搜档网
当前位置:搜档网 › 计算传热学的近代进展Chapter 1

计算传热学的近代进展Chapter 1

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

传热学读书报告

传热学读书报告 姓名:何连江学号:2010301470004 院系:动力与机械学院班级:自动化一班 1 、传热学 传热学是研究热量传递规律的学科。 1)物体内只要存在温差,就有热量从物体的高温部分传向低温部分; 2)物体之间存在温差时,热量就会自发的从高温物体传向低温物体。 由于自然界和生产技术中几乎均有温差存在,所以热量传递已成为自然界和生产技术中一种普遍现象。 2 、热量传递过程 根据物体温度与时间的关系,热量传递过程可分为两类:(1 )稳态传热过程;(2 )非稳态传热过程。 1 )稳态传热过程(定常过程) 凡是物体中各点温度不随时间而变的热传递过程均称稳态传热过程。 2 )非稳态传热过程(非定常过程) 凡是物体中各点温度随时间的变化而变化的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运行时的热传递过程属稳态传热过程;而在启动、停机、工况改变时的传热过程则属非稳态传热过程。 三、传热学的特点、研究对象及研究方法 1 、特点 1 )理论性、应用性强传热学是热工系列课程内容和课程体系设置的主要内容之 一。是一门理论性、应用性极强的专业基础课,在热量传递的理论分析中涉及到很 深的数学理论和方法。 2) 有利于创造性思维能力的培养 传热学是建筑环境与设备工程专业的主干专业课之一,在教学中重视学生在学习过程中的主体地位,启迪学生学习的积极性,在时间上给学生留有一定的思维空间。 3 )教育思想发生了本质性的变化 传热学课程教学内容的组织和表达方面从以往单纯的为后续专业课学习服务转变到重点培养学生综合素质和能力方面,这是传热学课程理论联系实际的核心。。 2 、研究对象 传热学研究的对象是热量传递规律。 3 、研究方法 研究的是由微观粒子热运动所决定的宏观物理现象,而且主要用经验的方法寻求热量传递的规律,认为研究对象是个连续体,即各点的温度、密度、速度是坐标的 连续函数,即将微观粒子的微观物理过程作为宏观现象处理。 热量传递的三种基本方式 一、导热(热传导) 1 、概念 物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称导热。 固体与固体之间及固体内部的热量传递。 2 、导热现象的基本规律 1 )傅立叶定律(182 2 年,法国物理学家) 一维导热问题,两个表面均维持均匀温度的平板导热。 根据傅立叶定律,对于x 方向上任意一个厚度为dx 的微元层,单位时间内通过该

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学课后小论文

测定2 CO在微细管道内的对流传热表面传热系数 X X (XXXXXXXX学院城建系热能与动力工程 XXXXXXXX43) 为了测定2 CO在微细管道内的对流传热表面传热系数,采用对实验管道直接通电加热的方法。假定电流产生的热量所形成的内热源均匀分布,记为Φ ,管道的内外径分别为d与D,外表面绝热良好(见附图), 通过管壁的导热可以作为一维问题处理。实验测得管外壁面温度为 ) (x t wo,试导出据测定的外表面温度 φ 及 ) (x t wo确定官职内壁面温度 ) (x t wi的计算式。 摘要:随着自然工质研究的进一步发展,系统中气体冷却器的换热问题越来越受到人们的重视,这是因为高的换热效率是提高系统尸的重要因素本文首先阐明了超临界流体换热研究的处理原则和分类方法,并重新定义了临界区范围利用修改的方程计算得出了临界区的物性变化规律,并分析了获得超临界换热关联式的理论求解方法最后,建立了超临界管内冷却过程的数学模型,为求解其换热规律提供了方法和依据。本实验通过将实验模型简化为一维导热问题处理,利用仪器测得的数据及简化的模型确定微分方程,从而推导出细管内壁面温度。在由牛顿冷却公式推导出hx。 关键词:超临界二氧化碳对流换热细微管道冷却 DETERMINATION OF MICRO PIPE CONVECTIVE HEAT TRANSFER SURFACE COEFFICIENT OF HEAT TRANSFER Jiang Jun (Hebei Institute of Architecture and Civil Engineering Construction of thermal energy and power engineering 2010319243) Abstract: with the further development of natural refrigerants, system of gas cooler heat exchange problem more and more get the attention of people, this is because of the high heat exchange efficiency is to improve the system. This paper firstly clarifies the important factors on the heat transfer of supercritical fluid processing principles and classification methods, and redefines the critical zone range using the modified equation to calculate the critical areas of the physical changes, and analyzed the obtained supercritical heat transfer correlation theory method finally, established a supercritical tube cooling process for solving the mathematical model, the heat transfer law provides a method and basis.Through this experiment, the experimental model is simplified to one-dimensional heat conduction problem, using the instrument measured data and simplified model for determining differential equation, thus derive the tube wall temperature.By Newton cooling formula deduced by hx.

拉瓦锡与近代化学革命

拉瓦锡与近代化学革命 拉瓦锡与近代化学革命 摘要: 分析了十八世纪化学革命产生的的背景,阐述了燃烧氧化学说的伟大意义及其在化学发展史上的地位,并探讨了拉瓦锡的科学思想和研究方法。 关键词:拉瓦锡; 燃烧氧化学说;化学革命; 燃素说 十八世纪的法国爆发了两种大革命,一种是政治大革命,一种是化学革命.两种革命,拉瓦锡都卷入其中.在政治大革命中,他被指控为罪人而丢了脑袋;但在化学革命中,他却成了旗手.他建立的燃烧氧化学说,被称为“史无前例的化学革命”. 1.化学革命的背景 任何一种革命,总有它的背景,化学革命也不例外.它的发生,首先取决于自身的矛盾运动.十八世纪中期,愈来愈多的物质被发现,日益复杂的实验现象相继出现,极大地丰富了人们对物质世界和化学变化的认识,也使原来试图解释一切的“燃素说”变得难圆其说了,为此,法国的拉瓦锡、施塔贝尔和贝岩、荷兰的伯尔哈费、俄国的罗蒙诺索夫等化学家纷纷向“燃素说”发出了质疑和批判. 施塔贝尔在他的《教义—实验化学》一书中指出“燃素说”的自相矛盾;更尖锐批判“燃素说”的是拉瓦锡,他说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意解释事物.有时这一要素是有重量的,有时又没有

重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能穿过容器器壁的微孔,有时又不能;它能同时解释碱性和非碱性、透明性和不透明性、有色和无色。它真是个变色虫,每时每刻都在改变它的面貌.” 要真正认识燃烧的本质,必须首先弄清空气的组成和氧气在燃烧中的作用.1772年和1774年,瑞典的舍勒和英国的普里斯特列分别用不同的方法制取了氧气并研究了其性质,但他俩却笃信“燃素说”,把氧气称为“火空气”和“脱燃素气体”.虽然舍勒和普里斯特列没有真正认识到氧气在燃烧中的作用,但却为拉瓦锡的燃烧氧化学说理论提供了决定性的证据.恩格斯说:“在化学中,燃素说经过百年的实验工作提供了这样一些材料,借助于这些材料,拉瓦锡才能在普里斯特列制出的氧气中发现了幻想的燃素的对立物,因而推翻了全部的燃素说.”①所以在客观上,“燃素说”论者关于氧气的发现,为埋葬“燃素说”自身奠定了一块最牢固的基石.虽然“燃素说”是一个错误的学说,而正是由于其形成和本身的矛盾性,才吸引了一大批拥护者和反对者去争论、去思索、去不断进行新的实验,从而加速了人们对燃烧现象本质的揭示. 燃烧氧化学说的建立,在一定程度上还依赖于十八世纪分析化学的发展及其成就。十八的世纪的欧洲出现了许多象德国的马格列夫、瑞典的贝格曼等优秀的分析化学家,他们在广泛地进行定性分析的基础上,将定量分析用于提纯、分离新物质和探索复

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

传热学论文

地球的温室效应分析:原因及其对策 内燃1301 赵坤摘要:地球自有人类出现至今, 已为人类的生存提供了维持生命所必须的条件, 但人类社会的发展和对地球的开发利用,使得地球正遭受着毁灭性破坏。工业化革命以来,人类的活动增加了大气中的温室气体,导致了地球升温,全球气候不断恶化,, 关键词:全球变暖温室效应二氧化碳对策 何为温室效应温室效应,是指“大气中的温室气体通过对长波辐射的吸收而阻止地表热能耗散,从而导致地表温度增高的现 象” 。温室效应,又称“花房效应” ,是大气保温效应的俗称。大气中的二氧化碳浓度增加,阻止地球热量的散失,使地球发生可感觉到的气温升高,这就是有名的“温室效应” 。破坏大气层与地面间红外线辐射正常关系,吸收地球释放出来的红外线辐射,就像“温室”一样,促使地球气温升高的气体称为“温室气体” 。 温室效应的一般机理温室效应是由太阳——大气——地球系的物理学相互作用造成的, 包含以下关键因素。 (1)太阳的温度大约为5800K它外发射光线,产生许多波长的光,波谱范围从紫外线到红外线,在550卩m左右的可见光部分最大。 (2)这些光线的大部分通过大气传到地面, 其中一部分被陆地或海洋表面吸 收。 (3)地球表面也发射辐射, 地球辐射的波长范围从接近红外线区域到远离红外线区域,峰值大约为10卩m,比太阳光的波长长得多。如果没有大气存在,这个通量将与太阳入射通量平衡。 (4)无云的大气层对太阳光是相当透明的,但对于地球的红外辐射的透明程度则小得多, 因此, 大气被加热了, 随后地球表面也显著增暖。 (5)大气中含有吸收红外辐射的所谓“温室气体” , 包括水汽、二氧化碳、甲烷、氧化氮、臭氧和一些浓度更低但仍强烈吸引红外辐射的气体, 如氯氟烃类。所有这些温室气体都在一个或多个狭窄的波长范围内吸收红外辐射, 形成红外吸收带。由于含有自然吸收红外辐射气体的大气造成了大气的整个较低部分变暖, 升温幅度超过30K,这一现象常常被称为自然温室效应。这种增温还可以被认为是由于发射红外辐射的有效高度增加而产生的。大气低层对于红外辐射不再是透明的, 所以地球向外辐射就从更高的高度上发射, 结果使得地球表面变得更暖。 温室效应加剧的原因人类活动使温室气体含量增加大气中的温室气体, 主要有六种, 包括: 二氧化碳、一氧化二氟烃类物质。关于每种温室气体含量增加的原因, 具体分析如下: (1)二氧化碳(CO2)。在对大气释放CO2方面,最重要的人类活动是交通、电力等部门对化石燃料的消耗, 全球每年因此接受到的碳量 1 9世纪中期为1亿吨左右,到本世纪80年代已达57亿吨。CO2增加的另一个原因是地球陆地植物系统的破坏,近几十年来,森林的砍伐和破坏日益严重,导致大气中C02浓度增加。 (2)一氧化二氮(N20)。海洋是一氧化二氮的一个重要来源。无机氮肥的大量使用和石化燃料及生物体的燃烧也能释放出一定量的一氧化二氮。工业革命前一氧化二氮的浓度为288cm3? m-3,目前已增加到310cm3? m-3。据以往的观测结

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

传热学小论文 自由论文

地热耦合水源热泵供暖系统可行性分析 邹志胜,刘俊杰,朱能 (天津大学环境科学与工程学院,天津300072) 摘要:针对天津市某高层写字楼的冬季热负荷变化情况,对采用地热耦合水源热泵,同时 结合消防水池蓄热的供暖系统进行了分析,研究了此系统的技术可行性,经过传热计算,验证了此 系统可以满足建筑热负荷的要求,分析了其优越性。 关键词:地热;水源热泵;供暖;蓄热 热泵作为一种节能装置,可以节约大量的一次 能源,并可减少环境污染,具有明显的经济、社会效 益[1 ~ 5]。将地热水利用与水源热泵相结合组成地热 耦合热泵系统,可提高地热利用率,并具有节能与环 保效果[6]。本文对某高层写字楼使用地热耦合热 泵+ 消防水池蓄热的供暖系统进行可行性分析。 !" 供暖热负荷分析 天津市某高层写字楼,总建筑面积约7 × 104 m2。写字楼内大部分办公室在夜间不办公,如果冬 季夜间仍然按照原来的供暖室内设计温度供暖,会 造成大量的能源浪费。所以,夜间可以考虑将大部 分房间按值班供暖室内设计温度供暖,这样可以大 大降低夜间能源消耗,节省运行费用。 在计算供暖热负荷时,供暖室外计算参数由不 保证天数法确定,为最不利工况下的静态值,偏于保 守。从供暖热负荷计算方法上来看,供暖热负荷为 供暖室外计算温度的简单线性函数[7]。供暖热负 荷计算公式为: Φ = a(T i ' - T o ')(1) 式中Φ———供暖热负荷,W a———建筑物温差负荷系数,即在室内外单位 温差下的供暖热负荷,W/ K T i '———供暖室内计算温度,K T o '———供暖室外计算温度,K 对于该高层写字楼供暖系统,供暖室外计算温 度为- 9. 0 ℃。白天设计工况,供暖室内计算温度 为20. 0 ℃,设计供暖热负荷为4 850. 0 kW,建筑物 温差负荷系数为167. 2 W/ K。夜间设计工况,值班

初三化学史入门教学

初三化学史入门教学 教学目标 1.知识与技能初步了解化学发展史,了解炼丹术和炼金术,了解我国近代化学的启蒙者徐寿对化学发展的影响。 2.过程与方法通过故事、史料认识化学的重要性,了解化学的发展过程。 3.情感态度与价值观激发学生了解化学、关注化学、学好化学、热爱化学、报效祖国。教学方法提供史料→教师引导→讨论归纳→激发兴趣→培养学科素养教具准备投影仪、史料胶片、物质样品课时安排 1课时教学过程引入新课:同学们,从今天开始我们又要学习一门新的课程,那就是化学。化学是研究什么的呢?怎样才能学好化学?这门学科有趣 味吗?这门学科是怎么发展的呢?下面我们就学习化学发 展史。板书:初三化学史入门教学引言:在学习化学发展史以前,首先请同学们听三个有趣的故事。第一个故事是发生在1994年的美国某地。那天,大学里面一座大楼失火了。“呜,呜,……”消防车问讯赶来。这时一件奇怪的事情发生了,大楼门口警卫森严,不许消防队员进去。“火烧眉毛了,还不许我们进去?”消防队员着急的问。“不行,没有国防部的证明,谁都不许进!”原来,大楼里面的科学家们正在极端秘密地研究一种化学元素──铀。为什么研究铀要那么保密呢?第二个故事发生在1781年,英国有位著名的化学家叫普利斯特里,他很喜欢给朋友表演化学魔术。

每当有朋友来到他的实验室参观时,他便拿出一个空瓶子,给大家表演。可是,当他把瓶口移近蜡烛的火焰时,忽然发出“啪”的一声巨响。朋友们吓了一跳,有的甚至钻到桌子底下去。原来,瓶子里事先装进氢气和氧气,点火会发出爆炸声。一次,他表演完“拿手好戏”后,在收拾瓶子时,注意到瓶子上有水。经过反复实验,他终于发现,氢气燃烧后变成了水。第三个故事发生在1890年。在庆祝德国化学会成立25周年的大会上,著名化学家凯库勒,讲述了自己怎样解决了有机化学史上一大难题。“那时侯,我住在伦敦,日夜思索着苯分子的结构是什么样的。我徒劳地工作了几个月,毫无收获。一天,我坐马车回家,由于过度劳累,在摇摇晃晃的马车上睡着了。我作了一个梦,一条蛇首尾相连,变成一个环。我从梦中惊醒,当天晚上,在梦的启发下,我终于画出了苯分子的环式结构,解决了有机化学史上的一大难题。” 提问:同学们听完了这三个故事,有什么感想呢?板书:一、从三个故事看化学发言:对同学们的发言有针对性的点评。讲述:故事一从一个很小的侧面说明化学是何等的重要。美国在1945年研制出第一颗原子弹,当年的8月6日和9日分别在日本的广岛和长崎投下了两颗原子弹,引起世人瞩目。我国在1964年10月16日在西北上空爆炸了第一颗原子弹,1967年6月17日第一颗氢弹研制成功,从而结束了我国没有核弹的历史。故事二说明研究化学一定

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面 实测平均温度及空气温度分别为,此时空气与管道外 表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K),墙壁的温度近似取为 室内空气的温度,保温层外表面的发射率 问:(1)此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为qi 当仅考虑自然对流时,单位长度上的自然对流散热 q i,c =二d h t =二dh (j - t f ) = 3.14 0.583 3.42 (48 - 23 ) 二156 .5(W / m) 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁 之间的辐射为: q i厂d (T; -T;) = 3.14 0.583 5.67 10》0.9 [(48 273)4-(23 273)4] = 274.7(W /m) 总的散热量为q i = q i,c +q i,r = 156.5 +274.7 = 431.2(W/m) 2、如图所示的墙壁,其导热系数为50W/(m- K),厚度为50mm在稳态情况下的 墙壁内的一维温度分布为:t=200-2000x 2,式中t的单位为°C, x单位为m 试 求: t (1) 墙壁两侧表面的热流密度; (2) 墙壁内单位体积的内热源生成的热量 2 t =200 —2000x

解:(1)由傅立叶定律: ① dt W q ' (―4000x) = 4000二x A dx 所以墙壁两侧的热流密度: q x _. =4000 50 0.05 =10000 (1)由导热微分方程 茫?生=0得: dx 扎 3、一根直径为1mm 勺铜导线,每米的电阻为2.22 10 。导线外包有厚度为 0.5mm 导热系数为0.15W/(m ? K)的绝缘层。限定绝缘层的最高温度为 65°C,绝 缘层的外表面温度受环境影响,假设为40°C 。试确定该导线的最大允许电流为多 少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为I 2RL ,其中的一部分 热量用于导线的升温,其热量为心务中:一部分热量通过绝热层的 导热传到大气中,其热量为:门二 1 , d In 2 L d 1 根据能量守恒定律知:l 2RL -门 述二厶E = I 2RL -门 即 E = — L dT m = I 2RL - t w1 _tw2 4 di 1 , d 2 In 2 L d 1 q v 、d 2t ——' 2 dx =-(7000)= 4000 50 二 200000 W/m 3 t w1 - t w2 。 2 q x 卫=4000.: 0 = 0

传热学小论文

传热学的最新研究动态 李聪 (中南大学能源科学与工程学院,长沙 410083) 摘要:传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。 关键词:温度场;速度场;热量传递过程。 Heat transfer of the latest research developments Li Cong (Energy Science and Engineering, Central South University,Changsha,410083)ABSTRACT: Heat is the most common type of natural phenomenon. Almost all of the engineering problems are encountered some heat under certain conditions, including the complex heat transfer and mass transfer occur simultaneously. Modern science and technology advances, applied research projects have also been heat transfer across the scope of traditional energy saving power, process, preparation and processing of materials in temperature control, the development of space technology, information devices, biotechnology, medicine, environmental different areas of purification and ecological protection, and agricultural engineering, military modernization has involved. Especially the rapid development of high-tech, is facing various fields under the mutual coupling of heat transfer and temperature control process temperature, velocity and concentration field, electromagnetic field, light field, the sound field,

化学发展简史

化学发展的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢? 1.远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 2.炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry 起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 3.燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。

计算传热学-传热基本原理及其有限元应用

1. 传热学的发展概述 18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。确认热来源于物体本身内部的运动开辟了探求导热规律的途径。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。傅里叶被公认为导热理论的奠基人。在傅里叶之后,导热理论求解的领域不断扩大。同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。在辐射传热研究方面,19世纪J. Stefan 根据实验确定了黑体辐射力正比于它的绝对温度的四次方的规律,1900年M.Planck 提出的量子假说奠定了热辐射传热理论基础。上述传热理论为传热分析解析、数值以及实验研究奠定了理论基础。还要特别提到的是,由于计算机的迅速发展,用数值方法对传热问题的分析研究取得了重大进展,在20世纪70年代已经形成一个新兴分支—数值传热学。近年来,数值传热学得到了蓬勃的发展[2-4]。 2. 传热分析计算理论 热量传递主要有三种传递形式,分别是热传导、热对流和热辐射。热传导是指两个相互接触良好的物体之间的能量交换或一个物体由于其自身温度梯度而 引起的内部能量的传递。其遵循傅里叶定律[5]:dT q dx λ=-,其中λ是热导率, dT dx 是温度梯度,q 是热流密度。热对流是指在物体与其周围介质之间发生的热量交换。热对流分为自然对流和强制对流,用牛顿冷却方程描述为()w f q h t t =-,其中h 为表面传热系数,w t 为物体表面的温度,f t 为物体周围流体的温度。一个 物体或两个物体之间通过电磁波形式进行的能量传递交换称为热辐射,通常由斯

相关主题