搜档网
当前位置:搜档网 › linux多线程的总结(pthread用法)

linux多线程的总结(pthread用法)

linux多线程的总结(pthread用法)
linux多线程的总结(pthread用法)

原创:lobbve223

#include

int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr,

void *(*start_rtn)(void),void *restrict arg);

Returns: 0 if OK, error number on failure

第一个参数为指向线程标识符的指针。

第二个参数用来设置线程属性。

第三个参数是线程运行函数的起始地址。

第四个参数是运行函数的参数。

当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法.

pthread_create的用法:由于pthread库不是Linux系统默认的库,所以在使用pthread_create创建线程时,需要在编译中请加-lpthread参数,eg:gcc -o test -lpthrea test.c

例1:

#include "pthread.h"

#include "stdio.h"

void* thread_test(void* ptr)

{ while(1)

printf("i am pthread\n");

}

int main()

{

pthread_t pid;

pthread_create(&pid, NULL, test_thread, NULL);

while(1)

printf("i am main pthread\n");

return 0;

}

例2:

#include

#include

pthread_t id;

int ret;

void thread_1()

{

while(1)

{printf(“I am thread\n”);

sleep(1);

}

}

main()

{ret = pthread_create(&id,NULL,(void*)thread_1,NULL);

if(ret != 0)

printf("Create pthread error!\n");

while(1)

{

printf(“I am main thread\n”);

sleep(2);

}

}

例3:

#include

#include

#include

#include

void *thread_function(void *arg);

char message[] = "Hello World";

int main()

{

int res;

pthread_t a_thread;

void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, (void *)message);

if (res != 0)

{

perror("Thread creation failed");

exit(EXIT_FAILURE);

}

printf("Waiting for thread to finish...\n");

res = pthread_join(a_thread, &thread_result); //pthread_join 阻塞执行的线程直到某线程结束

if (res != 0)

{

perror("Thread join failed");

exit(EXIT_FAILURE);

}

printf("Thread joined, it returned %s\n", (char *)thread_result);

printf("Message is now %s\n", message);

exit(EXIT_SUCCESS);

}

void *thread_function(void *arg)

{

printf("thread_function is running. Argument was %s\n", (char *)arg);

sleep(3);

strcpy(message, "Bye!");

pthread_exit("Thank you for the CPU time");

}

[root@plinux tmp]# cc -D_REENTRANT -I/usr/include/nptl thread2.c -o thread2 -L/usr/lib/nptl -lpthread

[root@plinux tmp]# ./thread2

thread_function is running. Argument was Hello World

Waiting for thread to finish...

Thread joined, it returned Thank you for the CPU time

Message is now Bye!

pthread_join()

void pthread_exit(void *retval)

int pthread_join(pthread_t pid, void **thread_return)

pthread_join()的调用者将挂起并等待th线程终止,retval是调用pthread_exit()的线程(线程ID为pid)的返回值,如果thread_return不为NULL,则*thread_return=retval。

需要注意的是一个线程仅允许唯一的另一个线程使用pthread_join()等待本线程的终止,并且被等待的线程应该处于可join状态,即非DETACHED状态。

实验七:Linux多线程编程(实验分析报告)

实验七:Linux多线程编程(实验报告)

————————————————————————————————作者:————————————————————————————————日期:

实验七:Linux多线程编程(4课时) 实验目的:掌握线程的概念;熟悉Linux下线程程序编译的过程;掌握多线程程序编写方法。 实验原理:为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 1 多线程概念 使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间。 使用多线程的理由之二是线程间方便的通信机制。同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。2多线程编程函数 Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义: typedef unsigned long int pthread_t; 它是一个线程的标识符。 函数pthread_create用来创建一个线程,它的原型为: extern int pthread_create((pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。 函数pthread_join用来等待一个线程的结束。函数原型为: extern int pthread_join(pthread_t th, void **thread_return); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。 函数pthread_exit的函数原型为: extern void pthread_exit(void *retval); 唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。 3 修改线程的属性 线程属性结构为pthread_attr_t,它在头文件/usr/include/pthread.h中定义。属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。 设置线程绑定状态的函数为pthread_attr_setscope,它有两个参数,第一个是指向属性结构的指针,第二个是绑定类型,它有两个取值:PTHREAD_SCOPE_SYSTEM(绑定的)和PTHREAD_SCOPE_PROCESS(非绑定的)。 另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。 4 线程的数据处理

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

Linux多线程编程的基本的函数

Posix线程编程指南(一) 线程创建与取消 这是一个关于Posix线程编程的专栏。作者在阐明概念的基础上,将向您详细讲述Posix线程库API。本文是第一篇将向您讲述线程的创建与取消。 线程创建 1.1 线程与进程 相对进程而言,线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。在串行程序基础上引入线程和进程是为了提高程序的并发度,从而提高程序运行效率和响应时间。 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。同时,线程适合于在SMP机器上运行,而进程则可以跨机器迁移。 1.2 创建线程 POSIX通过pthread_create()函数创建线程,API定义如下: 与fork()调用创建一个进程的方法不同,pthread_create()创建的线程并不具备与主线程(即调用pthread_create()的线程)同样的执行序列,而是使其运行 start_routine(arg)函数。thread返回创建的线程ID,而attr是创建线程时设置的线程属性(见下)。pthread_create()的返回值表示线程创建是否成功。尽管arg是void *类型的变量,但它同样可以作为任意类型的参数传给start_routine()函数;同时,start_routine()可以返回一个void *类型的返回值,而这个返回值也可以是其他类型,并由pthread_join()获取。 1.3 线程创建属性 pthread_create()中的attr参数是一个结构指针,结构中的元素分别对应着新线程的运行属性,主要包括以下几项: __detachstate,表示新线程是否与进程中其他线程脱离同步,如果置位则新线程不能用pthread_join()来同步,且在退出时自行释放所占用的资源。缺省为 PTHREAD_CREATE_JOINABLE状态。这个属性也可以在线程创建并运行以后用pthread_detach()来设置,而一旦设置为PTHREAD_CREATE_DETACH状态(不论是创建时设置还是运行时设置)则不能再恢复到PTHREAD_CREATE_JOINABLE状态。

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

22进程、线程与并行计算(windows 编程技术)

第22章 进程、线程与并行计算 进程是正在运行的程序,线程是轻量级的进程。多任务的并发执行会用到多线程(multithreading ),而CPU 的多核(mult-core )化又将原来只在巨型机和计算机集群中才使用的并行计算带入普通PC 应用的多核程序设计中。 本章先介绍进程与线程的概念和编程,再给出并行计算的基本概念和内容。下一章讨论基于多核CPU 的并行计算的若干具体编程接口和方法。 22.1 进程与线程 进程(process )是执行中的程序,线程(thread )是一种轻量级的进程。 22.1.1 进程与多任务 现代的操作系统都是多任务(multitask )的,即可同时运行多个程序。进程(process )是位于内存中正被CPU 运行的可执行程序实例,参见图22-1。 图22-1 程序与进程 目前的主流计算机采用的都是冯·诺依曼(John von Neumann )体系结构——存储程序计算模型。程序(program )是在内存中顺序存储并以线性模式在CPU 中串行执行的指令序列。对于传统的单核CPU 计算机,多任务操作系统的实现是通过CPU 分时(time-sharing )和程序并发(concurrency )完成的。即在一个时间段内,操作系统将CPU 分配给不同的程序,虽然每一时刻只有一个程序在CPU 中运行,但是由于CPU 的速度非常快,在很短的时间段中可在多个进程间进行多次切换,所以用户的感觉就像多个程序在同时执行,我们称之为多任务的并发。 22.1.2 进程与线程 程序一般包括代码段、数据段和堆栈,对具有GUI (Graphical User Interfaces ,图形用户界面)的程序还包含资源段。进程(process )是应用程序的执行实例,即正在被执行的程进程(内存中) 可执行文件(盘上) 运行

linux下的多线程编程常用函数

Linux下pthread的实现是通过系统调用clone()来实现的。clone()是Linux所特 有的系统调用,他的使用方式类似fork. int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr, void *(*start_rtn)(void),void *restrict arg); 返回值:若是成功建立线程返回0,否则返回错误的编号 形式参数: pthread_t *restrict tidp 要创建的线程的线程id指针 const pthread_attr_t *restrict attr 创建线程时的线程属性 void* (start_rtn)(void) 返回值是void类型的指针函数 void *restrict arg start_rtn的行参 进行编译的时候要加上-lpthread 向线程传递参数。 例程2: 功能:向新的线程传递整形值 #include #include #include void *create(void *arg) { int *num; num=(int *)arg; printf("create parameter is %d \n",*num); return (void *)0; } int main(int argc ,char *argv[]) { pthread_t tidp; int error; int test=4; int *attr=&test; error=pthread_create(&tidp,NULL,create,(void *)attr); if(error) { printf("pthread_create is created is not created ... \n"); return -1; } sleep(1); printf("pthread_create is created ...\n");

浅谈多核CPU、多线程与并行计算

0.前言 最近发觉自己博客转帖的太多,于是决定自己写一个原创的。笔者用过MPI 和C#线程池,参加过比赛,有所感受,将近一年来,对多线程编程兴趣一直不减,一直有所关注,决定写篇文章,算是对知识的总结吧。有说的不对的地方,欢迎各位大哥们指正:) 1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其来的核心数目的增加?编程也要与时俱进。笔者斗胆预测,CPU各个核心之间的片内总线将会采用4路组相连:),因为全相连太过复杂,单总线又不够给力。而且应该是非对称多核处理器,可能其中会混杂几个DSP处理器或流处理器。 2.多线程与并行计算的区别 (1)多线程的作用不只是用作并行计算,他还有很多很有益的作用。 还在单核时代,多线程就有很广泛的应用,这时候多线程大多用于降低阻塞(意思是类似于 while(1) { if(flag==1) break;

sleep(1); } 这样的代码)带来的CPU资源闲置,注意这里没有浪费CPU资源,去掉sleep(1)就是纯浪费了。 阻塞在什么时候发生呢?一般是等待IO操作(磁盘,数据库,网络等等)。此时如果单线程,CPU会干转不干实事(与本程序无关的事情都算不干实事,因为执行其他程序对我来说没意义),效率低下(针对这个程序而言),例如一个IO操作要耗时10毫秒,CPU就会被阻塞接近10毫秒,这是何等的浪费啊!要知道CPU是数着纳秒过日子的。 所以这种耗时的IO操作就用一个线程Thread去代为执行,创建这个线程的函数(代码)部分不会被IO操作阻塞,继续干这个程序中其他的事情,而不是干等待(或者去执行其他程序)。 同样在这个单核时代,多线程的这个消除阻塞的作用还可以叫做“并发”,这和并行是有着本质的不同的。并发是“伪并行”,看似并行,而实际上还是一个CPU在执行一切事物,只是切换的太快,我们没法察觉罢了。例如基于UI 的程序(俗话说就是图形界面),如果你点一个按钮触发的事件需要执行10秒钟,那么这个程序就会假死,因为程序在忙着执行,没空搭理用户的其他操作;而如果你把这个按钮触发的函数赋给一个线程,然后启动线程去执行,那么程序就不会假死,继续响应用户的其他操作。但是,随之而来的就是线程的互斥和同步、死锁等问题,详细见有关文献。 现在是多核时代了,这种线程的互斥和同步问题是更加严峻的,单核时代大都算并发,多核时代真的就大为不同,为什么呢?具体细节请参考有关文献。我

传统并行计算框架与MR的区别

现在MapReduce/Hadoop以及相关的数据处理技术非常热,因此我想在这里将MapReduce的优势汇总一下,将MapReduce与传统基于HPC集群的并行计算模型做一个简要比较,也算是对前一阵子所学的MapReduce知识做一个总结和梳理。 随着互联网数据量的不断增长,对处理数据能力的要求也变得越来越高。当计算量超出单机的处理能力极限时,采取并行计算是一种自然而然的解决之道。在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce,MapReduce相较于传统的并行计算框架有什么优势,这是本文关注的问题。 文章之初先给出一个传统并行计算框架与MapReduce的对比表格,然后一项项对其进行剖析。 MapReduce和HPC集群并行计算优劣对比 ▲ 在传统的并行计算中,计算资源通常展示为一台逻辑上统一的计算机。对于一个由多个刀片、SAN构成的HPC集群来说,展现给程序员的仍旧是一台计算机,只不过这台计算拥有为数众多的CPU,以及容量巨大的主存与磁盘。在物理上,计算资源与存储资源是两个相对分离的部分,数据从数据节点通过数据总线或者高速网络传输到达计算节点。对于数据量较小的计算密集型处理,这并不是问题。而对于数据密集型处理,计算节点与存储节点之间的I/O将成为整个系统的性能瓶颈。共享式架构造成数据集中放置,从而造成I/O传输瓶颈。此外,由于集群组件间耦合、依赖较紧密,集群容错性较差。 而实际上,当数据规模大的时候,数据会体现出一定的局部性特征,因此将数据统一存放、统一读出的做法并不是最佳的。 MapReduce致力于解决大规模数据处理的问题,因此在设计之初就考虑了数据的局部性原理,利用局部性原理将整个问题分而治之。MapReduce集群由普通PC机构成,为无共享式架构。在处理之前,将数据集分布至各个节点。处理时,每个节点就近读取本地存储的数据处理(map),将处理后的数据进行合并(combine)、排序(shuffle and sort)后再分发(至reduce节点),避免了大量数据的传输,提高了处理效率。无共享式架构的另一个好处是配合复制(replication)策略,集群可以具有良好的容错性,一部分节点的down机对集群的正常工作不会造成影响。 硬件/价格/扩展性 传统的HPC集群由高级硬件构成,十分昂贵,若想提高HPC集群的性能,通常采取纵向扩展的方式:即换用更快的CPU、增加刀片、增加内存、扩展磁盘等。但这种扩展方式不能支撑长期的计算扩展(很容易就到顶了)且升级费用昂贵。因此相对于MapReduce集群,HPC集群的扩展性较差。 MapReduce集群由普通PC机构成,普通PC机拥有更高的性价比,因此同等计算能力的集群,MapReduce集群的价格要低得多。不仅如此,MapReduce集群

Pyhton 如何实现多线程并行计算

Pyhton 如何实现多线程并行计算 一、串行计算 先看一段简单的代码: import time t0=time.time() for k in range(30): values=k*k print(values) time.sleep(1) t1=time.time() print('运行时间为:',int(t1-t0)) 上面的例子中,我们用一个for循环计算自然数的平方。这里我们一个自然数计算完才能接着计算另外一个数。这种计算方式我们称为“串行计算”。早期为什么采用这种串行计算呢?因为以前个人电脑CPU是单核的,硬件的条件决定了程序的处理方式。 能不能几个数同时计算?好比如在银行的营业厅排队,如果只开一个窗口办理业务,你需要等前面一个人办完,才轮到你,如果能开多个窗口,显然会快很多。这种开多个窗口处理业务的想法,在计算机中的应用就是“并行计算”。多个窗口对应的就是计算机有多个核。(理解了“并行计算”,就容易进一步理解分布式计算。) 二、多核与线程 个人电脑的处理器最早是单核的。 多内核(multicore chips)是指在一枚处理器(chip)中集成两个或多个完整的计算引擎(内核)。 2005年4月,英特尔仓促推出简单封装双核的奔腾D和奔腾四至尊版840。 但真正的“双核元年”,则被认为是2006年。这一年的7月23日,英特尔基于酷睿(Core)架构的处理器正式发布。2006年11月,又推出面向服务器、工作站和高端个人电脑的至强(Xeon)5300和酷睿双核和四核至尊版系列处理器。 进入2009年,处理器已经由双核升级到四核时代,在斯坦福大学召开的Hot Chips大会上,IBM、富士通、AMD和Intel等众多芯片制造商展示出其六核、八核等多核服务器处

linux线程

关于linux线程 在许多经典的操作系统教科书中, 总是把进程定义为程序的执行实例, 它并不执行什么, 只是维护应用程序所需的各种资源. 而线程则是真正的执行实体.为了让进程完成一定的工作, 进程必须至少包含一个线程. 如图1. 进程所维护的是程序所包含的资源(静态资源), 如: 地址空间, 打开的文件句柄集, 文件系统状态, 信号处理handler, 等; 线程所维护的运行相关的资源(动态资源), 如: 运行栈, 调度相关的控制信息, 待处理的信号集, 等; 然而, 一直以来, linux内核并没有线程的概念. 每一个执行实体都是一个task_struct结构, 通常称之为进程. 如图2. 进程是一个执行单元, 维护着执行相关的动态资源. 同时, 它又引用着程序所需的静态资源.通过系统调用clone创建子进程时, 可以有选择性地让子进程共享父进程所引用的资源. 这样的子进程通常称为轻量级进程.linux上的线程就是基于轻量级进程, 由用户态的pthread库实现的.使用pthread以后, 在用户看来, 每一个task_struct就对应一个线程, 而一组线程以及它们所共同引用的一组资源就是一个进程.但是, 一组线程并不仅仅是引用同一组资源就够了, 它们还必须被视为一个整体.对此, POSIX标准提出了如下要求: 1, 查看进程列表的时候, 相关的一组task_struct应当被展现为列表中的一个节点; 2, 发送给这个"进程"的信号(对应kill系统调用), 将被对应的这一组task_struct所共享, 并且被其中的任意一个"线程"处理; 3, 发送给某个"线程"的信号(对应pthread_kill), 将只被对应的一个task_struct接收, 并且由它自己来处理; 4, 当"进程"被停止或继续时(对应SIGSTOP/SIGCONT信号), 对应的这一组task_struct 状态将改变; 5, 当"进程"收到一个致命信号(比如由于段错误收到SIGSEGV信号), 对应的这一组task_struct将全部退出; 6, 等等(以上可能不够全); linuxthreads

分布式与并行计算报告

并行计算技术及其应用简介 XX (XXX,XX,XXX) 摘要:并行计算是实现高性能计算的主要技术手段。在本文中从并行计算的发展历程开始介绍,总结了并行计算在发展过程中所面临的问题以及其发展历程中出现的重要技术。通过分析在当前比较常用的实现并行计算的框架和技术,来对并行计算的现状进行阐述。常用的并行架构分为SMP(多处理系统)、NUMA (非统一内存存储)、MPP(巨型并行处理)以及集群。涉及并行计算的编程模型有MPI、PVM、OpenMP、TBB及Cilk++等。并结合当前研究比较多的云计算和大数据来探讨并行计算的应用。最后通过MPI编程模型,进行了并行编程的简单实验。 关键词:并行计算;框架;编写模型;应用;实验 A Succinct Survey about Parallel Computing Technology and It’s Application Abstract:Parallel computing is the main technology to implement high performance computing. This paper starts from the history of the development of Parallel Computing. It summarizes the problems faced in the development of parallel computing and the important technologies in the course of its development. Through the analysis of framework and technology commonly used in parallel computing currently,to explain the current situation of parallel computing.Framework commonly used in parallel are SMP(multi processing system),NUMA(non uniform memory storage),MPP(massively parallel processing) and cluster.The programming models of parallel computing are MPI, PVM, OpenMP, TBB and Cilk++, etc.Explored the application of parallel computing combined with cloud computing and big data which are very popular in current research.Finally ,through the MPI programming model,a simple experiment of parallel programming is carried out. Key words:parallel computing; framework; programming model; application; experiment 1引言 近年来多核处理器的快速发展,使得当前软件技术面临巨大的挑战。单纯的提高单机性能,已经不能满足软件发展的需求,特别是在处理一些大的计算问题上,单机性能越发显得不足。在最近AlphaGo与李世石的围棋大战中,AlphaGo就使用了分布式并行计算技术,才能获得强大的搜索计算能力。并行计算正是在这种背景下,应运而生。并行计算或称平行计算时相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。可分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。其中空间上的并行,也是本文主要的关注点。 并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程,是提高计算机系统计算速度和处理能力的一种有效手段。它的基本思想是用多个处理器来协同求解同一问题,即将被求解的问题分解成若干个部分,各部分均由一个独立的处理机来并行计算。并行计算系统既可以是专门设计的,含有多个处理器的超级计算机,也可以是以某种方式互联的若干台的独立计算机构成的集群。通过并行计算集群完成数据的处理,再将处理的结果返回给用户。 目前常用的并行计算技术中,有调用系统函数启动多线程以及利用多种并行编程语言开发并行程序,常用的并行模型有MPI、PVM、OpenMP、TBB、Cilk++等。利用这些并行技术可以充分利用多核资源适应目前快速发展的社会需求。并行技术不仅要提高并行效率,也要在一定程度上减轻软件开发人员负担,如近年来的TBB、Cilk++并行模型就在一定程度上减少了开发难度,提高了开发效率,使得并行软件开发人员把更多精力专注于如何提高算法本身效率,而非把时间和精力放在如何去并行一个算法。

基于多核CPU的并行计算设计

26/3192294 长春工程学院学报(自然科学版)2009年第10卷第3期 J.Changchun I nst .Tech .(Nat .Sci .Edi .),2009,Vol .10,No .3I SS N 100928984 CN 2221323/N 基于多核CP U 的并行计算设计 收稿日期:2009-03-03 作者简介:谷照升(1965-),男(汉),吉林集安,教授 主要研究:数学应用。 谷照升 (长春工程学院理学院,长春130012) 摘 要:通过多核CP U 上多线程运算的效率分析,给出了相应的并行计算设计方案,并讨论了并行计算的发展趋势。 关键词:并行计算;多线程;多核中图分类号:TP316 文献标识码:A 文章编号:100928984(2009)0320092203 0 引言 在科学研究、工程计算的诸多领域,如凝聚态物理、数据挖掘、航天技术等,经常存在大规模的计算需求。这些计算任务有时还需要一定的实时性。由于单台计算设备处理能力的局限性,并行计算成为解决这类问题的主要技术手段。 迄今为止,并行计算主要的实现模式是将一个较大的运行任务同时并行地分配到多个计算机上执行 [1,2] 。由于各种大型计算一般采用的多是相应专 业的商业化通用软件,而这些软件在设计上都是基于这种并行分布式系统,通过网络构架,以相对较低性能的微机机群获取高效率的计算能力,所以其综合运行需要依赖完善的接口、协议支持[1—4] 。其中, MP I (Message Passing I nterface )是国内外在高性能计算系统中使用最广泛的并行编程的消息传递接口标准。这一标准移植性好、功能强大、效率高,有上百个函数调用接口,可以在各种提供外部扩展接口的高级编程语言中直接调用。 近几年计算机硬件技术与性能有了飞速的发展,多核、大内存乃至双CP U 的微机配置已成为主流。与此同时,W in2000以后的MS 系列操作系统对多核CP U 以及双CP U 资源也提供了完美的支持。而传统的面向机群的并行计算设计却无法利用 多核CP U 所带来的硬件优势。针对这一背景,如何更好地利用单机良好的CP U 多核资源,充分提高大型计算的性能和效率,就成为应该认真对待的问题。 1 基于多线程技术的并行计算 1.1 单机多核CP U 环境下的计算性能分析 为检验操作系统对多核CP U 的支持水平,笔者 编制了专门的测试程序。该程序在W indows XP 下 分别对2、3、4个线程、无多线程(只有程序进程自身的主线程)4种情况,每个线程完成完全相同的一个较大的计算任务进行测试,只有程序主线程时也对应相同任务。各线程同时开始,详细记录各线程开始、结束、总的耗时,精确到m s 。之后,又同时运行2个本测试程序,用计时器控件控制每个程序,同时启动仅用主线程的相同计算,并记录各自的耗时。在不同主频的2台I ntel 双核、2台I ntel 单核的单CP U 微机上分别做同样的测试。为观测CP U 的使 用率,测试过程中除系统本身和测试程序外,不运行其它程序。测试结果见表1。 多机多次实际测试发现,即使是双核双线程模式,每个线程的耗时也不完全相等,但相差基本在100m s 以内,所以表1中多采用“≈”表示。图1给 出了I ntel 双核主频1.60GHz CP U 的Dell 笔记本上3个线程和主线程的测试结果 。 图1 3个线程和主线程的测试结果

Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)

介绍:什么是线程,线程的优点是什么 线程在Unix系统下,通常被称为轻量级的进程,线程虽然不是进程,但却可以看作是Unix进程的表亲,同一进程中的多条线程将共享该进程中的全部系统资源,如虚拟地址空间,文件描述符和信号处理等等。但同一进程中的多个线程有各自的调用栈(call stack),自己的寄存器环境(register context),自己的线程本地存储(thread-local storage)。 一个进程可以有很多线程,每条线程并行执行不同的任务。 线程可以提高应用程序在多核环境下处理诸如文件I/O或者socket I/O等会产生堵塞的情况的表现性能。在Unix系统中,一个进程包含很多东西,包括可执行程序以及一大堆的诸如文件描述符地址空间等资源。在很多情况下,完成相关任务的不同代码间需要交换数据。如果采用多进程的方式,那么通信就需要在用户空间和内核空间进行频繁的切换,开销很大。但是如果使用多线程的方式,因为可以使用共享的全局变量,所以线程间的通信(数据交换)变得非常高效。 Hello World(线程创建、结束、等待) 创建线程 pthread_create 线程创建函数包含四个变量,分别为: 1. 一个线程变量名,被创建线程的标识 2. 线程的属性指针,缺省为NULL即可 3. 被创建线程的程序代码 4. 程序代码的参数 For example: - pthread_t thrd1? - pthread_attr_t attr? - void thread_function(void argument)? - char *some_argument? pthread_create(&thrd1, NULL, (void *)&thread_function, (void *) &some_argument); 结束线程 pthread_exit 线程结束调用实例:pthread_exit(void *retval); //retval用于存放线程结束的退出状态 线程等待 pthread_join pthread_create调用成功以后,新线程和老线程谁先执行,谁后执行用户是不知道的,这一块取决与操作系统对线程的调度,如果我们需要等待指定线程结束,需要使用pthread_join函数,这个函数实际上类似与多进程编程中的waitpid。 举个例子,以下假设 A 线程调用 pthread_join 试图去操作B线程,该函数将A线程阻塞,直到B线程退出,当B线程退出以后,A线程会收集B线程的返回码。 该函数包含两个参数:pthread_t th //th是要等待结束的线程的标识 void **thread_return //指针thread_return指向的位置存放的是终止线程的返回状态。 调用实例:pthread_join(thrd1, NULL); example1: 1 /************************************************************************* 2 > F i l e N a m e: t h r e a d_h e l l o_w o r l d.c 3 > A u t h o r: c o u l d t t(f y b y) 4 > M a i l: f u y u n b i y i@g m a i l.c o m 5 > C r e a t e d T i m e: 2013年12月14日 星期六 11时48分50秒 6 ************************************************************************/ 7 8 #i n c l u d e 9 #i n c l u d e 10 #i n c l u d e

11 12 v o i d p r i n t_m e s s a g e_f u n c t i o n (v o i d *p t r)? 13 14 i n t m a i n() 15 { 16 i n t t m p1, t m p2?

分布与并行计算思考题答案整理.docx

分布式系统 笫一章分布式系统概述 1?一个有256个CPU的多计算机系统被组织成16X16的网格。在最坏的情况尺-?条消息的传输延迟为多少?(以跳为单位) 假定路由是最优的.那么最长的优化(理想)路径是从网格的一?角到相对的?角,即沿着对角线的路径。这个路径的长度是3()跳。如果在单行或单列上的终端处理器是互联起來的,那么路径长度变成15^ 2?考虑一256个CPU的超立方休.在最坏的情况下,一个消息延迟是多少?(以跳为单位) 对于256个CPU的超立方体,每个节点有一个二进制地址.范围从OOOOOO(M)到11111111?从一个机器到另一个的一?跳,耍改变二进制地址中的一位,因此地址从00000000变到00000001就是一跳,从00000001到0(X)00011又是另外一跳。因此总共需耍八跳。 3?一个冬计算机系统有4096个50-MIPS的CPU,通过omega网络连接到内存。为了使一个内存请求能在-?条指令的时间内到达内存并返回结果.转换的速度需要有影快? 5O-MIPS=5纳秒.需耍【(4096的对数)=12】层开关.就有这么卷延迟?因为有来回.所以乘以2.转换速度就是5/24=0.208纳秒。 4 ?一台试验文件服务器由于错误的原因.3/4的时间正常工作,1/4的时间由于故障停止工作。为了达到99%的可用性,这一文件服务誥需耍复制多少次? 设k是服务器的数则由题意知(l/4)k<0.01?这是最坏的情况.即所有的服务器都出故障的时间至名为1%的时间的情况。这k = 4。 5 ?假设有一个包含m个待编详文件的大源程序。这个编译工作将在一个拥有!1个处理器的系统上进行.其中:n?m。希望这种方法的速度嚴好达到单处理器的m倍。哪些因素导致实际的速度达不到该值? 答:可能由于总线容量限制从而引起总线过载,或者交换开关延时。 6?举例说明名核并行计算机的结构和性能计算方法。(网上找的答案.参考) 多核并行计算机的结构 多核即在一?个单芯片上而集成两个捷至更多个处理器内核.其中每个内核都有自己的逻辑单元.控制单元.中断处理器、运算单元, -级cache.二级cache共享或独有.其部件的完整性和单核处理器内核相比完全一?致。片上多核处理器(CMP)是将多个计算内核集成在一个片处埋器芯片中.从而提高计算能力。每个微处理器核心实质上都是?个相对简单的单?线程微处理誥或者比较简单的冬线程微处理器. 这样多个效处理器核心就可以并行地执行程序代码.因而具有了较高的线程级并行性。由于CMP采川了相对简单的微处理蛊作为处理器核心?使得CMP具有高主煉设计和验证周期短.控制逻辑简单、扩展性好.易于实现.功耗低.通信延迟低等优点。此外.CHP还能充分利用不同应用的指令级并行和线程级并行,具有校高线程级并行性的应用町以很好地利用这种结构來提高性能。按照内核的对等与否,CMP 可分为同构多核和异构多核。计算内核相同,地位对等的称为''同构参核役同构CHP人务数山通用的处理器组成.零个处理器执行和同或者类似的任务。计算内核不同,地位不对等的称为“异构多核”,异构多核多采用“主处理核+协处理核”的设计。 C5IP处理器山多个CPU核心组成.每个核心执行%自的程序代码.但是CMP处理器的冬CPU核心执行的程序之间耍进行数据共享和同步.所以硬件结构必须支持核间通信。高效的通信机制是CHP处理器高性能的敢要保障?比较主流的片上高效通信机制有两种,一种是基于总线共享的cache结构,一种是基于片上的互连结构。总线共cache结构是扌旨每个CPU内核拥有共享的二级或三级cache,用于保存比较常用的数据.并通过连接核心的总线进行通信。这种系统的优点是结构简单,通信速度I淙缺点是基于总线的结构可扩展性较差。基于片上互连的结构是指每个CPU核心具有独立的处理单元和cache,各个CPU核心通过交叉开关或片上网络等方式连接在-?起。各个CPU 核心间通过消息通信。这种结构的优点是可扩展性好,数据带宽有保证,缺点是硕件结构复杂?且软件改动较大。 性能计算方法 以下6种性能爲求是用户经常提到的:执行时间.运行速隊吞吐率.利用率.成本有效性以及性能/成本比。 1) 运行?:运行速度是衡虽计算机性能的-项币雯指标。通常所说的计算机运算速度(平均运算速度).是指毎秒钟所能执行的描令条数.-般用 “百万条指令/秒"(mips, Million Instruction Per Second)来描述。同一台计算机.执行不同的运算所需时间可能不同?【大M对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(丄频入每秒T?均执行折令数(ips)等。 2) 执行时间:等于从并行程序开始执行到所有进程执行完毕,瞄上时钟走过的时间,也称为谱上时间((wall clock time wall clock time).对客个 进程,增上时间可进??步分解为计算进涉分解为计算CPU时间.通偃CPU.同步开销时间.同步解的进程空闲时间。 3) 吞吐率:吞吐率定义为在单位时间内所处理的作业数。如果每次只执行一个作业,那么吞吐率就是执行时何的(御数。当有多个作业彼同 时执行时.常使用吞吐率来农示系统的性能。 4) 利川率:可茨示为计算机可达到速度与峰值速度之比。 5) 成本有效性:农示成本有效性的合适指标是利用率因子(或简称利川率),其可用利用率农达式,即农示为一个给定计算机可达到速度与峰值 速度之比。 6) 性能/成木比:所获得的性能与所消耗费用之比。性能可以川所获得的计并机达到放大速度表示。 第二章分布式系统中的通信机制 1?如果一个客户/服务器系统的通信原语是非阻塞的,在消息实际彼发送之前发送.对send的调川已完成。为了减少开销? 一些系统不拷贝数据到内核,而是直接从川户空间发送。对于这样的系统,诸设计两种方案.发送者能知道传输己经完成?可以遥新使用缓冲区。 第-?种方法是内核将消息拷贝到内部缓冲区,其后允许进程继续执行。第二种方法是当消息被发送后?中断发送者并通知它缓冲区可用.这里不需耍备分,节省了时间。 2?在许多通信系统中,调用send 个计数器,以保证当服务器削溃时客户机不会永久彼挂起。假设一容错系统,所有的客八机和 服务器都用多处理机方式实现.那么客户机或服务器谢溃的概率儿乎等于寥。你认为在这样的系统中能安全地避免超时吗? 不安全。因为在客户机和眼务器的通信过程中,并不仅仅由于客户机或服务器崩溃,从而引起信息的丢失,系统的瘫痪。在信息传输网络中也可能引起信息的丢失。而超时机制能够無决这个问题。 3. 解释RPC的工作原理和参数传递方法。僻释何为异步RPC。 客户机器上的进程调用远程过程时,通过客户存根将参数传递到服务器,然后阻塞"C直到收到响应。服务器上的服务器存根使用这些参数调用本地的过程,得出结果后再传递冋客户机器客户存根捉取结果后以通常的方式返冋。从客户的角度看,该过程和木地调用具有相同的形式,是透明的。 参数传递方法有传递值参数和传递引川参数。 在异步RPC中,服务器接收到客户发送的RPC请求后立即向客户送回应冷Z后再调川客户请求的过程.客户收到确认消息麻继续向下执行,只是在服务器将结果传递回来时发生一个中断。