搜档网
当前位置:搜档网 › 用Fluent求解水平圆柱的相变过程

用Fluent求解水平圆柱的相变过程

用Fluent求解水平圆柱的相变过程
用Fluent求解水平圆柱的相变过程

用Fluent求解水平圆柱的相变过程

孔巧玲,马捷

上海交通大学船舶海洋与建筑工程学院,200030

qiaolingkong@https://www.sodocs.net/doc/9818163954.html,

摘要:本文介绍了相变过程的理论基础,用fluent软件计算了不同直径的相变过程,考虑自然对流与不考虑自然对流对相变过程的影响。圆柱的直径越小,相变所需的时间就越短;在熔化过程中,自然对流的影响不可忽略;石蜡是混合物,相变发生在一个温度范围,相变温度随时间变化曲线不为直线。

关键词:相变 自然对流 fluent软件

1引言

相变问题广泛存在于自然界和工程应用中,如冰的熔解、土壤的凝固、冶金、焊接、铸造、热能储存、电子设备的热控制等各个领域。相变材料发生熔解,体积膨胀,将产生很大的压力,能对外输出功。L. Klintberg[1]等利用石蜡发生固液相转变产生的体积膨胀来作为卫星的微机电推进器。Jun Su Lee[2]等以石蜡为研究对象,在熔点附近,石蜡的体积膨胀率最达可以达到15%,为了研究执行器的工作过程,首先,采用解析法和有限体积法对石蜡的相变过程进行了数值模拟,以了解石蜡的相变过程。通过石蜡相变界面的位置和温度分布可以知道执行器的响应时间。王广振等[3]研究了一种通过电磁感应加热感应导体、再通过感应导体加热其周围石蜡的无导线热膨胀微型机械驱动器。本文针对圆柱形的储能系统进行分析,利用固液相变时的体积膨胀对外做功,可以低品质的洁净能源,如海洋能,转化为机械能。所以分析的关键是了解相变过程及相变时间,以对控制阀的执行时间进行控制。

对圆柱体的相变过程,国内外有许多学者进行了大量的研究。早期的研究,为了行到精确的解析解,对相变过程进行了诸多假设,比如,忽略液相对流的影响、固液相密度变化的影响及接触熔化的影响等。相变问题的求解过程认为主要以导热为主,经实验验证存在较大的误差。陈林辉[4]等,引入有效导热系数来考虑自然对流对固液相变传热的影响,与硬脂酸固液相变实验的比较表明:自然对流对相变传热的影响不可忽略; 曾艳[5]等,引入自然对流换热系数,并通过实验测得相变过程的实际温度场,证明了自然对流固液相变换热的影响不可忽略,验证了固液相变界面移动速率随自然对流换热系数的增大而增大的定性关系。 A. Felix Regin[6]分析了太阳能热水器,圆柱形容器中石蜡为相变材料的融解过程。结果表明溶解过程取决于Stefan 数、相变温度和容器直径。分析表明当考虑相变温度是一个范围且液相部分存在对流时,比单纯考虑导热得到的解析解与实验结果更吻合。本

文以石蜡为研究对象,将单纯导热为主相变过程与导热和自然对流共同作用的相变过程进行比较分析。

2.物理模型和数学模型

2.1 物理模型

相变材料装于圆柱形的容器中,在变化的外界环境中工作。当外界环境温度高于材料的相变温度时,从环境吸收热量,相变材料发生熔解从固态变为液态,体积膨胀对外作功。当外界环境温度低于材料的相变温度时,往环境放热,相变材料发生凝固从液态变为固态,体积收缩,从而形成一个循环,不断对外输出功。结构外形如图1所示,是一水平放置的圆柱管直径为50mm,长1500mm:

图 1 水平圆柱储能管

Fig. 1.Geometry of horizontal cylindrical container for storing phase change material 2.2.数学模型

Fluent可以模拟等温相变(如纯物质)或者一定相变温度范围(如合金)的相变问题。相变问题最难处理的就是相界面的追踪问题,而在Fluent中不需要直接追踪相界面,Fluent处理熔化/凝固过程采用焓——孔隙率方法,采用这种方法最大的好处就是不需要直接跟踪相界面位置的变化,而是引入一个被称作为液体组分(liquid fraction)的量来表示液态物质在整个控制容积中所占的比例,通过液体组分来间接的跟踪相界面位置的变化,液体组分的计算基于焓的平衡来求解。同时在动量方程中加入合理的源项来计算由于固体材料的存在而产生的压降。

对贮能装置的工作情况进行了简化,提出几点假设:

(1)相变材料固液两相的比热、导热系数、密度为常数,不随温度发生变化,且各向同性;

(2)水平放置的圆柱形容器忽略沿轴向的温度梯度,轴向传热忽略不计;

(3)水平圆柱内封装的相变材料,熔化过程以自然对流与液相导热为主,凝固过程以导热控制为主;

(4)相变材料在给定的温度范围内只发生固液相变,也不存在过冷和性能衰减;

(5)忽略薄壁圆筒内侧壁面的散热,认为圆筒内侧壁面是绝热壁面,容器壁热阻忽略不计;

(6)相变过程发生在一个温度区间内,焓与温度的关系认为是线性的。

(7)满足Boussinesq 假设,即只在浮力项中考虑密度变化,浮力项中密度随温度呈线性变化。 控制方程为:

连续性方程:

()0u ρ?=v (1)

动量方程:

()()()()1ref u uu p u g T T S t

ρρμρβ??+?=??+??+??+??v vv v ?? (2) 能量方程:

()(l p f T c L uT k T t

ρρ???

?++?=???????v )T ? (3) 其中,ρ密度;导热系数;S 动量源项;k μ动力粘度;L 相变潜热;

l f 液相体积分数,在相变期间,其值是[0,1]之间变化,具体定义如下: 01

s l l s s l l s T T f T T T T T T T T T ??????<

动量方程中的原项S 定义为:

()l S A f =?u (5)

其中,由Brent 等[7]定义的多孔介质流动的Carman-Kozeny 函数:

()l A f ()()2

31l l l C f A f f ε

?=+ (6) 其中ε=0.001是一个很小的计算常数,避免公式中的分母为零。常数C用以反映相变前沿的形态,能常取104-107。

3.计算结果分析

3.1材料的物性参数及边界和初始条件

石蜡主要由直链烷烃混合而成,其通式为C n H 2n+2. 随着链的增长,熔点开始增长较快,而后逐渐减慢,C 30H 62 为65.4 ℃,C 40H 82:为81.5 ℃.随着链的增长,其熔解热也增大。一般不过冷,结晶速率很高,石蜡较稳定、无毒、无刺激性、价格较低是目前应用最为广泛的一种相变材料,缺点是导热系数小、密度小、单位体积贮热能力差。根据工作环境温度,选用石蜡的热物性如表1:

表1 石蜡热物性质

Table 1 The material properties of paraffin s T (K)

289.35 密度 3/(/)kg m ρρs l 835/774.4 相变温度相变温度T (K) l J kg 291.65 熔解热L k

(/)236 定压比热 c ,,/(/p s p l )c kJ kg K ? 1.52/2.21 体积膨胀系数1()

K β?9.04×10-4导热系数 /(/)k k W m K ?s l 0.313/0.15

普朗特数Pr 51.2 计算过程取边界为定温边界条件,初始温度为相变温度301K,凝固过程边界温度为282K,熔解过程边界温度为。

3.2 不同直径圆柱体单纯导热的相变过程

用gambit 取0.5mm 间隔划分网格,共8579结点:

图1 圆柱截面网格划分图

Fig.1 mesh of cylinder cross section

下图显示当直径为38mm 和50mm 时,1800、3600秒时温度分布图和液相分数分布图:

1800s

3600秒

图3 直径38mm圆柱的相变过程,时间为1800、3600秒时温度分布图和液相分数分布

Fig.3 contour of temperature and liquid fraction at 1800s, 3600s when the diameter is 38mm

图 4 直径38mm圆柱中心点温度随时间变化的曲线

Fig.4 temperature of center point vs. time during phase changing process when the diameter is 38mm

图 5直径38mm圆柱液相分数随时间的变化曲线

Fig.5 liquid fraction vs. time during phase changing process when the diameter is 38mm

1800秒

3600秒

图6 直径为50mm时,1800、3600秒时温度分布图和液相分数分布

Fig.6 contour of temperature and liquid fraction at 1800s, 3600s when the diameter is 50mm

图7 直径50mm圆柱中心点温度随时间的变化曲线

Fig.7 temperature of center point vs. time during phase changing process when the diameter is 50mm

图8 直径50mm圆柱液相分数随时间的变化曲线

Fig.8 liquid fraction vs. time during phase changing process when the diameter is 50mm 由以上图可以看出随直径减小,完全相变所需的时间变小,直径50mm的原址完全相变需要122分钟,而直径38mm的圆柱完全相变只需要72分钟。储能装置的结构尺寸,对相变时间具有很大的影响。根据分析结果,可以根据实际要求在设计时选取合适的结构外形尺寸;石蜡是混合物,相变温度不是定值,大约在2度的温度范围内变化,圆柱中心点温度随时间的变化曲线可以看出,相变过程不是等温的过程。

3.2 考虑液相对流时的计算结果

4200秒

图9 4200秒和9000秒时的温度分布、液相分数及速度场分布

Fig.9 contour of temperature, liquid fraction and velocity at time of 4200s and 9000s 刚开始时液相成分比较小,主要以导热为主。随着相变过程的进行,液相分数逐渐增大,由浮力引起的自然对流加强,由图8可以明显地看出刚形始时,在圆柱的左右两侧速度梯度比较大。在重力和浮力的作用下,熔解过程不是对称的,石蜡会向下运动,对流主要是在下部分产生。由于计算

过程没有考虑相变材料密度的变化,模拟出来的结果石蜡下沉是由于重力的作用,以及石蜡熔解后体积发生膨胀,主要是在顶部产生的压力,二者作用使石蜡下沉。如果要真实在反应实际的过程,应变该考虑固液相密度变化的影响,相变的结果将是包含底部的接触熔化,这是下一步求解的目标。

4 结论

用fluent软件求解相变温度在一定范围内变化相变问题,不需要进行复杂的编程,可以根据不同的要求修改参数就可以得到所需的结果,具有简单方便等特点。通过以上的分析可知纯导热的相变过程,相变时间的大小跟管径的大小有关。管径越小,完全相变所需的时间就越短。实际的熔解过程,随着液相成份的增加,相变过程除导热外还有自然对流,加速了熔化过程,相变过程也不是对称的。

参考文献

[1] L. Klintberg et al. A thermally activated paraffin-based actuator for gas-flow

control in a satellite electrical propulsion system[J]. Sensors and Actuators , (2003)105:237–246

[2] Jun Su Lee, Stepan Lucyszyn. Thermal analysis for bulk-micromachined electrothermal

hydraulic microactuators using a phase change material[J]. Sensors and Actuators, (2007) 4,No.135:731-735

[3] 王广振等. 无导线微型机械驱动器试验研究[J].中国机械工程. 2003 (14) :555-559

[4] 陈林辉,田怀璋,第二类边界条件下硬脂酸固液相变蓄能研究[J],西安交通大学学报

,2004,38(11):1128-1131

[5]曾艳,田怀璋等.固液相变蓄能的数学模型和自然对流换热系数的实验研究[J]制冷与空调,

2002, (02),Vol.2 No.2:15-18

[6] A. Felix Regin, S.C. Solanki and J.S. Saini ,Latent heat thermal energy storage

using cylindrical capsule: Numerical and experimental investigations[J],Renewable Energy, Volume 31, Issue 13, October 2006, Pages 2025-2041

[7] A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling

convection-diffusion phase change: application to the melting of a pure metal[J], Numer.

Heat Transfer 13 (1988) 297–318.

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题 ( 目录 ) 离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别 8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢? 12在设置GAMBIT 边界层类型时需要注意的几个问题: a 、没有定义的边界线如何处理? b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的? 15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门 2 CFD 2.1 2.2 2. 3 2.4 2.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体 ( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音 速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散 ( Diffusion ) 2.7 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.2 3.3 3.4 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什 么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比 可压缩流动有更多的困难? 6.1 可压缩 Euler 及 Navier-Stokes 方程数值解 6.2 不可压缩 Navier-Stokes 方程求解 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的 双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标 系?什么叫网格独立解?

圆柱绕流数值模拟

圆柱绕流的数值模拟研究 摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。 关键词:网格划分;圆柱绕流;涡量;网格自适应 钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。 研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。 1数学模型与计算方法 1.1几何模型 结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。 图1计算区域 1.2网格划分及边界条件设置 为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。 对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

流体力学Fluent报告——圆柱绕流之欧阳家百创编

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 欧阳家百(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕

流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr 数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C 与 Strouhal 数 d 随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在 Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量

辐射和对流模型Fluent参数设置

辐射和对流模型Fluent参数设置 1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图: 2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上 点击ok时,会出现一个信息提示框,告诉你新 的材料物性被添加了,你将在后面设置物性参 数,因此现在只需单击ok确认这个信息即可, 如下图: 注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图: 不用再Define→Models→Energy……

3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图: 4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中 Gravity.Y方向加速度设置为-9.8 2 m,击OK确定。 /s 设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:

考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设) 5. 定义材料并设置其物理属性 Define →Material …… 先定义空气物性,要定义成有浮力的,取Boussinesq 选项。 Density=1.1653/m kg ,()k kg j C p ?=/1005 Thermal Conductivity=0.0267()k m w ?/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。 通过滚动条使先前面板中不可见的物性显示出来。在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。单击Change/Create ,关闭Materials 面板。 6.设置边界条件Define → Boundary Conditions ……

FLUENT软件在圆柱绕流模拟中的应用

第27卷第1期水利电力机械 V ol.27 N o.1 2005年2月W ATER C ONSERVANCY &E LECTRIC POWER MACHI NERY Feb.2005  ?机械设计与制造? F LUENT 软件在圆柱绕流模拟中的应用 Application of F LUE NT s oftware in the simulation of flow around a cylinder 徐元利1,徐元春2,梁兴1,张进国1 X U Y uan 2li 1,X U Y uan 2chun 2,LI ANG X ing 1,ZHANGJin 2guo 1 (1.武汉大学动力与机械学院,湖北武汉 430072; 2.河南油田采油一厂江河矿,河南南阳 474780)(1.School of P ower and Mechanical Engineering of Wuhan University ,Wuhan 430072,China ;2.Jianghe Ore Y ard of the 1st Petroleum Production Factory of the Henan Oil Field ,Nangyang 474780,China ) 摘 要:使用计算流体力学软件F LUE NT ,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。在雷诺数约为40前后流场有明显变化。小于这个数时,存在一对位置固定的旋涡。大于40时,流场开始变得不稳定,旋涡扩大、脱落、又生成,逐渐发展成两排周期性摆动和交错的旋涡。并与实验及数值模拟结果比较,确认F LUE NT 能够很好地预测流动结构。关键词:圆柱绕流;F LUE NT 软件;雷诺数 中图分类号:TP311.56:T B126 文献标识码:A 文章编号:1006-6446(2005)01-0039-03 Abstract :Uniform flow around a m ounting cylinder is simulated with the application of F LUE NT s oftware while Reynolds number is 20,40,100.S tream function and velocity vector distributions are indicated.The results show that a series of construction appears as Reynolds number increases.When Re is around 40,flow pattern changes :there is a pair of m ount 2ing v ortex with Re less than 40;on the contrary it becomes unsteady and v ortex expand ,slough ,generate again until tw o rows of periodic s wing and overlap v ortex form.C om pared with experimental results ,it is con firmed that F LUE NT can well predict flow structure. K ey w ords :flow around a circular cylinder ;F LUE NT s oftware ;reynolds number 收稿日期:2004-07-30 作者简介:徐元利(1980-),女,河南南阳人,武汉大学动力与机械学院在读硕士研究生,从事流体过渡过程方面的研究。 1 圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。 随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落,泻入尾流形成 K arman 涡街,随着雷诺数的增加,流动变得越来越复 杂,最后发展为湍流。White [1]认为“圆柱涡流具有经 典性的重要意义”。 一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的临界雷诺数主要是通过应用流场显示技术观察流动形态得到的,所以不是准确值。对于分界点雷诺数就有不同的见解,K ovasznay ,R oshko 等认为定常流动失稳的临界雷诺数大约为40。而从周期性尾流到湍流的详细的转变过程的实验研究似乎还是空白。 对均匀来流绕固定圆柱的二维平面流动,国内

Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要求 解的控制方程。可选择的方程包括Flow(流动方 程)、Turbulence(湍流方程)、Energy(能量方 程)、Volume Fraction(体积分数方程)等。在 求解过程中,有时为了得到收敛的解,先关闭 一些方程,等一些简单的方程收敛后,再开启 复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压 力速度耦合的4种方法,即SIMPLE、 SIMPLEC(SIMPLE.Consistent)、PISO以及 Coupled。定常状态计算一般使用SIMPLE或者 SIMPLEC方法,对于过渡计算推荐使用PISO方 法。PISO方法还可以用于高度倾斜网格的定常 状态计算和过渡计算。需要注意的是压力速度 耦合只用于分离求解器,在耦合求解器中不可 以使用。 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE和SIMPLEC 会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕 流的数值模拟 令狐采学 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了

亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

详细FLUENT实例讲座翼型计算

详细FLUENT实例讲座翼型计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

CAE联盟论坛精品讲座系列 详细FLUENT实例讲座-翼型计算 主讲人:流沙 CAE联盟论坛总版主 1.1 问题描述 翼型升阻力计算是CFD最常规的应用之一。本例计算的翼型为 RAE2822,其几何参数可以查看翼型数据库。本例计算在来流速度0.75马赫,攻角3.19°情况下,翼型的升阻系数及流场分布,并将计算结果与实验数据进行对比。模型示意图如图1所示。 b5E2RGbCAP 1.p ng(12.13 K>2018/7/29 23:41:251.2 FLUENT前处理设置Step 1:导入计算模型 以3D,双精度方式启动FLUENT14.5。 利用菜单【File】>【Read】>【Mesh…】,在弹出的文件选择对话框中选择网格文件rae2822_coarse.msh,点击OK按钮选择文件。如图2所示。p1EanqFDPw

点击FLUENT模型树按钮General,在右侧设置面板中点击按钮Display…,在弹出的设置对话框中保持默认设置,点击Display按钮,显示网格。如图3所示。DXDiTa9E3d 2.png(11.51 K>2018/7/29 23:41:25

3.png(33.41 K>2018/7/29 23:41:253-2.png(52.04 K>2018/7/29 23:41:25Step 2:检查网格 采用如图4所示步骤进行网格的检查与显示。点击FLUENT模型树节点General节点,在右侧面板中通过按钮Scale…、Check及 Report Quality实现网格检查。 4.png(12. 10 K>RTCrpUDGiT2018/7/29 23:41:25点击按钮Check,在命令输出按钮出现如图5所示网格统计信息。从图中可以看出,网格尺寸分布: x轴:-48.97~50m

圆柱绕流的数值模拟解析

圆柱绕流的数值模拟 张玉静 20070360204 过控(2)班化工与能源学院 摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。当Re=5时,流动不发生分离,其后未形成旋涡,当Re=20,40,100时,流体发生分离,其后形成旋涡,且旋涡随着Re的增大而增大。利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性。 关键词:圆柱绕流;FLUENT;雷诺数 Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. V ortex increases with the increase of Re. Using computational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic. Key words:Flow around a circular cylinder;FLUENT;Reynolds number 1 圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落,泻入尾流形成Karman涡街,随着雷诺数的增加,流动变得越来越复杂,最后发展为湍流。White认为圆柱涡流具有经典性的重要意义。 一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的

基于FLUENT的并列双圆柱绕流二维数值模拟分析

-46-科学技术创新2019.02 基于FLUENT的并列双圆柱绕流二维数值模拟分析 胡锦鹏罗森 (重庆科技学院建筑工程学院,重庆401331) 摘要:为研究双圆柱在不同距径比(L/D)工况下的绕流,运用FIUENT软件模拟低雷诺数下的双圆柱绕流中表面压力系数的分布和升力系数、阻力系数的变化规律。通过数值模拟分析表明:双圆柱表面随着L/D的增大两圆柱柱后涡街将由耦合涡街逐步转化为单圆柱绕流时的卡门涡街,两柱对绕流的影响减弱;随着UD的增加,两柱之间的相互作用减小,升力系数和阻力系数都逐渐降低。通过对不同I7D工况下的对比分析,为圆墩抑制双圆柱绕流的设计提供一定意义的参考。 关键词:fluent;双圆柱;绕流;数值模拟 中图分类号:035文献标识码:A文章编号:2096-4390(2019)02-0046-02 多柱绕流问题在海洋工程、跨江跨河桥墩、以及涉水建筑物基础等领域有广泛的应用。水流经过多圆柱会产生旋涡,旋涡的脱落使各个圆柱之间有相互干扰作用,其流场特征与圆柱的受力与单圆柱绕流有明显不同叫因此研究多圆柱绕流的流场特征分析与圆柱受力状态研究对于涉水工程应用具有重要的意义。 多柱与之单柱绕流相比,多柱绕流受墩柱数量、排列方式、柱间距离、流体速度等因素影响,其流场特性、涡街形态更加复杂,加之在波、浪、流等耦合作用下极易发生相互干扰造成桩柱严重损伤及破坏。基于此,采用FLUENT有限元软件,建立双圆柱绕流模型研究其在不同距径比(两圆柱中心距与圆柱直径之比)下分析圆柱绕流的阻力系数、升力系数、分离点位置及流场变化规律,为后续涉水基础中的双圆柱绕流问题的研究提供理论依据。 1绕流相关参数 绕流的相关参数主要有雷洛数Re、斯托罗哈数St、升力系数G和阻力系数C“下面给出各个参数的计算公式和物理意义。 1.1雷洛数Re 圆柱绕流的状态和雷诺数有很大关系,雷诺数代表惯性力和粘性力之比:Re=四=巴 “u(1)式中:P为流体的密度;U为自由来流的平均速度;L为结构的特征尺寸(圆柱取直径D)屮为流体粘性系数;”=上为流体的运动学粘性系数。121P 1.2斯托罗哈数St Strouhal指出圆柱绕流后在圆柱后面可以出现交替脱落的旋涡,旋涡脱落频率、流速、圆柱直径之间存在一个关系: st=— U(2)式中:St为斯托罗哈数,取决于结构的形状断面;f,为旋涡脱落频率;D为结构的特征尺寸(圆柱取直径D);U为来(转下页) 能够使小鼠的血脂下降,从而起到防止AS的作用。同时发现枸杞色素可以使低密度脂蛋白胆固醇(LDL-C)、血清甘油三酯(TG)及总胆固醇(TC)的含量减少,因此枸杞中色素能够拮抗高血脂症患者的血脂上升和脂质的不易还原。 同时枸杞色素具有血管内皮细胞的保护作用,研究发现,受损伤的细胞的G0/G1比率和凋亡率可以通过枸杞中的花色昔来下降,升高其G2/M的比率和S期的细胞比率,发现被过度氧化且低密度的脂蛋白所损伤的人体静脉的内皮细胞可以被存在于枸杞中的花色苛所保护和修复叫 枸杞色素不但能明显地增强机体的特异性免疫的作用,并且能够提高非特异性免疫的作用。经实践证实枸杞色素能够明显地提高T、B淋巴细胞的数量、红细胞的免疫黏附作用及其雏鸡血清的HI抗体能力,说明了枸杞色素对于雏鸡的特异性免疫及体液免疫的疗效有明显的加强能力冋。枸杞色素还具有抗疲劳、抗肿瘤、提高视力及生殖能力等作用。 2.3多酚类。多酚类是植物中一组含有多个酚羟基团的化学元素的总称。多酚类物质可以起到很好的还原作用。富含酚羟基的物质在世界上也被称为“第七种营养物质”。此中主要活性物质为多酚类物质,多酚类物质为植物成分的分子的结构式中含有多个酚轻基团统称,主要是单宁类、黄酮类、花色昔类以及酚酸类等成分,均是可以保证健康的一类化合物。枸杞叶子中主要黄酮类物质是芦丁,同样芦丁含量最丰富的部位也是枸杞叶子。尽管芦丁存在于野生或者栽培的枸杞果实中的含量少之又少,然而黄酮类化合物的总含量相比于野生枸杞叶,栽培的枸杞叶子总含量高出很多。 2.4其他化合物。枸杞中主要的含氮物质是氨基酸和蛋白质,此外还含有多种氨基酸、Mg、Mn、Se、Zn多种金属离子、粗脂肪、脂肪酸等,同时还含有多种小分子物质,例如P-香豆酸、各种维生素和脑昔等。其他成分包括菜油;胆苗烷醇;天门冬素、當醇、胆當-7-烯醇;2,4-乙基胆苗-5烯-3(3醇等。 参考文献 [1]张仲景(汉).金匮要略方论[M].北京:人民卫生出版社,1972:21-22. [2]王玲,张才军,李维波,等.枸杞多糖对2型糖尿病患者T淋巴细胞亚群和细胞因子的调节作用[J].河北中医,2013,23(12):888-890. [3]李宁宁.类胡萝卜素的研究进展[J].中国现代实用医学杂志, 2014,3⑵:51-53. [4]袁宝财,达海莉,李晓瑞.宁夏枸杞的生物学特性及开发利用前景[J].河北林果研究,2014,12(4):52-53. [5]朱采平.枸杞多糖的结构分析及生物活性评价[D].武汉:华中农业大学,2009,6(3):46-47. [6]林丽,李进,呂海英,等.黑果枸杞花色昔对小鼠动脉粥样硬化的影响[J].中国中药杂志,2012,37(10):1460-1466.

2021年流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与 方柱绕流的数值模拟 欧阳光明(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流

阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re 数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

FLUENT操作过程及全参数选择

振动流化床仿真操作过程及参数选择 1创建流化床模型。 根据靳海波论文提供的试验机参数,创建流化床模型。流化床直148mm 高1m开孔率9%孔径2mm在筛板上铺两层帆布保证气流均布。 因为实验机为一个圆形的流化床,所以可简化为仅二维模型。而实际实验中流化高度远小于1m甚至500mm所以为提高计算时间,可将模型高度缩为500mm由于筛板上铺设两层帆布以达到气流均分的目的,所以认为沿整个筛板的进口风速为均匀的。最终简化模型如下图所示: 上图为流化后的流化床模型,可以看出流化床下端的网格相对上端较密,因为流化行为主要发生的流化床下端,为了加快计算时间,所以采用这种下密上疏的划分方式。其中进口设置为velocity inlet ;出口设置为outflow ;左右两边分为设置为wall。在GAMBIT中设置完毕后,输出二维模型vfb.msh。 outflow 边界条件不需要给定任何入口的物理条件,但是应用也会有限制,大致为以下四点: 1.只能用于不可压缩流动

2.出口处流动充分发展 3.不能与任何压力边界条件搭配使用(压力入口、压力出口) 4.不能用于计算流量分配问题(比如有多个出口的问题) 2 打开FLUENT 6326,导入模型vfb.msh 点击GRID—CHECK检查网格信息及模型中设置的信息,核对是否正确,尤其查看是否出现负体积和负面积,如出现马上修改。核对完毕后,点击GRID-SCAL弹出SCALEGRID窗口,设置单位为mm 并点击change length unit 按钮。具体设置如下: 3设置求解器 保持其他设置为默认,更改TIME为unsteady,因为实际流化的过程是随时间变化的。 (1)pressure based 求解方法在求解不可压流体时,如果我们联立求解 从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速

FLUENT软件在圆柱绕流模拟中的应用

C A M E O 楷 模C A E 案例库 w w w .c a m e o .o r g .c n 第27卷第1期水利电力机械 V ol.27 N o.1 2005年2月W ATER C ONSERVANCY &E LECTRIC POWER MACHI NERY Feb.2005  ?机械设计与制造? F LUENT 软件在圆柱绕流模拟中的应用 Application of F LUE NT s oftware in the simulation of flow around a cylinder 徐元利1,徐元春2,梁兴1,张进国1 X U Y uan 2li 1,X U Y uan 2chun 2,LI ANG X ing 1,ZHANGJin 2guo 1 (1.武汉大学动力与机械学院,湖北武汉 430072; 2.河南油田采油一厂江河矿,河南南阳 474780)(1.School of P ower and Mechanical Engineering of Wuhan University ,Wuhan 430072,China ;2.Jianghe Ore Y ard of the 1st Petroleum Production Factory of the Henan Oil Field ,Nangyang 474780,China ) 摘 要:使用计算流体力学软件F LUE NT ,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为20,40,100时的绕 流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。在雷诺数约为40前后流场有明显变化。小于这个数时,存在一对位置固定的旋涡。大于40时,流场开始变得不稳定,旋涡扩大、脱落、又生成,逐渐发展成两排周期性摆动和交错的旋涡。并与实验及数值模拟结果比较,确认F LUE NT 能够很好地预测流动结构。 关键词:圆柱绕流;F LUE NT 软件;雷诺数 中图分类号:TP311.56:T B126 文献标识码:A 文章编号:1006-6446(2005)01-0039-03 Abstract :Uniform flow around a m ounting cylinder is simulated with the application of F LUE NT s oftware while Reynolds number is 20,40,100.S tream function and velocity vector distributions are indicated.The results show that a series of construction appears as Reynolds number increases.When Re is around 40,flow pattern changes :there is a pair of m ount 2ing v ortex with Re less than 40;on the contrary it becomes unsteady and v ortex expand ,slough ,generate again until tw o rows of periodic s wing and overlap v ortex form.C om pared with experimental results ,it is con firmed that F LUE NT can well predict flow structure. K ey w ords :flow around a circular cylinder ;F LUE NT s oftware ;reynolds number 收稿日期:2004-07-30 作者简介:徐元利(1980-),女,河南南阳人,武汉大学动力与机械学院在读硕士研究生,从事流体过渡过程方面的研究。 1 圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。 随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落,泻入尾流形成 K arman 涡街,随着雷诺数的增加,流动变得越来越复 杂,最后发展为湍流。White [1]认为“圆柱涡流具有经 典性的重要意义”。 一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的临界雷诺数主要是通过应用流场显示技术观察流动形态得到的,所以不是准确值。对于分界点雷诺数就有不同的见解,K ovasznay ,R oshko 等认为定常流动失稳的临界雷诺数大约为40。而从周期性尾流到湍流的详细的转变过程的实验研究似乎还是空白。 对均匀来流绕固定圆柱的二维平面流动,国内

相关主题