的车门槛板对接,用螺丝固定。电池组的横断面低于车门槛板。从正面看,相当于车门槛板"挂着。电池组。其连接部分如下图所示。 FIG, 4

特斯拉Model S电动汽车性能介绍

特斯拉Model S 特斯拉Model S并非小尺寸、动力不足的短程汽车——这是某些人对电动车的预期。作为特斯拉三款电动车中体积最大的车型,根据美国环保署认证,这款快捷、迷人的运动型轿车一次充电能够行驶265英里(426公里),不过特斯拉声称可以达到300英里。不管哪种情况,这肯定是电动车行业的新高。Model S Performance版本的入门级价格为94,900美元,我测试的版本价格为101,600美元(按照美国联邦税收抵免,可以在此基础上扣减7,500美元)。 在一次开放驾驶上,这款特斯拉汽车硕大的85千瓦时电池的确可以至少行驶426公里。电流来自于车底的电池组,里面有大约7,000颗松下锂电池,重量约为590公斤(1,300磅). 试驾的第二天是前往威斯康辛州,在行驶了320公里后电几乎用光,不过其中包括了在芝加哥的一场交通拥堵中无奈爬行的两个小时。这天的测试充满野心,更多是针对性能而非行驶里程,包括这款特斯拉汽车迅速地用4.4秒时间从0加速到时速97公里(0至60英里每小时),此外测试达到的最高时速为210公里。 我有没有提到,在0到时速100英里的加速时间方面,这款310千瓦(416马力)的特斯拉汽车将击败威力巨大、使用汽油的413千瓦(554马力)宝马M5?部分原因在于这款特斯拉汽车的同步交流电发动机能够即时提供600牛·米(443英尺磅)的扭矩。像电灯开关一样轻点特斯拉的油门,最大的扭矩已经准备就绪,一分钟内能够实现从0到5,100转。后悬挂、液冷式发动机可以保持1.6万转每分钟,通过一个单速变速箱将动力传导至后轮。 它就像一头冷酷的猛兽,在出奇安静之中让内燃机这个猎物消失于无形——安静到何种程度呢?来自轮胎和风阻的声音比在其他大部分豪华车中感受到的更加明显。安装于车底的电池让特斯拉获得与很多超级车相当的重心,这非常有利于稳定操控。Model S经过弯道的时候也能很好地保持贴地感。 尽管这款特斯拉汽车看起来并不笨重,但其重量达到2,108公斤;随着速度和重力的提升,这些多余的重量表露无遗。加大油门后,沉重的尾部会产生震动。在操控手感的愉悦性方面,特斯拉无法与宝马相提并论,甚至连马自达都赶不上。 美妙的试驾体验在你进入车内之前就开始了,你靠近汽车时,可伸缩的车门把手自动弹出。接着看到的是特斯拉标志性的驾驶室特色内容,一个43厘米(17英寸)电容触摸屏,看起来就像一对相互配合的iPad. 在其用铝合金加强的底盘和车身内,Model S可以容纳5人。一个可爱但是奇怪的按钮可以在车门位置增加脸朝车后的儿童座椅,从而实现最多承载7人。将第二排座椅向下折,可以扩展后座载货空间,可用于家得宝(Home Depot)采购之旅。由于引擎盖下面没有发动机,这些空间可以作为有用的前置行李箱,特斯拉将其称为“前备箱”(“frunk”),就像保时捷911一样。

深度揭秘特斯拉Model S底盘:电池组电机四驱

深度揭秘特斯拉Model S底盘:电池组/电机/四驱 特斯拉的第一代产品Roadster,用的是莲花Elise的底盘。这台车当时卖了2000多台。现在,这个经典的跑车底盘又被底特律电动车(Detroit Electric)拿来做另外一款“Roadster”了。 2012年,特斯拉发布Model S。底盘结构由特斯拉自主研发,并为其今后的车系奠定了基础。与燃油汽车不同,特斯拉一个底盘就可以涵盖所有级别的车型。比如将于2017年上市的Model 3,其底盘是在Model S的基础上缩短了轴距而已。 本期,我们来彻底解构下特斯拉Model S的底盘结构。共分为三部分来讲:电池组、电机,以及四驱。先从电池组说起。 特斯拉的电池,是特斯拉的核心专利技术之一,可以说是整台Model S最核心的一个零件。特斯拉一共拥有249项专利,其中有104项是跟电池有关的。与很多采用几个大的电池单元成电池组的布局不同,特斯拉采用的是与笔记本一样的电池。整台Model S的整备质量为2108kg(2.1吨),其中电池组的重量就占了600kg(0.6吨)。作为一辆D级豪华车,特斯拉Model S并没有超重。这在很大程度上得益于Model S的全铝车身。

由于电池组横贯于位于车辆底部,这使得Model S的重心得以降低,平衡了配重,从而提升了操控性。根据官方数据,Model S的前后配重比为48:52。 在Model S刚上市时,按照电池划分共有3款型号,分别是85kWh、60kWh,以及40kWh。2013年,由于40kWh车型销量惨淡,特斯拉决定停止销售。不久前,特斯拉又推出了70Kwh车型,来取代之前的60kWh版本。 值得一提的是,当年60kWh的车型与40kWh的车型,电池组其实是一样的;两者的区别在于,特斯拉将40kWh的电池进行了软件限制,从而在一个可容纳60kWh电量的电池组中,只有40kWh的电量可用。 而85kWh电池与60kWh电池的区别,主要是电池组中装配的电池单元数量。85kWh的电池组电压为400V,由一共16个电池包组成,每个电池包装配了444颗电池单元,所以这个电池组一共有7104颗电池组成。60kWh,则是由14个电池包,共计6216颗电池单元组成。这里所说的电池单元,是由松下提供的 NCR-18650A型电池。 18650是可充电锂离子电池的一种型号,它的命名来源于这种电池的尺寸 --18mm*65mm,但由于还要加入保护电路,所以电池的实际尺寸要略微大几零点几毫米。18650电池的主要用途,是笔记本电脑的电池,它有很多生产厂商;而特斯拉则选用了松下提供的18650电池,但要注意特斯拉使用的电池与笔记本中的电池还是有差别。18650只是一个统称。

特斯拉家用充电桩参数及规格

特斯拉家用充电桩参数及规格 目前,特斯拉在市场仅投放了MODEL S车型,根据配置的不同,其续航里程在442-502km之间。特斯拉Model S目前有四种充电方式:家用充电桩、目的地充电桩、超级充电站、通用移动充电器。 特斯拉电动车有三种充电形式,分别为: 1、传统110V电源,每小时充电30英里(约50km) 2、高效充电站,充电效率提高一倍 3、超级充电站,每小时充电300英里(480km) 所以,前两种都是可以从家庭的普通插座引出,特斯拉是考虑了家庭充电的需要的。 不过,需要注意的是,美国民用电的电压等级是AC 110V,进入中国后需要对电源适配器做改造。 特斯拉为旗下车型标配了一个家用充电桩,该充电桩使用的是220V的电压,其每小时充电可行驶里程约为40km。在2015年第三季度,特斯拉还将为用户提供高功率家用充电桩可选,其使用的是380V电压,每小时充电行驶里程可达100km左右。充电费用方面,220V 充电桩采用的是民用电价,380V充电桩则需要采用工业电价。 值得注意的是,特斯拉的所有充电桩都是没有密码锁或者其他锁定装置的,这意味着若该家庭充电桩被安装在开放式停车场,别的特斯拉车型可以随时用该充电桩进行充电。 在安装家用充电桩时,一般是需要有固定车位的,而对于没有固定车位的消费者,特斯拉也不会拒绝安装,其将会同物业协调争取专属的充电位置,作为暂时使用。 目前,特斯拉主要委托第三方服务商为客户提供充电桩的安装服务,在所有问题都协商好的情况下,特斯拉承诺在1周之内便可以完成家庭充电桩的安装工作。其安装服务已经覆盖到以全国21个主要城市为中心的350公里半径范围区域,涵盖了全国80%以上的主要城市。若用户不在服务范围内,特斯拉将会就近派遣工作人员前往安装,但是需要用户提

tesla Model S充电协议

TESLA充电协议 It is almost certain (from what Tesla have said publicly and from the practicalities of the connectors used) that Model S uses the J1772-DC signalling. This is the same signalling as specified for the Type2 connector in DC mode. 这几乎是确定的(从tesla公开的宣传和所使用的连接件),Model S使用了J1772-DC信令,这与Type2连接器在DC模式的信令是相同的。 DC mode starts by the EVSE driving the pilot signal at 5% duty cycle (10% is the minimum used to signal AC current - 10% -> 6A AC, 96% -> 80A AC). Car and EVSE then establish a communication channel using an RF carrier superimposed on the pilot pin. This is confusingly described as 'Power Line Carrier' since it uses the same modulation etc. as the Homeplug system for data over mains wiring, but in this case it is not using the J1772/type2 power pins! This subset of HomePlug is known as 'GreenPhy' and is used for various other applications such as Smart Meters. 直流模式开始,充电设备输出占空比为5%的导频信号(10%用于最小交流电流信号,10%表示6A,96%表示80A),充电设备与汽车之间利用加载在导频信号上的RF载波建立通信信道,这里用“电力线载波”来描述比较不恰当,但是使用的是同样的调制等,在Homeplug 系统中,数据是加载在电源线上,但是在这里,它使用的不是J1772/Type2的电源脚!这个Homeplug的子集是已知的Green PHY,它用于其它的应用如智能仪表。 Having established this data link, car and charger communicate details of the charging session using a high level XML protocol specified in the SAE/IEC documents. 建立了这个数据连接,汽车与充电设备之间进行详细的充电进程通信,期间使用的是高级别XML 协议,这个协议在SAE/IEC有文档说明 Thus it can be easy to select DC mode if it's just a 5% duty cycle PWM, but the PLC modulation is the problem. Yes it's possible to find chip or module to do the modem low level layer, but the problem will probably be on the high level communication protocol, it's pretty sure that Tesla implemented a proprietary data exchange between the car and the supercharger. And I see that PLC/greenphy chip always embeds AES128 cryptography capability, thus all data exchange are probably encrypted. This way they can be sure nobody can use their supercharger with another car and diy adapter cable... 因此,使用5%占空比的PWM脉冲可以容易的进入直流模式,但是PLC调制是问题,找到芯片与模块做低级别的调制比较简单,但问题可能会出现在高级别的通信协议中,可以很确定,Tesla在汽车与超级充电桩之间加入了专用数据交换,所我所知,PLC/GreenPHY芯片都是嵌入了AES128加密功能,因此所有的数据交换都可以加密,通过这样,他们可以确保没人能用他们的超级充电站给其它汽车充电或DIY适配器

一文详解特斯拉Model S底盘电机

一文详解特斯拉Model S底盘电机 目前,在电动汽车的电机方面,交流感应电机与永磁同步电机是采用较多的两种。与永磁电机相比,感应电机的成本略低;但同时,它的性能与效率也相对较差。其中,永磁同步电机需要用到稀土资源,目前全球市场绝大部分的稀土资源是由中国提供的。所以基于资源的控制,以及制造成本的考虑,欧美市场的大部分纯电动车或混动车型,采用的都是感应电机。 与这台感应电机搭配的,是一个电流逆变器。它将电池组的直流电转换为交流电,输入到感应电机中;而感应电机的动力则通过一个9.73:1的固定齿比变速箱,将动力创送至轮端。此外,与上述驱动机构搭配的,还有一个差速器--这是任何一辆车都必备的零件。电池、电机、逆变器,以及固定齿比的变速箱,构成了特斯拉Model S的动力总成。 我们知道,Model S是一款后置后驱的车型,它的驱动机构位于车辆后桥,这让其前轮仅负责转向。所以,对于一款标榜运动性的豪华D级车来说,还差那么一点--就是四驱系统。说起四驱系统,大家都会联想到quattro、X-Drive、4Matic这些四驱品牌,还会想到分动箱、差速器、差速锁,以及什么粘性联轴节之类的技术名词。 可以说,四驱系统不亚于发动机、变速箱,是各大汽车品牌的另外一个竞技场。然而电动化的进程却改变了一些事情--四驱结构似乎不必像现在这么复杂。无论是插电式混合动力车型,还是纯电动车型,四驱结构都变得相对简单。这是因为,电动单元的加入,让车辆可以同时拥有两个动力来源。而这两个来源,可以分别被安置在车辆的前后桥,来驱动前后轮。 比如某些插电式混动车型,选择在后桥加装一台电动机来构成四驱结构。而对于特斯拉来说,摆脱了燃油发动机、传统变速箱的束缚,实现四驱模式变得更加简单。所以,在2014年10月,配合驾驶辅助系统,特斯拉推出了全时四驱版的Model S。要知道,对于Model S这样的纯电动汽车,双电机四驱结构的应用,可不仅仅是实现四驱那么简单。 人们听到Model S上又加了一个电机,第一反应是电池的续航水平会不会下降?答案其实

相关主题