搜档网
当前位置:搜档网 › μCOS-II操作系统在各种处理器上的移植

μCOS-II操作系统在各种处理器上的移植

μCOS-II操作系统在各种处理器上的移植
μCOS-II操作系统在各种处理器上的移植

μC/OS-Ⅱ操作系统在各种处理器上的移植

长江大学杨青胜徐爱钧

摘要介绍μC/OS-II操作系统的应用和移植条件;阐述μC/OS-Ⅱ操作系统在普通的51单片机,NXP公司的LPC2210,ALTERA公司的Nios II 三种处理器上的移植。

关键字μC/OS-II移植51单片机LPC2210 Nios II

PortingμC/ OS - Ⅱto Various processor

Yangtze University Yang Qingsheng Xu Aijun Abstract :Introduced the μC/OS-II operating system application

and transplant conditions;Explained the μC/OS-II operating system on 51 common microprocessor ,NXP's LPC2210, ALTERA's Nios II three processors transplant.

Key Words:μC/OS-II port 51 microprocessor LPC2210 Nios II μC/OS-II操作系统是一种抢占式多任务、单内存空间、微小内核的嵌入式

操作系统,具有高效、紧凑的特点。它具有执行效率高、占用空间小、可移植性强、实时性能良好和可扩展性强等特点。采用μc/os-ii实时操作系统可以有效地对任务进行调度;对各任务赋予不同的优先级可以保证任务及时响应,而且采用实时操作系统,降低了程序的复杂度,方便程序的开发和维护。非常适合应用在一些小型的嵌入式产品应用场合,在家用电器,机器人,工业控制,航空航天,军事科技等领域有着广泛的应用。

单片机ARM, FPGA与μC/OS-II操作系统的结合,实现一些具体功能是目前嵌入式应用中比较常见。在这些应用中基础性的工作就是操作系统的移植,故而本文选取使用较多的51单片机,LPC2210, NiosII三种处理器做介绍必定有一定的意义。

1μC/OS-II操作系统移植条件

μC/OS-II操作系统的大部分源代码都是用C语言书写的,但仍需使用C语言和汇编语言来完成一些和处理器相关的操作,例如读写处理器,寄存器时只能使用汇编语言来实现。因此,μC/OS-II操作系统的移植在目标处理器上,需要从硬件和软件两方面来考虑。

硬件方面,目标处理器需满足以下条件:

Ⅰ处理器的C编译器能产生可重入代码;

Ⅱ用 C 语言可以开,关中断;

Ⅲ处理器支持中断,并且能够产生定时中断( 通常在l0~1000 Hz之间) ;

Ⅳ处理器能够支持容纳一定量数据的硬件堆栈;

Ⅴ处理器有将堆栈指针和其它寄存器读出和存储到堆栈或内存中的指令。

软件方面,主要关注的是一些与处理器相关的代码移植,其分布在OS-CPU. H,OS-CPU-C. C和OS-CPU-A. ASM 这3个不同的文件中。

2目标处理器硬件支持

51单片机,LPC2210, NiosII三种处理器在硬件方面上均能满足μC/OS-II操作系统的移植要求。

51单片机:选择Keil 公司的集成开发环境作为开发工具,因为该集成开发环境的C51 编译器能产生可重入型代码,且用C语言就可以开/关中断。同时具有一定数量的堆栈和操作相关要求的寄存器的指令。

LPC2210:采用ARM7微控制器可以满足上述Ⅱ,Ⅳ,Ⅴ,而ADS1.2的C 编译器可以满足Ⅰ,Ⅲ的要求。

NiosII处理器:Nios 处理器可以配置成最多支持6 4个中断,包括外部硬件中断、内部中断以及T R AP ( 调试中断) 。Nios II处理器可以配置使用32位内部定时器,通过用软件控制写入几个控制寄存器的内容来获得定时工作,与一般的定时器工作原理相同,可以产生定时中断。Nios处理器可以外接存储器,以使用的DE2开发板为例,外接512S R AM资源,可以提供足够的数据硬件堆栈。NiosII 8.0 IDE采用GNU编译器,支持C/C ++的编译、连接产生重入代码,允许在C语言中嵌入汇编语言。

3软件移植过程

3.1 OS-CPU. H的实现

OS_CPU.H文件包括了用#define语言定义的与处理器相关的常数、宏以及数据类型。

①数据类型,在上述三种处理器采用的不同编译器中的定义是相同的,在此不做具体介绍。

②在OS_CPU.H中定义与处理器相关的宏,主要是进入临界区的

OS_ENTER_CRITICAL( )和退出临界区的OS_EXIT_CRITICAL( )。

在Keil编译器中:EA是总中断

#define OS_ENTER_CRITICAL( ) EA=0; //关中断

#define OS_EXIT_CRITICAL( ) EA=1; //开中断

在ADS编译器中:定义为软件中断函数,并编写软件中断处理代码实现开关中断

_swi(0x00)viod OS_TASK_SW(viod);//任务级任务切换函数

_swi(0x00)viod OS_ENTER_CRITICAL(viod ) //关中断

_swi(0x00)viod OS_EXIT_CRITICAL( viod) //开中断

在NiosII 8.0 IDE编译器中:

#define OS_ENTER_CRITICAL( ) asm(“PFX 8\n WRCTL%g0;”)

//关中断

# define OS_EXIT _CRITICAL( ) asm( “PFX 9\n WRC T L%g 0 ;”)

//开中断

③定义堆栈的增长方向

堆栈的增长方向通过设置OS_STK_GROWTH为0或者1来确定

51单片机中只能设置为0,表示堆栈是从下往上增长的。

LPC2210中则可以设置成0或者1,都可以。

Nios II 中则只能设置成1,表示堆栈是从上往下增长的。

3.2OS-CPU-C. C的实现

OS_CPU_C.C中主要应改写堆栈初始化函数OSTaskStkIint(),必须根据移植时统一定义的任务堆栈结构进行初始化,其他9个钩子函数只需说明即可,也可根据移植时用户自己的需要编写相应的操作代码。

以LPC2210为例,堆栈空间从高到低依次存放着PC,LR,R12,R11,……R1,R0,CPSR,OsEnterSum (如下图)。每个任务都有独立的Os-EnterSum,在任务切换时保存和恢复各自的OsEnter-Sum值。各个任务开关中断的状态可以不同,这样实现了开关中断的嵌套。

INT16U opt)

{

OS_STK*stk;

opt=opt;

stk=stk;

*stk=(OS_STK)task;

*--stk=(OS_STK)task;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=0;

*--stk=(unsigned int)pdata;

*--stk=(USER_USING_MODE|0x00);

*--stk=0;

return(stk);

}

关于51单片机和Nios II处理器的这部分移植,限于篇幅,请参看文后参考文献。

3.3OS-CPU-A. S的实现

这部分需要对处理器的寄存器进行操作,所以必须用汇编语言来编写。μC/OS-II移植要求用户编写4个简单的汇编语言函数:OSStartHighRdy( ) ,OSCtxSw( ),OSIntCtxSw( ) ,OSTickISR( )。

OSStartHighRdy()的任务是进行任务调度和切换;

OSCtxSw()的任务是强制CPU进行寄存器和程序计数器的切换;

OSIntCtxSw()的任务是在中断返回时进行任务切换;

OSTickISR()是时钟节拍中断服务程序,用来实现时间的延迟和超时功能。

以OSStartHighRdy()任务调度和切换函数为例介绍三种处理器移植代码

①51单片机:

OSStartHighRdy:

;-----------------

; OSRunning = TURE

;-----------------

;because EA is not enabled. where in OSStartHighRdy set OSRunning to true is not important

MOV DPH,#HIGH (OSRunning)

MOV DPL,#LOW (OSRunning)

MOV A,#1

MOVX @DPTR,A

;-----------------

; TR0 = 1

;-----------------

SETB TR0

②LPC2210:

__OSStartHighRdy

MSR CPSR_c, #(NoInt | SYS32Mode)

;告诉uC/OS-II自身已经运行LDR R4, =OSRunning

MOV R5, #1

STRB R5, [R4]

BL OSTaskSwHook ;调用钩子函数

LDR R6, =OSTCBHighRdy

LDR R6, [R6]

B OSIntCtxSw_1

END

③Nios II处理器:

OSStartHighRdy:

; C function starts with "save %sp,xx"

; Call OSTaskSwHook()

.if (OS_CPU_HOOKS_EN == 1)

MOVI32 %g0, OSTaskSwHook@h

CALL %g0

NOP

.endif

; OSRunning = TRUE;

inc8 OSRunning

; Switch to the highest priority task.

; %sp = OSTCBHighRdy->OSTCBStkPtr

MOVI32 %g0, OSTCBHighRdy ; %g0 = &OSTCBHighRdy

LD %g1, [%g0] ; %g1 = &OS_TCB

LD %sp, [%g1] ; stack is the first element

LOAD_CONTEXT

TRET %o7 ; ISTATUS -> STATUS (no change in fact)

NOP

4结语

51单片机,LPC2210, NiosII三种处理器在我们的目前的嵌入式应用方面有着广泛的市场前景。将μC/OS-II操作系统移植到其处理器上,能够更好地保证系统运行的稳定性和实时性,而且该操作系统代码少,易于掌握和移植。

本文所介绍的μC/OS-II操作系统在三种处理器上的移植是在本人在实际学习过程中,进行的一些梳理和小结,相信能给初学者一定的参考价值。

参考文献

1 Jean J. Labrosse. 嵌入式实时操作系统μC/OS-II. 第2版[M]. 邵贝贝译. 北京:北京航空航天大学出版社,2003

2 周立功等.ARM嵌入式系统基础教程. 北京:北京航空航天大学出版社,2005

3 胡大可,李培弘,方路平.基于单片机8051的嵌入式开发指南[M] . 北京:电子工业出版社,2003.

4 张志刚. FPGA与SOPC设计教程:DE2实践[M]. 西安:西安电子科技大学出版社,2007

5 徐爱钧彭秀华. Keil Cx51 V7.0 单片机高级语言编程与uVision2应用实践. 北京:电子工业出版社,2004

杨青胜(硕士),主要研究方向:自动检测与控制,嵌入式系统等

徐爱钧(教授),主要研究方向:嵌入式系统,单片机智能化仪器仪表等。

联系地址:湖北荆州长江大学主教

邮编:434023

Emall:yangqish@https://www.sodocs.net/doc/ab7509407.html,

实时操作系统UCOS-II,学会RTOS给你的身价增值

实时操作系统UCOS-II,学会RTOS给你的身价增值 如果,你最近关注一些嵌入式招聘职位描述,你可能会经常看到看到使用过uCOS、Vxworks、QNX等RTOS者优先。 随便打开一个20K的嵌入式开发工作职责: 你会发现熟悉RTOS的开发、移植、剪裁真的很吃香! 今天,我们就来介绍一下实时操作系统UCOS-II。 一、嵌入式操作系统概览 嵌入式操作系统的主要好处就是屏蔽了底层硬件的差别,给上层应用提供统一的接口,并管理进程调度和资源(如CPU时间、内存)分配等。并且可以充分利用硬件资源,如在单任务时(大循环结构,如大部分51程序)遇到delay函数时,CPU在空转。而在多任务系统,遇到delay或需等待资源时系统会自动运行下一个任务,等条件满足再回来运行先前的任务,这样就充分利用了CPU,提高了效率。 uC/OS操作系统与裸机程序的最大不同点就在于uC/OS有任务调度,可以根据任务的重要程度(优先级)优先执行重要的任务,从而确保能及时处理最重要的数据。(所以对于一个系统有必要使用OS的判断是能否划分一个个的任务,并且各任务间的耦合很小)可以思考下裸机程序中断的时候发生的过程。利用堆栈可以很自由的在A、B中切换,如果切换足够快,A、B看以来好像同时在执行,这就是并行,A、B就是任务。如果这个切换操作放到定时器函数中来做,就可以严格按照时间来切换。另外,各个任务之间有存在一定的关系,有逻辑上的先后等,必须引进全局的结构体、变量来标记一些信息,全局的这些数据是不会被释放的,所以所有的任务可以去通过读、写这些数据来实现各个程序块交流信息,实现所谓的同步、互斥。这就是操作系统的原理,而这些不同的通信方式按功能细分就成事件管理、内存管理等。

嵌入式系统移植+心得

嵌入式系统作为近年来新兴的且发展很快的学科,它的应用越来越受到广大技术人员的重视。尤其起可移植性,显著的区别了通用操作系统。一款嵌入式操作系统通常运行在不同体系结构的处理器和开发板上,极大的方便了开发者开发与应用,节约了成本。 嵌入式操作系统作为移植支持嵌入式系统应用的操作系统软件,被广泛的运用于不同应用领域。纵观嵌入式系统40多年的历史,从无操作系统的嵌入式算法阶段到简单监控式的实时操作系统,一步又一步的到现在的以Internet为标志的嵌入式系统,一批又一批的先辈为其努力而奋斗。科技的革新,带动着社会的发展,人类的进步。大数据的时代必定属于我IT 人。以下我们聊一聊嵌入式系统及其移植性。 嵌入式操作系统大体分为商用型和免费型。 商用型主要是WindowsCE。Psos.os-9.qnx等其价格较为昂贵,开发成本高,广泛运用于通信。军事。航天等高端技术领域 免费型主要为Linux等主要运用于没有存储器管理单元的处理器而设置。 嵌入式基本操作共四步 主机和目标机的连接方式; UARA最经典90%的板子上,都支持的方式叫异部串行接口,也就是我们所说的串口。 USB串行接口 TCP/IP网络接口 Debug Jtag调试接口 补充说明 1.对于串口,通常用的有串口调试助手,putty工具等,工具很多,功能都差不多,会用一两款就可以; 2.对于USB线,当然必须要有USB的驱动才可以,一般芯片公司会提供,比如对于三星的芯片,USB下载主要由DNW软件来完成; 3.对于网线,则必须要有网络协议支持才可以 安装交叉编译器 方法一:分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。该方法相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用下列的方法二构建交叉工具链。 方法二:通过Crosstool-ng脚本工具来实现一次编译,生成交叉编译工具链,该方法相对于方法一要简单许多,并且出错的机会也非常少,建议大多数情况下使用该方法构建交叉编译工具链。 方法三:直接通过网上下载已经制作好的交叉编译工具链。该方法的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的,没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名其妙的错误 搭建主机

arm嵌入式系统基础教程课后答案.doc

arm 嵌入式系统基础教程课后答案【篇一:arm 嵌入式系统基础教程习题答案周立功】 /p> 1 、举出3 个书本中未提到的嵌入式系统的例子。 答:红绿灯控制,数字空调,机顶盒 2、什么叫嵌入式系统 嵌入式系统:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的 专用计算机系统。 3、什么叫嵌入式处理器?嵌入式处理器分为哪几类? 嵌入式处理器是为完成特殊的应用而设计的特殊目的的处理器。 嵌入式微处理器(embedded microprocessor unit, empu) 嵌入式微控制器(microcontroller unit, mcu) 嵌入式dsp 处理器(embedded digital signal processor, edsp) 嵌入式片上系统(system on chip) 4、什么是嵌入式操作系统?为何要使用嵌入式操作系统? 是一段在嵌入式系统启动后首先执行的背景程序,首先,嵌入式实 时操作系统提高了系统的可靠性。其次,提高了开发效率,缩短了 开发周期。再次,嵌入式实时操作系统充分发挥了32 位cpu 的多任务潜力。 第二章 1、嵌入式系统项目开发的生命周期分哪几个阶段?各自的具体任务 是什么? 项目的生命周期一般分为识别需求、提出解决方案、执行项目和结 束项目 4 个阶段。识别需求阶段的主要任务是确认需求,分析投资 收益比,研究项目的可行性,分析厂商所应具备的条件。 提出解决方案阶段由各厂商向客户提交标书、介绍解决方案。 执行项目阶段细化目标,制定工作计划,协调人力和其他资源;定 期监控进展,分析项目偏差,采取必要措施以实现目标。 结束项目阶段主要包括移交工作成果,帮助客户实现商务目标;系 统交接给维护人员;结清各种款项。 2、为何要进行风险分析?嵌入式项目主要有哪些方面的风险? 在一个项目中,有许多的因素会影响到项目进行,因此在项目进行 的初期,在客户和开发团队都还未投入大量资源之前,风险的评估

嵌入式系统移植的简单介绍

嵌入式操作系统的移植 综述:嵌入式操作系统与通用操作系统的最显著的区别之一就是它的可移植性。一款嵌入式操作系统通常可以运行在不同体系结构的处理器和开发板上。为了使嵌入式操作系统可以在某款具体的目标设备上运行,嵌入式操作系统的编写者通常无法一次性完成整个操作系统的代码,而必须把一部分与具体硬件设备相关的代码作为抽象的接口保留出来,让提供硬件的OEM厂商来完成。这样才可以保证整个操作系统的可移植性。 一、移植的定义及其目的 由于嵌入式系统所使用的芯片型号多种多样,很多芯片不能直接兼容,所以通过修改部分代码,把能在甲芯片上运行的程序,也能在与之不完全兼容的乙芯片上正确运行,就叫移植. 嵌入式操作系统移植的目的是指使操作系统能在某个微处理器或微控制器上运行。 二、移植的方法与具体操作步骤 2.1 在进行移植时,我们的首要任务就是要建立一个最基本的开发环境。该环境具备一套跨平台开发工具。它包含有编译器、连接 器、除错器等,另外还要准备制作文档系统所需的软件。以PC机作为宿主机构建一套完整的交叉编译系统来调试目标板。而在目标平台上只需要准备一段开机程序,如Ether boot,Red boot等,此程序可以在除错阶段取得系统的映像(image)文件后启动或者直接从Flash room中来引导系统。一旦启动后就进入Linux操作系统,同时也可

以使用GDB server作为远端除错工具。 2.2 内核的移植 为了使Linux内核能在不同的目标平台上运行,要求我们根据平台的处理器类型和外围接口,对Linux内核文件进行正确的配置,同时。修改内核文件Linux移植的主要步骤。如果修改完Linux的内核文件,使其能在目标平台上正确跑起来,那么整个移植过程就基本完成了。 2.3 移植的具体步骤 (1)首先获取某一版本的Linux内核源码,根据具体的目标平台对源码进行必要的改写(主要是修改体系结构相关的部分); (2)添加一部分外设驱动(如网卡驱动、USB驱动),打造一款适合于目标平台的新的操作系统,也就是常说的内核配置或内核定制;(3)对该系统进行针对目标平台的交叉编译,生成一个内核映象文件; (4)最后通过一些手段将该映象烧写到目标平台中。 三、移植过程中如何进行剪裁 3.1 进行方式 进行的方式必须有效率的建立系统,基本可行的方法有两种: (1)从其中一个发行版本中把不必要的部份全部删掉,留下我们想要的系统。 (2)把系统所有的功能依规格从新建立起来。 3.2开发环境 要建立一个最基本的开发环境,必需具备一套跨平台的开发工具

系统移植方案

文档作者:cyt2005 提交时间:2007年7月06日 系统移植方案 Mysql的版本是mysql-5.1.19-win32 操作系统是WINXP2 移植过程中重点问题 数据类型差异 ORACLE数据库和MYSQL数据库在数据类型方面差异比较大,而且数据类型也是一个数据库存储数据的基础,所以找到数据类型之间的对应是整个系统进行移植的基础。以下给出了ORACLE →MYSQL数据类型的对应关系。b5E2RGbCAP 数值类型: NUMBER → DECIMAL,精度刻度都不变 注:如果是序列用BIGINT 字符串类型: VARCHAR2 → VARCHAR长度不变。 LONG → LONGTEXT 这里有可能遇到的问题是超过主键key长度的问题,根据实际情况适当修改,如果是TEXT类型也需要指名长度,否则建立key会报错p1EanqFDPw 日期类型: DATE→DATETIME

TIMESTAMP(N> TIMESTAMP SQL语法差异 SEQUENCE: MYSQL没有ORACLE中的SEQUENCE对象,我们在迁移的时候需要特别注意,一般SEQUENCE有两种用途:DXDiTa9E3d 1、作为表中自增字段的序列号。 2、程序中获得自动编号。 MYSQL数据类型中存在 AUTO_INCREMENT为自增数据类型。我们可以利用该数据类型变通一下来满足我们现有系统中的SEQUENCE功能。RTCrpUDGiT 对于ORACLE中SEQUENCE作为表的自增列一般是通过与触发器绑定实现的,在MYSQL中我们可以直接利用MYSQL的AUTO_INCREMENT类型来实现。5PCzVD7HxA ORACLE开发的应用程序中直接SELECT SEQUENCT来获得自动编号,对于这个功能我们也可以利用MYSQL的AUTO_INCREMENT类型来实现。jLBHrnAILg 首先介绍一个函数,我们可以利用如下函数查询最后一个序列号的值: mysql> SELECT LAST_INSERT_ID(>。 +------------------+ | LAST_INSERT_ID(> | +------------------+

五大适合STM32的嵌入式操作系统

五大适合STM32的嵌入式操作系统 基于STM平台且满足实时控制要求操作系统,有以下5种可供移植选择。分别为μClinux、μC/OS-II、eCos、FreeRTOS和都江堰操作系统(djyos)。下面分别介绍这五种嵌入式操作系统的特点及不足。1、μClinuxμClinux是一种优秀的嵌入式Linux版本,其全称为micro-control Linux,从字面意思看是指微控制Linux。同标准的Linux相比, μClinux的内核非常小,但是它仍然继承了Linux操作系统的主要特性,包括良好的稳定性和移植性、强大的网络功能、出色的文件系统支持、标准丰富的API,以及TCP/IP网络协议等。因为没有MMU内存管理单元,所以其多任务的实现需要一定技巧。 μClinux在结构上继承了标准Linux的多任务实现方式,分为实时进程和普通进程,分别采用先来先服务和时间片轮转调度,仅针对中低档嵌入式CPU特点进行改良,且不支持内核抢占,实时性一般。 在内存管理上由于μClinux是针对没有MMU的处理器设计的,不能使用处理器的虚拟内存管理技术,只能采用实存储器管理策略。系统使用分页内存分配方式,在启动时对实际存储器进行分页。系统对内存的访问是直接的,操作系统对内存空间没有保护,多个进程可共享一个运行空间,所以,

即使是一个无特权进程调用一个无效指针也会触发一个地 址错误,并有可能引起程序崩溃甚至系统崩溃。 μClinux操作系统的中断管理是将中断处理分为两部分:顶半处理和底半处理。在顶半处理中,必须关中断运行,且仅进行必要的、非常少、速度快的处理,其他处理交给底半处理;底半处理执行那些复杂、耗时的处理,而且接受中断。因为系统中存在有许多中断的底半处理,所以会引起系统中断处理的延时。 μClinux对文件系统支持良好,由于μClinux继承了Linux完善的文件系统性能,它支持ROMFS、NFS、ext2、MS-DOS、JFFS等文件系统。但一般采用ROMFS文件系统,这种文件系统相对于一般的文件系统(如ext2)占用更少的空间。但是ROMFS文件系统不支持动态擦写保存,对于系统需要动态保存的数据须采用虚拟RAM盘/JFFS的方法进行处理。在对硬件的支持上,由于μClinux继承了Linux的大部分性能,所以至少需要512KB的RAM空间,lMB的ROM/Flash 空间。 在μClinux的移植方面,。μClinux是Linux针对嵌入式系统的一种改良,其结构比较复杂。移植μClinux,目标处理器除了需要修改与处理器相关的代码外,还需要足够容量的外部ROM和RAM。 综上可知,μClinux最大特点在于针对无MMU处理器设计,

ucos-ii操作系统复习大纲

ucos-ii操作系统复习大纲 一.填空题 1.uC/OS-II是一个简洁、易用的基于优先级的嵌入式【抢占式】多任务实时内核。 2.任务是一个无返回的无穷循环。uc/os-ii总是运行进入就绪状态的【最高优先级】的任务。 3.因为uc/os-ii总是运行进入就绪状态的最高优先级的任务。所以,确定哪 个任务优先级最高,下面该哪个任务运行,这个工作就是由【调度器(scheduler)】来完成的。 4.【任务级】的调度是由函数OSSched()完成的,而【中断级】的调度 是由函数OSIntExt() 完成。对于OSSched(),它内部调用的是【OS_TASK_SW()】完成实际的调度;OSIntExt()内部调用的是【 OSCtxSw() 】实现调度。 5.任务切换其实很简单,由如下2步完成: (1)将被挂起任务的处理器寄存器推入自己的【任务堆栈】。 (2)然后将进入就绪状态的最高优先级的任务的寄存器值从堆栈中恢复到【寄存器】中。 6.任务的5种状态。 【睡眠态(task dormat) 】:任务驻留于程序空间(rom或ram)中,暂时没交给ucos-ii处理。 【就绪态(task ready)】:任务一旦建立,这个任务就进入了就绪态。 【运行态(task running)】:调用OSStart()可以启动多任务。OSStart()函数只能调用一次,一旦调用,系统将运行进入就绪态并且优先级最高的任务。 【等待状态(task waiting)】:正在运行的任务,通过延迟函数或pend(挂起)相关函数后,将进入等待状态。

【中断状态(ISR running)】:正在运行的任务是可以被中断的,除非该任务将中断关闭或者ucos-ii将中断关闭。 7.【不可剥夺型】内核要求每个任务自我放弃CPU的所有权。不可剥夺型调度法也称作合作型多任务,各个任务彼此合作共享一个CPU。 8.当系统响应时间很重要时,要使用【可剥夺型】内核。最高优先级的任务一旦就绪,总能得到CPU的控制权。 9.使用可剥夺型内核时,应用程序不应直接使用不可重入型函数。调用不可重入型函数时,要满足互斥条件,这一点可以用【互斥型信号量】来实现。 10.【可重入型】函数可以被一个以上的任务调用,而不必担心数据的破坏。 11.可重入型函数任何时候都可以被中断,一段时间以后又可以运行,而相应数据不会丢失。可重入型函数或者只使用【局部变量】,即变量保存在CPU寄存器中或堆栈中。如果使用全局变量,则要对全局变量予以【保护】。 12.每个任务都有其优先级。任务越重要,赋予的优先级应【越高】。 13.μC/OS-Ⅱ初始化是通过调用系统函数【OSIint()】实现的,完成μC/OS-Ⅱ所有的变量和数据结构的初始化。 14.多任务的启动是用户通过调用【OSStart()】实现的。然而,启动μC/OS-Ⅱ之前,用户至少要建立一个应用【任务】。 15. μC/OS-Ⅱ的参数配置文件名为【】。 16.删除任务,是说任务将返回并处于【休眠状态】,并不是说任务的代码被删除了,只是任务的代码不再被μC/OS-Ⅱ调用。 17.μC/OS-Ⅱ要求用户提供【定时中断】来实现延时与超时控制等功能。 18.定时中断也叫做【时钟节拍】,它应该每秒发生10至100次。 19. 时钟节拍的实际频率是由用户的应用程序决定的。时钟节拍的频率越高,系统的负荷就【越重】。 20.μC/OS-II中的信号量由两部分组成:一个是信号量的【计数值】,它是一个16位的无符号整数(0 到65,535之间);另一个是由等待该信号量的任务组成的【等待任务表】。用户要在中将OS_SEM_EN开关量常数置成【1 】,这样μC/OS-II 才能支持信号量。 21. μC/OS-II中表示当前已经创建的任务数全局变量名为:【 OSTaskCtr 】。

孟祥莲嵌入式系统原理及应用教程部分习题答案

习题1 1. 嵌入式系统的概念的是什么?答:嵌入式系统是以应用为中心,以计算机技 术为基础,软、硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。(嵌入式系统是嵌入式到对象体系中的,用于执行独立功能的专用计算机系统。) 2. 嵌入式系统的特点是什么? 答:系统内核小;专用性强;运行环境差异大;可靠性要求高;系统精简和高实时性操作系统;具有固化在非易失性存储器中的代码嵌入式系统开发和工作环境 4. 嵌入式系统的功能是什么?答:提供强大的网络服务小型化,低成本,低 功能;人性化的人机界面;完善的开发平台 5. 嵌入式系统的硬件平台由哪些部分组成?答:嵌入式系统的硬件是以嵌入式处理器为核心,由存储器I/O 单元电路,通信模块,外部设备必要的辅助接口组成的。 7. 嵌入式操作系统的主要特点是什么?答:体积小;实时性;特殊的开发调试环境。 8. 叙述嵌入式系统的分类。答:按嵌入式微处理器的位数分类可以分为4 位、 8 位、16 位、32 位和64 位等;按软件实时性需求分类可以分为非实时系统(如PDA), 软实时系统(如消费类产品)和硬实时系统(如工业实时控制系统)按嵌入式系统的复杂程度分类可以分为小型嵌入式系统,中型嵌入式系统和复杂嵌入式系统。 习题2 处理器和工作状态有哪些?

答:ARM犬态:此时处理器执行32位的的字对齐的ARS旨令。 Thumb犬态:此时处理器执行16位的,半字对齐的Thumb旨令 2.叙述ARM9内部寄存器结构,并分别说明R13 R14 R15寄存器的 作用。 答:共有37个内部寄存器,被分为若干个组(BANK,这些寄存器包括31个通用寄存器,包括程序计数器(PC指针)6个状态寄存器。R13用作堆栈指针,R14称为子程序链接寄存器,R15用作程序计数器。处理器的工作模式有哪些? 答:用户模式:ARM处理器正常的程序执行状态。 快速中断模式:用于高速数据传输或通道处理 外部中断模式:用于通用中断处理管理模式:操作系统使用的保护模式数据访问终止模式:当数据或指令预期终止时进入该模式,可用于虚拟存储器及存储保护 系统模式:运行具有特权的操作系统任务 未定义指令终止模式:当未定义的指令执行时进入该模式,可用 于支持硬件协处理器的软件仿真。 微处理器支持的数据类型有哪些? 答:ARM微处理器中支持字节(8位)、半字(16位),字(32 位)

嵌入式实时操作系统UCOS 2优劣势分析

嵌入式实时操作系统ucos ii的优劣势分析 引言 早在20世纪60年代,就已经有人开始研究和开发嵌入式操作系统。但直到最近,它才在国内被越来越多的提及,在通信、电子、自动化等需要实时处理的领域所曰益显现的重要性吸引了人们越来越多的注意力。但是,人们所谈论的往往是一些著名的商业内核,诸如VxWorks、PSOS等。这些商业内核性能优越,但价格昂贵,主要用于16位和32位处理器中,针对国内大部分用户使用的51系列8位单片机,可以选择免费的ucos ii。 ucos ii的特点 1.ucos ii是由Labrosse先生编写的一个开放式内核,最主要的特点就是源码公开。这一点对于用户来说可谓利弊各半,好处在于,一方面它是免费的,另一方面用户可以根据自己的需要对它进行修改。缺点在于它缺乏必要的支持,没有功能强大的软件包,用户通常需要自己编写驱动程序,特别是如果用户使用的是不太常用的单片机,还必须自己编写移植程序。 2.ucos ii是一个占先式的内核,即已经准备就绪的高优先级任务可以剥夺正在运行的低优先级任务的CPU使用权。这个特点使得它的实时性比非占先式的内核要好。通常我们都是在中断服务程序中使高优先级任务进入就绪态(例如发信号),这样退出中断服务程序后,将进行任务切换,高优先级任务将被执行。拿51单片机为例,比较一下就可以发现这样做的好处。假如需要用中断方式采集一批数据并进行处理,在传统的编程方法中不能在中断服务程序中进行复杂的数据处理,因为这会使得关中断时间过长。所以经常采用的方法是置一标志位,然后退出中断。由于主程序是循环执行的,所以它总有机会检测到这一标志并转到数据处理程序中去。但是因为无法确定发生中断时程序到底执行到了什么地方,也就无法判断要经过多长时间数据处理程序才会执行,中断响应时间无法确定,系统的实时性不强。如果使用μC/OS-II的话,只要把数据处理程序的优先级设定得高一些,并在中断服务程序中使它进入就绪态,中断结束后数据处理程序就会被立即执行。这样可以把中断响应时间限制在一定的范围内。对于一些对中断响应时间有严格要求的系统,这是必不可少的。但应该指出的是如果数据处理程序简单,这样做就未必合适。因为ucos ii要求在中断服务程序末尾使用OSINTEXIT函数以判断是否进行任务切换,这需要花费一定的时间。 3.ucos ii和大家所熟知的Linux等分时操作系统不同,它不支持时间片轮转法。ucos ii是一个基于优先级的实时操作系统,每个任务的优先级必须不同,分析它的源码会发现,ucos ii把任务的优先级当做任务的标识来使用,如果优先级相同,任务将无法区分。进入就绪态的优先级最高的任务首先得到CPU的使用权,只有等它交出CPU的使用权后,其他任务才可以被执行。所以它只能说是多任务,不能说是多进程,至少不是我们所熟悉的那种多进程。显而易见,如果只考虑实时性,它当然比分时系统好,它可以保证重要任务总是优先占有CPU。但是在系统中,重要任务毕竟是有限的,这就使得划分其他任务的优先权变成了一个让人费神的问题。另外,有些任务交替执行反而对用户更有利。例如,用单

嵌入式Linux系统开发教程很完整的习题答案资料

参考答案 第一章 一、填空题。 1、嵌入式系统主要融合了计算机软硬件技术、通信技术和微电子技术,它是将计算机直接嵌入到应用系统中,利用计算机的高速处理能力以实现某些特定的功能。 2、目前国内对嵌入式系统普遍认同的定义是:以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 3、嵌入式系统一般由嵌入式计算机和执行部件组成,其中嵌入式计算机主要由四个部分组成,它们分别是:硬件层、中间层、系统软件层以及应用软件层。 4、嵌入式处理器目前主要有ARM、MIPS、Power PC、68K等,其中arm处理器有三大特点:体积小、低功耗、的成本和高性能,16/32位双指令集,全球合作伙伴众多。 5、常见的嵌入式操作系统有:Linux、Vxworks、WinCE、Palm、uc/OS-II和eCOS。 6、嵌入式系统开发的一般流程主要包括系统需求分析、体系结构设计、软硬件及机械系统设计、系统集成、系统测试,最后得到最终产品。 二、选择题 1、嵌入式系统中硬件层主要包含了嵌入式系统重要的硬件设备:、存储器(SDRAM、ROM等)、设备I/O接口等。(A) A、嵌入式处理器 B、嵌入式控制器 C、单片机 D、集成芯片 2、20世纪90年代以后,随着系统应用对实时性要求的提高,系统软件规模不断上升,实时核逐渐发展为,并作为一种软件平台逐步成为目前国际嵌入式系统的主流。(D) A、分时多任务操作系统 B、多任务操作系统 C、实时操作系统 D、实时多任务操作系统 3、由于其高可靠性,在美国的火星表面登陆的火星探测器上也使用的嵌入式操作系统是。(B) A、Palm B、VxWorks C、Linux D、WinCE [在此处键入]

《嵌入式操作系统》课程教学大纲

《嵌入式操作系统》课程教学大纲 (Embedded Operating System) 课程编号: 课程性质:专业课 适用专业:软件工程 先修课程:计算机组成和结构、C语言程序设计、操作系统原理、嵌入式系统原理与设计 后续课程:嵌入式操作系统 总学分:3(其中实验学分0.5) 一、教学目的与要求 “嵌入式操作系统”是软件工程专业的课程之一,培养学生具有嵌入式系统的应用知识、嵌入式系统的初步分析能力和具有用RTOS构成嵌入式系统的应用能力。介绍嵌入式系统中嵌入式实时操作系统和其他技术。通过本课程学习常见的嵌入式操作系统;掌握嵌入式系统软硬件设计的基本方法;跟踪嵌入式系统最新设计理念;实践嵌入式系统项目开发基本流程;为嵌入式系统开发奠定良好的基础。 本课程以介绍嵌入式操作系统知识为主,但在构成一个嵌入式计算机应用系统时,还必须具有用汇编语言、C或C++语言及程序设计编制源程序的能力,软硬件结合是本课程的一个特点。 1.教学目的 通过本课程的学习,使学生具有嵌入式操作系统的分析能力和初步设计能力。 2.教学要求 本课程采用课堂教学和试验教学相结合,以课堂教学为主的教学形式。通过本课程的学习,要求学生能够达到: (1)较深入地了解嵌入式操作系统的组成及工作原理; (2)具有较高的汇编语言源程序的阅读能力和一定的程序编写能力; (3)掌握嵌入式操作系统的使用方法和移植方法; 二、课时安排

注:教学、实验内容和学时安排各专业任课教师可根据具体专业要求作适当调整。 三、教学内容 1. 概论(2学时) (1)教学的基本要求 了解:嵌入式系统、实时系统的基本概念 重点:嵌入式操作系统的选型 (2)教学内容 ①嵌入式系统的概念 ②嵌入式操作系统的分类 ③嵌入式系统的应用举例 2. 嵌入式系统工程设计(4学时) (1)教学的基本要求 了解:介绍可用于嵌入式应用开发的一些基本方法 重点:介绍嵌入式实时软件工程方法 (2)教学内容 ①嵌入式系统项目开发流程 ②嵌入式系统工程设计方法 3. 内核相关基本概念(10学时) (1)教学的基本要求 了解:内核的定位与可裁剪性;相关基本术语 理解:任务状态、调度规则,中断处理,任务异常处理 掌握:非任务执行时、任务无关部分和准任务部分的系统状态 重点:任务状态 难点:中断处理 (2)教学内容 ①内核的定位与可裁剪性。 ②任务的运行、就绪、等待与睡眠和不存在状态。 ③任务的优先级与调度规则。 ④中断与异常。 ⑤系统状态。 4. 数据类型与系统调用(6学时) (1)教学的基本要求 了解:普通数据类型和其它定义数据类型 理解:相对时间,系统时间,时限 掌握:系统调用的格式,调用方法以及参数包的修改 重点:系统调用方法。 难点:参数包的修改。

ARM嵌入式系统基础教程第二版课后习题答案

第1章嵌入式系统概述 (1)举出3个本书中未提到的嵌入式系统的例子。 答:键盘、鼠标、扫描仪。 (2)什么叫嵌入式系统? 答:嵌入到对象体系中的专用计算机应用系统。 (3)什么叫嵌入式处理器?嵌入式处理器分为哪几类? 答:嵌入式处理器是为完成特殊的应用而设计的特殊目的的处理器。分为3类:1.注重尺寸、能耗和价格;2.关注性能;3.关注全部4个需求——性能、尺寸、能耗和价格。 (4)什么是嵌入式操作系统?为何要使用嵌入式操作系统? 答:嵌入式操作系统是操作系统的一种类型,是在传统操作系统的基础上加入符合嵌入式系统要求的元素发展而来的。原因:1.提高了系统的可靠性;2.提高了开发效率,缩短了开发周期。3.充分发挥了32位CPU的多任务潜力。 第2章ARM7体系结构 1.基础知识 (1)ARM7TDMI中的T、D、M、I的含义是什么? 答:T:高密度16位Thumb指令集扩展;D:支持片上调试;M:64位乘法指令;I:Embedded ICE硬件仿真功能模块。 (2)ARM7TDMI采用几级流水线?使用何种存储器编址方式? 答:3级;冯·诺依曼结构。 (3)ARM处理器模式和ARM处理器状态有何区别? 答:ARM处理器模式体现在不同寄存器的使用上;ARM处理器状态体现在不同指令的使用上。 (4)分别列举ARM的处理器模式和状态? 答:ARM的处理器模式:用户模式、系统模式、管理模式、中止模式、未定义模式、中断模式、快速模式;ARM的处理器状态:ARM状态、Thumb状态。 (5)PC和LR分别使用哪个寄存器? 答:PC:R15;LR:R14。 (6)R13寄存器的通用功能是什么? 答:堆栈指针SP。 (7)CPSR寄存器中哪些位用来定义处理器状态?

基于ARM9的嵌入式的linux操作系统的移植

目录 第一章绪论.............................................................................................................................. - 1 -1.1引言...................................................................................................................................... - 1 -1.2嵌入式系统的概述.............................................................................................................. - 1 -1.3嵌入式系统的开发前景...................................................................................................... - 1 -1.4本文所要研究的任务和意义.............................................................................................. - 2 -第二章Linux的内核启动分析 .............................................................................................................. - 2 - 2.1内核...................................................................................................................................... - 3 -2.2 Linux内核的特性 ............................................................................................................... - 3 -2.3内核启动过程分析.............................................................................................................. - 4 - 2.3.1 Bootloader启动过程 ........................................................................................................................ - 4 - 2.3.2 Linux内核引导过程 ........................................................................................................................ - 5 - 第三章引导加载程序U-BOOT的编译 .......................................................................................... - 12 - 3.1编译交叉环境的搭建........................................................................................................ - 12 -3.2编译源码............................................................................................................................ - 12 -3.3编译U-BOOT....................................................................................................................... - 12 -第四章编译和配置内核........................................................................................................................ - 14 - 4.1解压内核包........................................................................................................................ - 14 -4.2编辑Makefile文件 ........................................................................................................... - 14 -4.3配置并编译Kernel ........................................................................................................... - 14 -4.4介绍映像文件zImage与uImage的区别 ........................................................................ - 15 -4.5 rootfs文件系统的制作................................................................................................... - 15 -第五章内核与文件系统的烧写.......................................................................................................... - 16 - 5.1 U-BOOT的更新................................................................................................................... - 17 -5.2内核的烧写........................................................................................................................ - 19 -5.3文件系统的烧写................................................................................................................ - 19 -结论............................................................................................................................................................... - 22 - 参考文献 ..................................................................................................................................................... - 23 - 致谢............................................................................................................................................................... - 24 -

常见的四种嵌入式操作系统

(一)VxWorks VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是Tornado嵌入式开发环境的关键组成部分。良好的持续发展能力、高性能的内核以及友好的用户开发环境,在嵌人式实时操作系统领域逐渐占据一席之地。 VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通讯;微秒级的中断处理;支持POSIX 1003.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。 然而其价格昂贵。由于操作系统本身以及开发环境都是专有的,价格一般都比较高,通常需花费10万元人民币以上才能建起一个可用的开发环境,对每一个应用一般还要另外收取版税。一般不通供源代码,只提供二进制代码。由于它们都是专用操作系统,需要专门的技术人员掌握开发技术和维护,所以软件的开发和维护成本都非常高。支持的硬件数量有限。 (二)Windows CE Windows CE与Windows系列有较好的兼容性,无疑是Windows CE推广的一大优势。其中WinCE3.0是一种针对小容量、移动式、智能化、32位、了解设备的模块化实时嵌人式操作系统。为建立针对掌上设备、无线设备的动态应用程序和服务提供了一种功能丰富的操作系统平台,它能在多种处理器体系结构上运行,并且通常适用于那些对内存占用空间具有一定限制的设备。它是从整体上为有限资源的平台设计的多线程、完整优先权、多任务的操作系统。它的模块化设计允许它对从掌上电脑到专用的工业控制器的用户电子设备进行定制。操作系统的基本内核需要至少200KB的ROM。由于嵌入式产品的体积、成本等方面有较严格的要求,所以处理器部分占用空间应尽可能的小。系统的可用内存和外存数量也要受限制,而嵌入式操作系统就运行在有限的内存(一般在ROM或快闪存储器)中,因此就对操作系统的规模、效率等提出了较高的要求。从技术角度上讲,Windows CE作为嵌入式操作系统有很多的缺陷:没有开放源代码,使应用开发人员很难实现产品的定制;在效率、功耗方面的表现并不出色,而且和Windows一样占用过的系统内存,运用程序庞大;版权许可费也是厂商不得不考虑的因素。 (三)嵌入式Linux 这是嵌入式操作系统的一个新成员,其最大的特点是源代码公开并且遵循GPL协议,在近一年多以来成为研究热点,据IDG预测嵌入式Linux将占未来两年的嵌入式操作系统份额的50%。 由于其源代码公开,人们可以任意修改,以满足自己的应用,并且查错也很容易。遵从GPL,无须为每例应用交纳许可证费。有大量的应用软件可用。其中大部分都遵从GPL,是开放源代 码和免费的。可以稍加修改后应用于用户自己的系统。有大量的免费的优秀的开发工具,且都遵从GPL,是开放源代码的。有庞大的开发人员群体。无需专门的人才,只要懂Unix/Linux和C语言即可。随着Linux在中国的普及,这类人才越来越多。所以软件的开发和维护成本很低。优秀的网络功能,这在Internet时代尤其重要。

移植操作系统报告

嵌入式系统及应用 基于s3c6410的嵌入式Linux系统移植

1.嵌入式系统介绍 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可配置,对功能、可靠性、成本、体积、功耗有严格约束的专用系统。。嵌入式Linux是在标准Linux 的基础上针对嵌入式系统进行内核裁减和优化后形成的一种小型操作系统,一般只有几百KB左右,即使加上其它必要的模块和应用程序,所需的存储空间也很小,非常适合于移植到嵌入式系统中去。一个完整的嵌入式系统的构建过程大体可以分为四个步骤:交叉编译环境的搭建、Boot Loader移植、Linux内核的配置编译及移植、根文件系统的制作及移植。本文将以SUMSANG公司的s3c6410处理器为目标平台,介绍嵌入式Linux系统的构建过程。 1.1.嵌入式系统的组成 一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。执行装置可以很简单,如手机上的一个微小型的电机,当手机处于震动接收状态时打开;也可以很复杂,如SONY 智能机器狗,上面集成了多个微小型控制电机和多种传感器,从而可以执行各种复杂的动作和感受各种状态信息。 硬件层: 硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 中间层: 硬件层与软件层之间为中间层,也称为硬件抽象层(Hardware Abstract Layer,HAL)或板级支持包(Board Support Package,BSP),它将系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据BSP 层提供的接口即可进行开发。该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。 系统软件层: 系统软件层主要指运行于ARM芯片上的操作系统,目前常见的ARM操作系统有WinCE、Linux、Symbain、Android等。 应用软件层:

相关主题