搜档网
当前位置:搜档网 › 北镇市一中2018-2019学年高二上学期第二次月考试卷数学

北镇市一中2018-2019学年高二上学期第二次月考试卷数学

北镇市一中2018-2019学年高二上学期第二次月考试卷数学
北镇市一中2018-2019学年高二上学期第二次月考试卷数学

北镇市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________

一、选择题

1. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ??-

???? B .33,24e ??-???? C .33,24e ?????? D .3,12e ??

????

1111]

2. 若集合M={y|y=2x ,x ≤1},N={x|

≤0},则 N ∩M ( )

A .(1﹣1,]

B .(0,1]

C .[﹣1,1]

D .(﹣1,2]

3. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )

A .x ﹣y+1=0,2x ﹣y=0

B .x ﹣y ﹣1=0,x ﹣2y=0

C .x+y+1=0,2x+y=0

D .x ﹣y+1=0,x+2y=0

4. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件

是( )

A .n ≤8?

B .n ≤9?

C .n ≤10?

D .n ≤11?

5. 给出下列命题:

①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3

中有三个是增函数;

②若log m 3<log n 3<0,则0<n <m <1;

③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;

④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.

其中假命题的个数为( )

A .1

B .2

C .3

D .4

6. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0

B .2x ﹣y+1=0

C .x+2y ﹣7=0

D .x ﹣2y+5=0

7. 下列给出的几个关系中:①{}{},a b ??;②(){}{},,a b a b =;③{}{},,a b b a ?;

④{}0??,正确的有( )个

A.个

B.个

C.个

D.个

8. 若复数(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( ) A .﹣2 B .4 C .﹣6 D .6

9. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于

π,则()f x 的一条对称轴是( )

A .12

x π=-

B .12

x π=

C .6

x π

=-

D .6

x π

=

10.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪N

B .M ∩N

C .?I M ∪?I N

D .?I M ∩?I N

11.已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )

12.若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0

B .1

C .

D .3

二、填空题

13. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:

①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;

②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2

ln 2m e <-;

③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22

e

m <

-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .

【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能

力,考查分类整合思想.

14.函数f(x)=log(x2﹣2x﹣3)的单调递增区间为.

15.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.

16.不等式的解为.

17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为.18.若的展开式中含有常数项,则n的最小值等于.

三、解答题

19.设函数f(x)=x2e x.

(1)求f(x)的单调区间;

(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

20.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.

(1)求M;

(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

21.已知向量=(

,1),=(cos ,

),记f (x )=

(1)求函数f (x )的最小正周期和单调递增区间;

(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在

的零点个数.

22.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;

(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );

(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α

23.(本小题满分12分)已知过抛物线2

:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且9

2

AB =

. (I )求该抛物线C 的方程;

(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R ,

求该圆面积的最小值时点S 的坐标.

24

.根据下列条件求方程.

(1)若抛物线y 2

=2px 的焦点与椭圆

+

=1的右焦点重合,求抛物线的准线方程

(2)已知双曲线的离心率等于2,且与椭圆+

=1有相同的焦点,求此双曲线标准方程.

北镇市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)

一、选择题

1. 【答案】D 【解析】

点:函数导数与不等式.1

【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.

2. 【答案】B

【解析】解:由M 中y=2x

,x ≤1,得到0<y ≤2,即M=(0,2],

由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1], 故选:B .

【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

3. 【答案】C

【解析】解:圆x 2

+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2

=5,圆的圆心坐标(1,﹣2),半径为

,直

线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,

∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.

故选:C .

【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.

4.【答案】B

【解析】解:n=1,满足条件,执行循环体,S=1+1=2

n=2,满足条件,执行循环体,S=1+1+2=4

n=3,满足条件,执行循环体,S=1+1+2+3=7

n=10,不满足条件,退出循环体,循环满足的条件为n≤9,

故选B.

【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.

5.【答案】A

【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,

1)上减,在(1,+∞)上增.函数y=x3是增函数.

∴有两个是增函数,命题①是假命题;

②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;

③若函数f(x)是奇函数,则其图象关于点(0,0)对称,

∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;

④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,

也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.

∴假命题的个数是1个.

故选:A.

【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.

6.【答案】A

【解析】解:联立,得x=1,y=3,

∴交点为(1,3),

过直线3x﹣2y+3=0与x+y﹣4=0的交点,

与直线2x+y ﹣1=0平行的直线方程为:2x+y+c=0, 把点(1,3)代入,得:2+3+c=0, 解得c=﹣5,

∴直线方程是:2x+y ﹣5=0, 故选:A .

7. 【答案】C 【解析】

试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ?和{}0??是正确的,故选C. 考点:集合间的关系. 8. 【答案】C

【解析】解:复数=

,它是纯虚数,则a=﹣6.

故选C .

【点评】本题考查复数代数形式的乘除运算,复数的分类,是基础题.

9. 【答案】D 【解析】

试题分析:由已知()2sin()6

f x x π

ω=+

,T π=,所以22π

ωπ=

=,则()2sin(2)6

f x x π

=+,令 2,62x k k Z π

π

π+

=+

∈,得,26

k x k Z ππ

=

+∈,可知D 正确.故选D .

考点:三角函数()sin()f x A x ω?=+的对称性. 10.【答案】D

【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6}, ∴M ∪N={1,2,3,6,7,8}, M ∩N={3};

?I M ∪?I N={1,2,4,5,6,7,8}; ?I M ∩?I N={2,7,8}, 故选:D .

11.【答案】B

【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q ,

故选:B.

【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.

12.【答案】B

【解析】解:∵指数函数的反函数是对数函数,

∴函数y=3x的反函数为y=f(x)=log3x,

所以f(9)=log33=1.

故选:B.

【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.

二、填空题

13.【答案】①②④

【解析】

14.【答案】(﹣∞,﹣1).

【解析】解:函数的定义域为{x|x>3或x<﹣1}

令t=x2﹣2x﹣3,则y=

因为y=在(0,+∞)单调递减

t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增

由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)

故答案为:(﹣∞,﹣1)

15.【答案】﹣5.

【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得

x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,

故,解得

故==﹣5

故答案为:﹣5

16.【答案】{x|x>1或x<0}.

【解析】解:

即x(x﹣1)>0

解得x>1或x<0

故答案为{x|x>1或x<0}

【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出

17.【答案】.

【解析】解:不等式组的可行域为:

由题意,A(1,1),∴区域的面积为

=(x3)=,

由,可得可行域的面积为:1=,

∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与

与坐标原点连线的斜率大于1的概率为:=

故答案为:.

【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.18.【答案】5

【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r

令=0,得n=,当r=4时,n 取到最小值5

故答案为:5.

【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.

三、解答题

19.【答案】

【解析】解:(1)…

∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);

单减区间为(﹣2,0).…

(2)令

∴x=0和x=﹣2,…

∴f(x)∈[0,2e2]…

∴m<0…

20.【答案】

【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=

当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;

当﹣1≤x≤1时,f(x)=2<4;

当x>1时,由2x<4,得1<x<2.

所以M=(﹣2,2).…

(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,

∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,

∴4(a+b)2<(4+ab)2,

∴2|a+b|<|4+ab|.…

【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.

21.【答案】

【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.

∴f(x)=cos+=sin+cos+=sin(+)+,

∴最小正周期T==4π,

2kπ﹣≤+≤2kπ+,

则4kπ﹣≤x≤4kπ+,k∈Z.

故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;

(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为

:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,

∴则y=g(x)﹣k=sin(x﹣)+﹣k,

∵x∈[0,],可得:﹣≤x﹣≤π,

∴﹣≤sin(x﹣)≤1,

∴0≤sin(x﹣)+≤,

∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,

∴实数k的取值范围是[0,].

∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;

当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;

当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.

【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.

22.【答案】

【解析】解:(Ⅰ)令,所以x=a.

易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.

故函数f(x)在(0,a)上递增,在(a,+∞)递减.

故f(x)max=f(a)=alna﹣a.

(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.

所以,当x∈(0,a)时,g′(x)<0.

所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).

(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).

由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).

又2a ﹣α>a ,β>a .所以2a ﹣α<β,即α+β>2a .

【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.

23.【答案】

【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ??=-+

???

,所以221222256323264y y y =++≥=, 当且仅当2

222

256y y =

即2

2y =16,24y =?时等号成立. 圆的直径OS

=

因为21y ≥64,所以当21y =64即1y =±8

时,min OS =S 的坐标为

168±(,). 24.【答案】

【解析】解:(1

)易知椭圆

+

=1的右焦点为(2,0),

由抛物线y 2

=2px

的焦点(,0

)与椭圆

+=1的右焦点重合,

可得p=4,

可得抛物线y 2

=8x 的准线方程为x=﹣2.

(2

)椭圆

+=1的焦点为(﹣4,0)和(4,0),

可设双曲线的方程为

=1(a ,b >0),

由题意可得c=4,即a2+b2=16,

又e==2,

解得a=2,b=2,

则双曲线的标准方程为﹣=1.

【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.

高二数学第一次月考试卷(文科)

高二数学第一次月考试卷 (文科) (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分) 12道小题,每题5分,共60分) 、已知函数f(x)=a x 2+c,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 、 0'() f x =0是可导函数y=f(x)在点x=0x 处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 、函数 3 y x x =+的递增区间是( ) A )1,(-∞ B )1,1(- C ),1(+∞ D ),(+∞-∞ 、.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 、已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) A.y ∧ =1.23x +4 B. y ∧=1.23x+5 C. y ∧=1.23x+0.08 D. y ∧ =0.08x+1.23 6、.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =L '1()()n n f x f x +=,n ∈N ,则2007()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 、用火柴棒摆“金鱼”,如图所示: 按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .62n + C .82n - D .82n +\ 、若a b c ,,是不全相等的实数,求证:222 a b c ab bc ca ++>++. a b c ∈R ,,∵,2 2 2a b ab +∴≥,2 2 2b c bc +≥,2 2 2c a ac +≥, a b c ,,∵不全相等,∴以上三式至少有一个“=”不成立, ∴将以上三式相加得2222()2()a b c ab b c ac ++>+++,222 a b c ab bc ca ++>++∴. 此证法是( ) A.分析法 B.综合法 C.分析法与综合法并用 D.反证法 9、.从推理形式上看,由特殊到特殊的推理,由部分到整体、个别到一般的推理,由一般到特殊的推理依次是( ) A .归纳推理、演绎推理、类比推理 B .归纳推理、类比推理、演绎推理 C .类比推理、归纳推理、演绎推理 D .演绎推理、归纳推理、类比推理 10、计算1i 1i -+的结果是( ) A .i - B .i C .2 D .2- 11、复数z=-1+2i ,则 z 的虚部为( ) A .1 B .-1 C .2 D .-2 12、若复数 1 2z i = +,则z 在复平面内对应的点位于( ) 第Ⅱ卷 (非选择题 共90分) 二、填空题(4道小题,每题5分,共20分) 13、与直线 2 240x y y x --==平行且与曲线相切的直线方程为_____________ 14、有下列关系: (1)曲线上的点与该点的坐标之间的关系; (2)苹果的产量与气候之间的关系; (3)森林中的同一种树木,其断面直径与高度之间的关系; (4)学生与他(她)的学号之间的关系, 其中有相关关系的是_________ 15 . 16、实数x 、y 满足(1–i )x+(1+i)y=2,则xy 的值是_________ … ① ② ③

高二上学期数学期末考试卷含答案

【一】选择题:本大题共12小题,每题5分,总分值60分,在每题给出的四个选项中,只有一项为哪一项符合要求的. 1.命题〝假设2x =,那么2 320x x -+=〞的逆否命题是〔 〕 A 、假设2x ≠,那么2320x x -+≠ B 、假设2320x x -+=,那么2x = C 、假设2320x x -+≠,那么2x ≠ D 、假设2x ≠,那么2 320x x -+= 2.〝直线l 垂直于ABC △的边AB ,AC 〞是〝直线l 垂直于ABC △的边BC 〞的 〔 〕 A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既非充分也非必要条件 3 .过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.假设AB 中点M 到抛物线 准线的距离为6,那么线段AB 的长为〔 ) A 、6 B 、9 C 、12 D 、无法确定 4.圆 042 2=-+x y x 在点)3,1(P 处的切线方程为 ( ) A 、023=-+y x B 、043=-+y x C 、043=+-y x D 、023=+-y x 5.圆心在抛物线x y 22=上,且与x 轴和抛物线的准线都相切的一个圆的方程是 〔 〕 A 、0 122 2 =+--+y x y x B 、041 222=- --+y x y x C 、0 122 2 =+-++y x y x D 、 041222=+ --+y x y x 6.在空间直角坐标系O xyz -中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0), (0,2,0),(2,2,2).那么该四面体在xOz 平面的投影为〔 〕

上海高二数学期末考试试题

2015-2016上海市高二数学期末试卷 (共150分,时间120分钟) 一、选择题(每小题5 分,共12小题,满分60分) 1.对抛物线24y x =,下列描述正确的是( ) A 开口向上,焦点为(0,1) B 开口向上,焦点为1(0, )16 C 开口向右,焦点为(1,0) D 开口向右,焦点为1 (0,)16 2.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ?是B ?的 ( ) A 充分条件 B 必要条件 C 充要条件 D 既不充分也不必要条件 3.椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为( ) A 25- B 25 C 1- D 1 4.在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A =11, c A A =1,则下列向量中与M B 1相等的向量是( ) A c b a ++-2121 B c b a ++2121 C c b a +-2121 D c b a +--2 1 21 5.空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0), 若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为( ) A 平面 B 直线 C 圆 D 线段 6.给出下列等式:命题甲:2 2,2,)2 1 (1x x x -成等比数列,命题乙:)3lg(),1lg(,lg ++x x x 成等差数列,则甲是乙的( ) A 充分非必要条件 B 必要非充分条件 C 充要条件 D 既非充分又非必要条件 7.已知a =(1,2,3),b =(3,0,-1),c =?? ? ??--53,1,5 1给出下列等式: ①∣c b a ++∣=∣c b a --∣ ②c b a ?+)( =)(c b a +? ③2)(c b a ++=2 22c b a ++

高二数学-2015-2016高二上学期月考数学试卷

2015-2016第一学期 高二数学月考试卷 1.直线022=+-y ax 与直线01)3(=+-+y a x 平行,则实数a 的值为. 2、已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q 的坐标是 3.已知点)(b a P ,在圆2 2 2 :r y x C =+外,则直线2 :r by ax l =+与圆C . 4、如果直线0412 2 =-++++=my kx y x kx y 与圆交于M 、N 两点,且M 、N 关于直线 01=-+y x 对称,则k -m 的值为 5.已知O 是坐标原点,点A )1,1(-,若点M ),(y x 为平面区域?? ? ??≤≤≥+212 y x y x 上的一个动点, 则OM z ?=的取值范围是. 6.已知动圆0264222=-+--+m my mx y x 恒过一个定点,这个定点的坐标是____. 7.一直线过点M (-3, 2 3),且被圆x 2+y 2=25所截得的弦长为8,则此直线方程为. 8、若直线y=x+b 与曲线21y x -=恰有一个公共点,则实数b 的取值范围为 9、若圆2 2 2 )5()3(r y x =++-上有且只有两个点到直线4x -3y=2的距离等于1,则半径r 范围是; 10.光线沿0522=+++y x ()0≥y 被x 轴反射后,与以()2,2A 为圆心的圆相切,则该圆的方程为. 11.直线l :03=-+y x 上恰有两个点A 、B 到点(2,3)的距离为2,则线段AB的长 为. 12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是. 13.若直线)0,0(022>>=+-b a by ax 被圆01422 2 =+-++y x y x 截得的弦长为4,则 b a 1 1+的最小值为. 14.已知圆062 2 =+-++m y x y x 与直线032=-+y x 相交于P ,Q 两点,

高二数学上学期期末考试试题 文38

双鸭山第一中学高二期末数学(文)试题 一.选择题(共60分) 1.已知复数(23)=+z i i ,则复数z 的虚部为( ) A .3 B .3i C .2 D .2i 2. 已知命题[]:0,2,sin 1p x x π?∈≤,则( ) A .[]:0,2,sin 1p x x π??∈≥ B .[]:2,0,sin 1p x x π??∈-> C .[]:0,2,sin 1p x x π??∈> D .[]:2,0,sin 1p x x π??∈-> 3.命题:sin sin p ABC B C B ?∠∠>在中,C >是的充要条件;命题22:q a b ac bc >>是的充分 不必要条件,则( ) A .p q 真假 B .p q 假假 C .p q “或”为假 D .p q “且”为真 4.执行下面的程序框图,输出的S 值为( ) A .1 B .3 C .7 D .15 5.执行上面的算法语句,输出的结果是( ) A.55,10 B.220,11 C.110,10 D.110,11 6.已知变量,x y 满足约束条件1330x y x y x +≥?? +≤??≥? ,则目标函数2z x y =+的最小值是( ) A .4 B .3 C .2 D . 1 7. 动圆圆心在抛物线24y x =上,且动圆恒与直线1x =-相切,则此动圆必过定点( ) A .()2,0 B .()1,0 C .()0,1 D .()0,1- 8.一圆形纸片的圆心为O ,F 是圆内一定点(异于O ),M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 9.设斜率为2的直线l 过抛物线()2 0y ax a =≠的焦点F ,且和y 轴交于点A ,若O A F ?(O 为坐标原点)的面积为4,则抛物线方程为( ) A.24y x =± B. 28y x =± C.24y x = D.28y x = 10. 曲线1y =与直线()24y k x =-+有两个交点,则实数k 的取值范围是( ) A .50, 12?? ??? B .5,12??+∞ ??? C .13,34?? ??? D .53,124?? ??? 11.双曲线()2222:10,0x y C a b a b -=>>的左右焦点分别是12,F F ,过1F 作倾斜角为0 30的直线交 双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A . 3 12.过双曲线 ()2222:10,0x y C a b a b -=>>的左焦点1F ,作圆222 x y a +=的切线交双曲线右支于 点P ,切点为点T ,1PF 的中点M 在第一象限,则以下结论正确的是( ) A .b a MO MT -=- B. b a MO MT ->- C .b a MO MT -<- D .b a MO MT -=+

上海市建平中学2019-2020学年高二下学期期末考试数学试题(解析版)

建平中学2019学年度第二学期期末考试 高二数学试卷 2020.06.30 说明:(1)本场考试时间为120分钟,总分150分; (2)请认真答卷,并用规范文字书写. 一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分) 1.半径为1的球的表面积为______________. 【答案】4π 2.二项式()10 1x +的展开式中5 x 的系数为_____________. 【答案】252 3.圆锥的底面半径为1,一条母线长为3,则此圆锥的高为_______________. 【答案】4.若2 666n n C -=,则正整数n 的值为_______________. 【答案】37 5.已知0 01x y x y ≥?? ≥??+≤? ,则2x y -的最小值为_____________. 【答案】1- 6.数据110,119,120,121的方差为_____________. 【答案】19.25 7.已知关于,,x y z 的实系数三元一次线性方程组111122223333a x b y c z d a x b y c z d a x b y c z d ++=??++=??++=?有唯一解415 x y z =?? =??=-? ,设

1 112 223 3 3d b c A d b c d b c =,11122233 3 a d c B a d c a d c =,111 2 2233 3 a b d C a b d a b d =,则A B C ++=_____________. 【答案】0 8.已知{ }* ,2020,N a b x x x ∈≤∈,满足a b <的有序实数对(),a b 的个数为_________. 【答案】2039190 9.已知关于,x y 的实系数二元一次线性方程组的增广矩阵为22126a A -?? = ??? ,小明同学为了求解 此方程组,将矩阵A 进行初等变换得到矩阵21715B b -?? = ??? ,则a b +=_____. 【答案】2 10. 111111111110!10!1!9!2!8!3!7!4!6!5!5!6!4!7!3!8!2!9!1!10!0! ++++++++++=_______. 【答案】 4 14175 11.已知等边ABC △的边长为2,设BC 边上的高为AD ,将ADC △沿AD 翻折使得点B 与点C A BCD -的外接球的体积为_____________. 【答案】 6 12. ()()()() 2 3 4 6 54326 54321031111x x x a x a x a x a x a x a x a x ---=++++++-对任意()0,1x ∈恒成立, 则3a =______________. 【答案】6 二、选择题(每题5分,满分20分)

2020年高二数学月考试卷

高二数学月考试卷 一、 选择题 1、 已知a C 、b a 1`1< D 、22a b > 2、R x ∈,则112<+x 同时成立,那么x 满足 A 、2131<<-x B 、21>x 或3 1-x D 、31-x 5、已知52-=a ,25-=b ,525-=c ,那么 A 、a0, b>0 ,则下列不等式一定成立的为 A 、b a ab +2≤ab ≤2 b a +≤222b a + B 、ab ≤b a ab +2≤2b a +≤22 2b a +

C 、 ab ≤2b a +≤b a ab +2≤222b a + D 、ab ≤b a ab +2≤2 22b a +≤2b a + 7、设a 、b 、m 都为正数,且a0,b>0,则不等式-a

高二上学期数学10月月考试卷

高二上学期数学10月月考试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共10题;共20分) 1. (2分) (2018高二上·台州期末) 抛物线的准线方程为() A . B . C . D . 3. (2分)(2019·浙江模拟) 已知直线,平面满足,,则“ ”是“ ”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 4. (2分) (2019高三上·德州期中) 命题“ ,”的否定为() A . , B . , C . , D . , 5. (2分)(2018·河北模拟) 如图,为经过抛物线焦点的弦,点,在直线 上的射影分别为,,且,则直线的倾斜角为()

A . B . C . D . 6. (2分)下列说法中正确的是() A . 如果两个平面α、β只有一条公共直线a,就说平面α、β相交,并记作α∩β=a B . 两平面α、β有一个公共点A,就说α、β相交于过A点的任意一条直线 C . 两平面α、β有一个公共点A,就说α、β相交于A点,并记作α∩β=A D . 两平面ABC与DBC相交于线段BC 7. (2分)如图,长方体ABCD—A1B1C1D1中,BB1=BC,P为C1D1上一点,则异面直线PB与B1C所成角的大小() A . 是45° B . 是60° C . 是90°

D . 随P点的移动而变化 8. (2分)已知F1 , F2是椭圆+=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为() A . 6 B . 5 C . 4 D . 3 9. (2分)已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为() A . B . C . D . 10. (2分) (2019高三上·双鸭山月考) 已知实轴长为2 的双曲线C:的左、右焦点分别为F1(﹣2,0),F2(2,0),点B为双曲线C虚轴上的一个端点,则△BF1F2的重心到双曲线C的渐近线的距离为() A . B . C . D . 二、填空题 (共7题;共7分)

高二数学月考1试卷

高二数学期中试题 一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列说法中正确的是 ( ) A.棱柱的侧面可以是三角形 B.正方体和长方体都是特殊的四棱柱 C.所有的几何体的表面都能展成平面图形 D.棱柱的各条棱都相等 2. ( ) A.圆柱 B.圆锥 C.圆台 D.球 3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为( ) (A)20 (B)22 (C)24 (D)28 4.圆锥的底面半径为r ,高是h ,在这个圆锥内部有一个内接正方体,则此正方体的棱长等于 ( ) A. h r rh + B.h r rh +2 C.h r rh 222+ D.h r rh +2 5.在ABC ?中,0 120,5.1,2=∠==ABC BC AB (如下图), 若将ABC ?绕直线BC 旋转一周,则所形成 的旋转体的体积是 ( ) A. 29π B.27π C.25π D.2 3π 6.下面4个命题:①若直线b a 与异面,c b 与异面,则c a 与异面 ②若直线b a 与相交,c b 与相交,则c a 与相交 ③若直线c b b a //,//,则c b a //// ④若直线c b a b a 与直线则,,//所成的角相等 其中真命题的个数是 ( ) A.4 B.3 C.2 D.1 正视图 侧视图 俯视图 A C B D 0 120

7.空间四边形的两对角线的位置关系是 ( ) A.相交 B.平行 C. 异面 D.或相交或平行或异面 8.表示直线、表示平面,、、n m γβα,下列说法中可以判定βα//的是 ( ) ①γβγα⊥⊥, ②由α内不共线的三点作平面β的垂线,各点与垂足间线段的长度都相等 ③βα⊥⊥n m n m ,,// ④内两条直线,且是、αn m ββ////n m , A.①② B.② C.③④ D.③ 9.菱形ABCD 在平面α内,BD PA PC 与对角线则,α⊥的位置关系是 ( ) A.平行 B.相交但不垂直 C.垂直相交 D. 异面垂直 10.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ?=⊥,在,平面8中,底边 BC P AB BC 到,则,56==的距离为 ( ) A.54 B.3 C.33 D.32 11.下面四个命题: ①分别在两个平面内的直线平行 ②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面 ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行 ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行 其中正确的命题是 ( ) A.①② B.②④ C.①③ D.②③ 12.已知直线b a ,和平面α,有以下四个命题: ①若αα//,//,//b b a a 则 ②若b a A b a 与,则,=? αα异面 ③若αα⊥⊥a b b a 则,,// ④若αα//,,b a b a 则⊥⊥ 其中真命题的个数为 ( ) A.0 B.1 C.2 D.3 二、填空题(本大题共4个小题,每小题4分,共16分,将答案直接写在横线上) 13.在正方体1111D C B A ABCD -中,若过1B C A 、、三点的平面与底面1111D C B A 的交线为l ,则 AC l 与的位置关系是_________。 14.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

高二数学上期末考试卷及答案

(选修2-1) 说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间120分钟。 第Ⅰ卷(选择题 共36分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、座号、考试科目涂写在答题卡上。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,在试题卷上作答无效。 一.选择题(本大题共12小题,每小题3分,共36分。) 1.下列命题是真命题的是 A 、“若0=x ,则0=xy ”的逆命题; B 、“若0=x ,则0=xy ”的否命题; C 、若1>x ,则2>x ; D 、“若2=x ,则0)1)(2(=--x x ”的逆否命题 2.已知p:522=+,q:23>,则下列判断中,错误..的是 A 、p 或q 为真,非q 为假; B 、p 且q 为假,非p 为真; C 、p 且q 为假,非p 为假; D 、p 且q 为假,p 或q 为真; 3.对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0, )16 C 、开口向右,焦点为(1,0) D 、开口向右,焦点为1(0, )16 4.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ?是B ?的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件 5.经过点)62,62(-M 且与双曲线1342 2=-y x 有共同渐近线的双曲线方程为 A .18622=-y x B .18 62 2=-x y C . 16822=-y x D .16822=-x y 6.已知△ABC 的顶点B 、C 在椭圆13 43 2=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 A.23 B. 8 C.34 D. 4

上海市高二下学期期末考试数学试题(含答案)

高二下学期期末考试数学试题 (考试时间:120分钟 满分:150分 ) 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.过点)2,1(、)6,3(的直线的斜率为______________. 2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________. 3.正四面体ABC S -的所有棱长都为2,则它的体积为________. 4.以)2,1(-为圆心且过原点的圆的方程为_____________. 5.从一副52张扑克牌中第一张抽到“Q ”,重新放回,第二张抽到一张有人头的牌,则这两个事件都发生的概率为________. 6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________. 7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线14 22 =-y x 的顶点到其渐近线的距离等于_________. 9.某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,,y x .已知这组数据的平均数为10,方差为2,则=-||y x __________. 10.在长方体1111D C B A ABCD -中,已知36,91==BC AA , N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________. 11.棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,E 、F 分别是棱1AA 、1DD 的中点,则直线EF 被球O 截得的线段长为________. 12.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外 科和内科医生都至少有1人的选派方法种数是___________.(用数字作答) 13.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计) 14.设焦点是)5,0(1-F 、)5,0(2F 的双曲线C 在第一象限内的部分记为曲线T ,若点ΛΛ),,(),,2(),,1(2211n n y n P y P y P 都在曲线T 上,记点),(n n y n P 到直线02:=+-k y x l 的距离为),2,1(Λ=n d n ,又已知5lim =∞ →n n d ,则常数=k ___________. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是( )平方米. A .32424-π B .33636-π C .32436-π D .33648-π 第15题图

高二上学期数学期末考试试卷及答案

高二上学期数学期末考试试卷及答案 考试时间:120分钟试题分数:150分 卷Ⅰ 一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于常数、,“”是“方程的曲线是双曲线”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.命题“所有能被2整除的数都是偶数”的否定是 A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 A.B.C.D. 4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.B.C.D. 5.若双曲线的离心率为,则其渐近线的斜率为 A.B.C.D. 6.曲线在点处的切线的斜率为

A.B.C.D. 7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为 A.B.C.D. 8.设是复数,则下列命题中的假命题是 A.若,则 B.若,则 C.若,则 D.若,则 9.已知命题“若函数在上是增函数,则”,则下列结论正确的是 A.否命题“若函数在上是减函数,则”是真命题 B.逆否命题“若,则函数在上不是增函数”是真命题 C.逆否命题“若,则函数在上是减函数”是真命题 D.逆否命题“若,则函数在上是增函数”是假命题 10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的 A.充分条件 B.必要条件 C.充分必要条件 D.既不充分也不必要条 件 11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线 对称轴距离的取值范围为 A.B.C.D. 12.已知函数有两个极值点,若,则关于的方程的不同实根个数 为 A.2 B.3 C.4 D.5 卷Ⅱ 二、填空题:本大题共4小题,每小题5分,共20分.

高二数学11月月考试题 (2)

青海省西宁市第五中学2016-2017学年高二数学11月月考试题一.选择题(本大题共12小题,第小题5分,共60分.) 1.下列命题正确的是 A.经过三点确定一个平面. B.两两相交且不共点的三条直线确定一个平面. C.经过一条直线和一个点确定一个平面. D.四边形确定一个平面. 2.垂直于同一条直线的两条直线的位置关系是 A.平行 B. 相交 C. 异面 D. A、B、C均有可能 3.如果直线a∥平面α,那么直线a与平面α内的 A. 任意一条直线不相交 B.一条直线不相交 C. 无数条直线不相交 D.两条直线不相交 4.两条异面直线是指() A.空间中两条没有公共点的直线B.平面内一条直线与该平面外的一条直线 C.分别在两个平面内的直线 D.不同在任何一个平面内的两条直线 5.若直线a不平行于平面α,则下列结论成立的是() A. α内所有的直线都与a异面; B. α内不存在与a平行的直线; C. α内所有的直线都与a相交; D.直线a与平面α有公共点. 6.正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有()条 A 3 B.4 C.6 D.8 7.若a与b是异面直线,且直线c∥a,则c与b的位置关系是( ) A.相交B.异面C.平行D.异面或相交

8.如图,一个空间几何体的直观图的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边等1,那么这个几何体的体积为 ( ) A.1 B. 21 C.31 D.6 1 9.下列命题的正确的是 A.若直线 l 上有无数个点不在平面 α内,则 l // α B.若直线 l 与平面α平行,则l 与平面α内的任意一条直线都平行 C.如果两条平行直线中的一条与一个平面α平行,那么另一条也与这个平面平行. D.若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点 10.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( ) A .22a π B .24a π C .2 a π D .23a π 11.如右图,一个空间几何体正视图与左视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的表面积为 ( ) A.π B.π3 C.π2 D.3+π 12、有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为 (A ) π3 2 +31 (B ) π3 2+31 (C )π62+ 31 (D )π6 2 +1 俯视图 左视图 正视图正视图 侧视图 俯视图

(完整版)高二数学第二次月考试卷分析

高二数学第二次月考试卷分析 高二数学备课组 本次月考高二数学试卷基本上符合数学教学实际,难度设计较全理,试题起点低,而我就结合我所教的班级现状和学期的知识现状为此次考试进行整体的评价,分析一下学生存在的问题及对今后教学的启示。 一、对试卷的总体评析 本试卷合计150分,选择题12个小题,合计60分,填空题4个小题,合计16分,解答题6大题,合计74分,试题无偏题、怪题,注意知识点的覆盖。主要考察导数部分内容,由于学生底子较差,计算能力薄弱,所以时间相对来说较为紧张,不够用。试题重视基础,大量的题目来源于教材,考查的是学生的基本数学知识和通性通法,对重要的数学思想,如数形结合思想等都进行一定的考查。注重数学的思想性和应用性与灵活性,强调对数学技能的考察。 二、学生存在的问题及错误原因分析 1.基本概念、定理模糊不清,不能用数学语言再现概念。 2.学生自学能力差,不会找重难点,不会提出问题读书被动,无自觉性。 3.课堂缺少解题积极性,上课心不在焉,不肯动脑,缺乏主动参与意识。 4. 对教师布置的练习作业完成的质量不高,不复习,平时不预习,不能正确灵活运用定理、公式,死搬硬套。 三、对今后教学的启示 文科班的学生数学基础差,大部分学生对数学毫无兴趣,今后教学中要注意。 1 突出知识结构,打好知识基础。 在教学中首先要扎实学生的数学基础知识,并在此基础上,注意知识间的横纵向联系,帮助学生理清脉络,抓住知识主干,构建知识网络。要加大力度,抓落实,夯实基础,在公式使用的准确性和计算的准确性上狠抓实效 2 提高学生逻辑思维能力和想象能力。 在日常教学中切忌千篇一律地老师讲同学听,提倡多一些思维变式题目的训练,强化学生感悟能力和灵活处理问题的能力,求精务实,提高课堂效益回归课本,抓好基础落实 3 增强学生动手实践意识 重视探究和应用关注身边的数学问题,不断提高学生的数学应用意识,激发学生兴趣。对学生的答题规范要提出更高要求,“会而不对,对而不全”,计算能力偏弱,计算合理性不够,这些在考

上海市高二数学期末考试

高二第一学期数学期末考试 一、填空题(每题3分,共39分) 1、已知数列的通项公式1 2+= n n a n ,求这个数列第6项____________ 2、在等差数列{}n a 中,1615210S d a ,则,且=-==_____________ 3、若等差数列{}n a 共有十项,其中奇数项的和是12.5,偶数项的和是15,则公差d =________ 4、已知等差数列{}{}n n b a 、满足5 32+= n n b a n n ,它们的前n 项之和分别记为n n T S 和,求 11 11T S 的值_______________ 5、设n S 为等比数列{}n a 的前n 项和,2580a a +=,则 52 S S =____________ 6、已知数列{a n }为等比数列,Sn 是它的前n 项和。若a 2· a 3=2a 1,且a4与2a 7等差中项为54 , 则S 5=__________ 7、已知向量a 与b 都是单位向量,它们的夹角为120?,且3= +b a k ,则实数k 的 值是 8、若向量a =)(,2x x ,b =)(3,2x -,且a ,b 的夹角为钝角,则x 的取值范围是 . 9、设向量a 与b 的夹角为θ,)3,3(=a ,)1,1(2-=-a b ,则cos θ= . 10、已知向量(4,0),(2,2),AB AC == 则BC AC 与的夹角的大小为 . 11、P 为ΔABC 所在平面上的点,且满足AP =AB +12 A C ,则ΔABP 与ΔABC 的面积之比是 _______. 12、对于n 个向量, 12n a ,a ,,a ,若存在n 个不全为零的实数12,,,n k k k 使得 120n k k k +++= 12n a a a 成立,则称向量 12n a ,a ,,a ,是线性相关的.按此规定,能使向 量(1,0),(1,1),(2,2)==-=123a a a 是线性相关的实数123,,k k k 的值依次为 13、若==k k 则,01 2 131 12 _____________。 二、选择题(每题3分,共12分)

高二数学月考试题与答案

潮阳实验学校2015- 2016 学年度第一学期第一次月考 高二数学 本试卷分选择题和非选择题两部分,全卷满分150 分,考试时间120 分钟。 考生注意事项: 1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对。 2.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案标号。 3.答非选择题时,必须使用0.5 毫米的黑色墨水签字笔在答题卡上书写,作图题可先用铅笔在答题 ......卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区.域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。 ........................... 4.考试结束,务必将答题卡上交,试卷和草稿纸请自己带走。 一.选择题:本大题共12 小题,每小题 5 分,满分 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.已知集合A={ x|x2- 2x= 0} , B= {0 , 1, 2} ,则 A∩B= () A. {0}B.{0,1}C.{0 , 2}D.{0,1,2} 2.下列函数中,定义域是R 且为增函数的是() A .y e x B.y x C.y ln x D.y x 3.下列推理错误的是() A . A∈ l, A∈ α, B∈ l, B∈ α? l? α B .A∈ α, A∈ β, B∈ α, B∈ β? α∩ β= AB C.l?α, A∈ l? A?α D. A∈ l, l? α? A∈α 4. 已知圆的半径为cm ,圆心角为120所对的弧长是 () A .cm B .22 cm 22 cm C. D .cm 3333 5.根据如下样本数据: x345678 y 4.0 2.5- 0.50.5-2.0- 3.0 得到的回归方程为^ ) y= bx+ a,则 ( A. a>0, b>0 B .a>0 , b<0C. a<0, b>0D. a<0 ,b<0 6.tan 690的值为 ()

高二数学上学期期末考试题及答案

高二数学上学期期末考试题及答案 Revised on November 25, 2020

高二数学上学期期末考试题 一、 选择题:(每题5分,共60分) 2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( ) (A )18, (B )6, (C )23, (D )243 3、与不等式 x x --23 ≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)00 6、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( ) (A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π (C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π43 7、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( ) (A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=0 8、直线y=x+23被曲线y=21 x 2截得线段的中点到原点的距离是 ( ) (A )29 (B )29 (C ) 429 (D )2 29 11、双曲线: 的准线方程是19 162 2=-x y ( ) (A)y=± 7 16 (B)x=± 516 (C)X=±7 16 (D)Y=±516 12、抛物线:y=4ax 2的焦点坐标为 ( ) (A )( a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a 161 ,0)

二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(– 21,3 1 ),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程???-=+=θθ sin 43cos 45y x 为(θ为参数),则其标准方程 为 . 16、已知双曲线162x -9 2 y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆 与双曲线的离心率互为倒数,则椭圆的方程为 . 三、 解答题:(74分) 17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分) 19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。(12分) 21、某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1㎡的造价为150元,池壁每1㎡的造价为120元,问怎样设计水池能使总造价最低,最低造价是多少元(13分) 22、某家具厂有方木料90m 3,五合板600㎡,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1m 3,五合板2㎡,生产每个书橱需方木料0.2m 3,五合板1㎡,出售一张书桌可获利润80元,出售一个书橱可获利润120元,问怎样安排同时生产书桌和书橱可使所获利润最大(13分) 一、 选择题: 2、(B ), 3、(B ),6、(A ), 7、(B ), 8、(D ), 11、(D ), 12、(B )。

高中数学必修五测试题含答案解析

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11 ()2 n n a a n N +=+ ∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 2121,两数的等比中项是( ) A .1 B .1 C . 1 D . 12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .0 30 B .0 60 C .0120 D .0150 4.在⊿ABC 中, B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 ! C. 等腰三角形 D. 等腰或直角三角形 5.已知n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列{}n b 中,若783 b b ?=, 则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 * 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ).

相关主题