搜档网
当前位置:搜档网 › Cu2O Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO 2

Cu2O Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO 2

Cu2O Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO 2
Cu2O Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO 2

DOI:10.1002/cssc.201301194

Cu 2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO 2

Xiaoqiang An,Kimfung Li,and Junwang Tang*[a]

Introduction

In the past decades,the significant rise in greenhouse gas CO 2and the concern about the security of energy supply have re-ceived much attention and are regarded as the biggest chal-lenges of the century.The conversion of CO 2into useful chemi-cals or fuels by artificial photosynthesis has been considered as one of the most promising and compelling approaches to solve both energy and environmental problems simultaneous-ly.[1]Since the discovery of the photoreduction of CO 2to form valuable chemicals by using semiconductors,many photocata-lysts have been reported.[2]However,the current CO 2photore-duction efficiency is still very moderate.Generally,the fast re-combination of charge carriers and the mismatch between the band gap of photocatalysts and solar radiation spectrum are the key factors that limit the efficiency of artificial photosyn-thesis.[3,4]Many effective and lost-cost photocatalysts such as TiO 2are only sensitive to UV light,which only comprises a small fraction of solar energy that reaches the Earth’s surface.The development of visible-light-driven semiconductors for ar-tificial photosynthesis is a topic of great interest with practical importance.[5]

Cuprous oxide,a direct-band-gap (2.0eV)semiconductor,is an attractive p-type oxide for visible-light-driven artificial pho-tosynthesis,such as photo-electrochemical water splitting.[6,7]In theory,the narrow band gap and appropriate positioning of the conduction and valence bands also make it an ideal photo-catalyst for CO 2photoreduction.[8,9]In our preliminary research,

Cu 2O has been used for the photoconversion of CO 2into CO,which is a value-added chemical for various synthetic reactions (e.g.,Fischer–Tropsch synthesis)and significant fuel for energy generation.The selectivity and activity of Cu 2O crystals was im-proved by controlling the facets that were exposed and load-ing RuO x as a co-catalyst.[10]Furthermore,we found that the spherical aggregates suppressed unexpected H 2production to improve CO 2reduction.However,the stability of Cu 2O is a seri-ous issue as the redox potentials for the reduction and oxida-tion of monovalent copper oxide lie within the band gap.[11]In addition,the activity of the photocatalyst for CO 2reduction is quite moderate.Thimsen et al.reported recently that Cu 2O with Al-doped zinc oxide and titanium oxide as protective layers improved the photostability of Cu 2O for photo-electro-chemical water splitting.[11]Therefore,we attempt to improve both the stability and activity of the Cu 2O for CO 2photoreduc-tion by making an efficient junction composite,which is highly desirable for artificial photosynthesis in a sustainable manner.As a result of the promising electronic and catalytic proper-ties,carbonaceous nanomaterials have been utilized extensive-ly to improve the performance of photocatalysts.[12]For exam-ple,the presence of a thin protective carbon layer could re-markably improve the photostability as well as photocurrent density of cuprous oxide nanowire arrays.[13]Graphene,a 2D monolayer of sp 2-hybridized carbon atoms,has attracted in-tense attention in recent years because of its excellent physical and chemical properties.There is an increasing interest in the rational design of graphene-based photocatalysts for solar fuel production,and these are usually prepared by the reduction of graphene oxide (commonly referred to as RGO).However,few graphene-based materials,for example,those bonded with the wide-band gap materials TiO 2,WO 3,and Ta 2O 5,have been de-veloped for the photoreduction of CO 2,although there are

sev-[a]X.An,K.Li,Dr.J.Tang

Department of Chemical Engineering University College London

London,WC1E 7JE (United Kingdom)E-mail:

Junwang.tang@https://www.sodocs.net/doc/9416122094.html,

Supporting Information for this article is available on the WWW under https://www.sodocs.net/doc/9416122094.html,/10.1002/cssc.201301194.

CHEM SUS CHEM FULL

PAPERS

eral reports on photocatalytic water splitting because of the extreme thermodynamic inertness of CO 2.[14–17]A graphene-containing narrow-band-gap photocatalyst is thus highly desir-able for CO 2photoreduction,which has been less reported.With a combination of the potential advantages of Cu 2O and RGO,Cu 2O/RGO composites were targeted in our study,which could be attractive as visible-light-driven CO 2reduction cata-lysts in which RGO can not only act as an ideal electron trap-per to hinder fast charge recombination but also as a stabilizer to improve the stability of Cu 2O.[18]

Herein,for the first time we demonstrated a microwave-as-sisted method for the fabrication of Cu 2O/RGO composites,which were used for CO 2photoconversion.As a result of the efficient interfacial charge separation and transfer,Cu 2O/0.5%RGO composites exhibit a high efficiency for photocatalytic CO 2conversion without the need for a noble-metal co-catalyst.The stability of the photocatalysts is also improved remarkably by coupling with RGO and shows a linear relationship between the reaction activity and reaction time.The reason behind the enhancement was also investigated and is discussed.

Results and Discussion

As proved in our previous study,spherical Cu 2O aggregates (cuboid microstructure)characterized by exposed {100}facets are better for CO 2conversion than octahedral Cu 2O particles characterized by exposed {111}facets.[8]The spherical Cu 2O ag-gregates are referred to herein as the photocatalysts.The XRD patterns of spherical Cu 2O and Cu 2O/RGO composites both prepared by an identical one-step microwave-assisted chemical route are shown in Figure 1.All the diffraction peaks in the XRD patterns of both samples match well with those of cubic-phase Cu 2O (JCPDS No.78-2076).For Cu 2O/RGO composites,no peaks that correspond to RGO,Cu,CuO,or Cu(OH)2were de-tected.The absence of diffraction peaks of carbon species is attributed to the low amount and the relatively low diffraction intensity of RGO.[19]

The morphology of Cu 2O and Cu 2O/RGO composites was in-vestigated by SEM and TEM.Blank Cu 2O presents a typical

morphology of spherical aggregates with an average diameter of approximately 5m m (Figure 2a).The morphology of exfoliat-ed GO sheets,which are used as precursor to fabricate Cu 2O/RGO composites,is shown in Figure 2b.The thin sheet shows a typical 2D structure with many wrinkles and folds.In most

cases,the introduction of RGO has a negligible influence on the morphology of the product.The flexible RGO sheets can be observed clearly on the surface of the spherical aggregates,which indicates the formation of Cu 2O/RGO composites (Fig-ures 2c and S1a).As reported,the formation of Cu 2O/RGO ag-gregates is a result of the strong affinity between the metal oxide and the abundant functional groups of graphene oxide.[18,20]The intimate contact between the RGO sheet and Cu 2O microspheres was further confirmed by TEM (Figure 2d).The structures of the as-prepared photocatalysts were char-acterized by X-ray photoelectron spectroscopy (XPS;Fig-ure S1b).To investigate the degree of reduction of GO in the reduction process,high-resolution C 1s XPS spectra were col-lected from Cu 2O/RGO composites (Figure 3a).The C 1s spec-trum can be deconvoluted into three peaks at 284.6,285.8,and 288.7eV,which are associated with graphitic sp 2carbon (C =C/C àC),carbonyl (C àO),and carboxyl (O àC =O)functional groups,respectively.[21]The relative content of graphitic carbon in the sample is estimated to be 69.6%,which is much higher than 41.9%of GO.[22]The much stronger peaks related to graphitic sp 2carbon suggests considerable deoxygenation in the one-step hydrothermal reaction,which leads to the forma-tion of RGO in the composites.The fitted Cu 2p spectra of Cu 2O and Cu 2O/RGO composites are shown in Figure 3b and c,respectively,which assists the determination of the oxidation sates of Cu elements.In the asymmetric core-level spectrum,the peaks at 932.4and 952.2eV correspond to the binding energy of Cu 2p 3/2and Cu 2p 1/2of Cu 2O or Cu,and those at 934.3and 953.8eV are attributed to CuO.[23]The appearance of weak and broad satellite peaks around 943.0eV also confirms the coexistence of a trace amount of CuO,although it is

not

Figure 1.XRD patterns of Cu 2O and Cu 2O/RGO

composites.

Figure 2.(a)SEM image of Cu 2O microspheres.(b)TEM image of graphene oxide.(c)SEM image of Cu 2O/RGO composites.(d)TEM image of Cu 2O/RGO composites.

detected in the XRD measurements.[24]

This can be ascribed to

the relatively small amount and the amorphous nature of CuO

that might be because of surface oxidization of Cu 2O.The activity of samples for the photoreduction of CO 2was then evaluated at ambient temperature under 150W Xe lamp

irradiation.To exclude the possible influence of contaminants

on the solid composite photocatalyst,a thermal pretreatment

was performed before each photocatalytic test.Based on the

control photocatalytic experiment under identical conditions

but in the absence of CO 2(Cu 2O/0.5%RGO composites under

Ar atmosphere),the negligible amount of CO (Figure S2a)indi-cates that the surface of the photocatalysts is clean and RGO cannot be converted to CO under these experimental condi-tions.Furthermore,no obvious CO is detected either in the ab-sence of light or photocatalyst (Figure S2a).The activity of Cu 2O and Cu 2O/RuO x samples was tested firstly,with a thermal pretreatment in air similar to that reported before.[10]

The evo-lution of CO is detected as the major product if spherical Cu 2O

aggregates are used as the photocatalyst without a noble-metal co-catalyst (Figure 4a),in agreement with the previous report.[10]

Cu 2O treated in air,Cu 2O/RuO x treated in air,and

Cu 2O treated in Ar show different activities.The amount of CO

produced by Cu 2O treated in Ar is at least three times greater

in 2h compared with the sample treated in air.The difference

is because of the amount of CuO,which is much higher in the

latter than the former as proved later.As we recently also found that the active compo-nent for H 2production in a Cu x O/TiO 2junction is Cu 2O rather than CuO,[25]it is informa-tive to evaluate the ability of CuO for CO 2photoreduction.A similar microwave-assisted hy-drothermal reaction was used to fabricate a CuO photocatalyst.Less than 10ppm CO is detected after 6h (Figure S2b),which is much poorer than any Cu 2O-based photocatalyst.It is clear that RGO exhibits a significant influence on the yield of CO as even a small amount of RGO leads to a twofold enhancement in the reaction activity.The Cu 2O/0.5%RGO composites pro-duce CO at an average of 50ppm g à1h à1nearly linearly for 20h.[26,27]This average value is approximately one order of magnitude higher than that of Cu 2O treated under air and even four times higher than the Cu 2O/RuO x junction reported previous-ly.We also measured possible

products,for example,methanol,

in solution but did not find other product except CO (Fig-ure S3).To clarify the origin of the CO generated during the re-action,the photoreduction of 13C-labeled CO 2was conducted by using the Cu 2O/RGO photocatalyst.Negligible 12CO (m /z =28)is observed in the mass spectrum (Figure 4c).The domi-nant peak of 13CO (m /z =29)clearly indicates that the evolved CO originates entirely from the photoreduction of 13C-labeled CO 2rather than organic contaminants that might be adsorbed on the photocatalyst surface or in the reactor if Cu 2O/RGO is used as the photocatalyst.[28,29]Furthermore,we compared Cu 2O/RGO with P25TiO 2for CO 2conversion under the full arc irradiation of a 150W Xe lamp.Cu 2O/RGO exhibits at least 20times higher activity than P25TiO 2under identical experi-mental conditions (Figure 4d).[15]

The composite was also optimized as shown in Figure 4b.

An appropriate loading amount of RGO is crucial to achieve the best photocatalytic activity,which is 0.5%RGO.Less RGO

cannot separate electrons from holes efficiently,and more RGO would block light absorption.[30]The optical absorption of the photocatalysts was investigated accordingly.Interestingly,the

absorption ability of Cu 2O is relatively enhanced in both the

UV and visible regions if coupled with 0.5%RGO (Figure 5a).As a result of the very thin layer of RGO synthesized,we cannot attribute the enchanted absorption to RGO absorption only.This might be because of the scattering of the RGO layer to Cu https://www.sodocs.net/doc/9416122094.html,pared to blank Cu 2O,a slight redshift of the light absorption edge is also observed,which could be attributed

to

Figure 3.(a)C 1s spectrum of Cu 2O/RGO composites.(b)Cu 2p spectrum of Cu 2O.(c)Cu 2p spectrum of Cu 2O/RGO

composites.d()Cu 2p spectrum of Cu 2O treated under air atmosphere.

the hybridization of the carbon material.[30,31]As a result,the band gap of the Cu 2O/RGO composites is estimated to be 1.94eV,which is somewhat smaller than that of Cu 2O (1.98eV).To prove the impact of RGO on the separation and transport of photogenerated charge carriers,photocurrent measure-ments were performed by depositing these materials on fluo-rine-doped tin oxide (FTO)electrodes.The fast and reproduci-ble photocurrent response for each switch-on and switch-off light cycle in both p-type Cu 2O (treated in Ar)and Cu 2O/RGO electrodes is shown in Figure 5b.Under irradiation,the photo-current of the Cu 2O/RGO electrode is approximately 1.6times higher than the blank Cu 2O electrode prepared in Ar,which is consistent with the results of CO 2photoconversion.As the photocurrent is dominated by electron transfer in the p-type photoelectrodes,the enhanced photocurrent can be regarded as straightforward evidence for the improved separation of electrons from holes in Cu 2O.The trapped electrons in RGO can be transferred readily to the FTO conductive glass because of the Ohmic contact between them,which minimizes charge recombination losses.[32]

The effect of RGO on the stability of Cu 2O during the photo-catalytic reaction is clear.Photocatalysts treated under an air

atmosphere suffer a dramatic decrease of CO production within the first hour.Differently,the profile of the composite activity is a nearly linear increase that can be maintained for more than 20h.To further indicate the stability issue,the yields of CO in the 20th hour over different photocatalysts are shown in Figure 6a.As can be seen,46ppm g à1CO is pro-duced over Cu 2O/0.5%RGO,which is 5.7times higher than that of blank Cu 2O (8ppm g à1).Compared to Cu 2O treated in air and Cu 2O/RuO x (both less than 1ppm g à1),more than 50times enhancement has been achieved.The poor stability of Cu 2O and Cu 2O/RuO x treated under an air atmosphere is attrib-uted to the partial oxidation of CuO upon heating.The XPS peak that corresponds to Cu 2+is much higher than that in the Cu 2O sample treated under an Ar atmosphere (Figure 3d).As a result of the more positive conduction band of CuO,the rela-tively high amount of CuO inevitably results in deteriorated photocatalytic activity for CO production,which agrees well with previous results.[25,33]

To investigate the structural changes of Cu 2O under irradia-tion,Cu 2O treated under Ar and Cu 2O/0.5%RGO were collect-ed after the photoreduction reaction and characterized by XPS and XRD measurements.The XPS spectra of Cu 2O and Cu 2

O/

Figure 4.(a)Time-dependent photocatalytic conversion of CO 2into CO over Cu 2O and Cu 2O/RGO composites.(b)Photocatalytic conversion of CO 2over Cu 2O/RGO composites with different amounts of RGO (0.5g photocatalysts,sodium sulfite as a hole scavenger,full arc irradiation of a 150W Xe lamp).(c)MS spec-trum of the gas-phase products of 13CO 2photoreduction by the Cu 2O/RGO photocatalyst.(d)Time-dependent photocatalytic conversion of CO 2over Cu 2O/RGO and P25.

0.5%RGO composites after the photocatalytic reaction are shown in Figure https://www.sodocs.net/doc/9416122094.html,pared with the data shown in Fig-ure 3b and c,the partial transformation of Cu 2O into CuO is confirmed by the increased peak intensities that correspond to CuO.These results indicate that the activity and stability of Cu 2O-based photocatalysts during CO 2photoreduction show a strong dependence on the oxidation state of Cu.RGO can protect the Cu 2O surface from oxidation as indicated by XPS measurements,which is similar to a Cu 2O nanowire coated with a carbon layer for efficient water reduction.[13]Further-more,the reduction of Cu +into Cu metal is the other issue that influences the photocatalyst activity and stability,which cannot be identified easily by XPS.In the XRD pattern of Cu 2O after the photocatalytic reaction (Figure 6b),two additional peaks at around 43.3and 50.48are observed,which can be in-dexed to Cu metal (JCPDS No.04-0836).The appearance of Cu metal indicates concomitant light-induced reduction reaction under irradiation.However,no peak that corresponds to Cu is detected in the Cu 2O/RGO composites after the reaction.It is reasonable that the efficient electron transfer from Cu 2O to RGO results in the inhibited reduction of Cu +,which also im-proves the stability of the photocatalyst.

Leaching experiments are usually used to evaluate photocor-rosion during a photocatalytic reaction.The leaching of Cu from the photocatalysts was studied by analyzing the change of concentration of Cu ions in the solution by using inductively coupled plasma optical emission spectrometry (ICP-OES).The leaching of Cu caused by photocorrosion is only 96ppm for Cu 2O/RGO (Figure 7a).However,Cu 2O suffers much more seri-ous photocorrosion with a value of 2670ppm after 3h.These results agree well with the inconspicuous morphological change of Cu 2O/RGO photocatalysts (Figure S5).Furthermore,Cu 2O/RGO composites exhibit reproducible activity during four consecutive runs (Figure S6).

Electrochemical impedance spectroscopy (EIS)was used to study the influence of RGO on the conductivity and charge transfer of the materials.The Nyquist plot of Cu 2O/0.5%RGO has a much smaller radius than that of blank Cu 2O (Figure 7b).As reported,the semicircle in a Nyquist plot at high frequen-cies is characteristic of the charge transfer process and the di-ameter of the semicircle is an indicator of the charge transfer resistance.[34]The smaller resistance of Cu 2O/RGO composites further confirms that the thin layer of RGO with good conduc-tivity does not block electron transfer but facilitates

electron

Figure 5.(a)UV/Vis spectra of Cu 2O and Cu 2O/0.5%RGO composites.

(b)Photocurrent response of Cu 2O and Cu 2O/RGO electrodes (full spectrum,150W Xe lamp,0.5m NaSO 4solution,pH =

6.8).

Figure 6.(a)CO yield in the 20th hour over different photocatalysts.(b)XRD patterns of Cu 2O and Cu 2O/RGO after the photocatalytic reaction.

migration to the reaction sites on the surface of the compo-site.

Mott–Schottky analysis was used to determine both the donor density and flat-band potential (E FB )at the semiconduc-tor–liquid interface.Both Cu 2O and Cu 2O/RGO show a negative slope (Figure 8a),which indicates p-type semiconductor prop-erties.[35]The sample with 0.5%RGO exhibits a smaller slope in the Mott–Schottky plot than blank Cu 2O,which suggests an in-crease of donor density.The flat-band potentials of Cu 2O and Cu 2O/0.5%RGO,calculated from the x intercepts of the linear region,are à0.11and à0.08V vs.Ag/AgCl,respectively.Gener-ally,the potential measured against an Ag/AgCl reference can be converted into normal hydrogen electrode (NHE)potentials by using Equation (1):[36]

E FB evs :NHE T?E FB epH 0,vs :AgCl TtE AgCl t0:059?pH

e1T

The measured pH value of the electrolyte is approximately 6.8,and E AgCl =0.197V.Therefore,the calculated flat-band posi-tions of Cu 2O and Cu 2O/RGO are 0.47and 0.5V vs.NHE (pH 0),thus the wrapping of Cu 2O by RGO has little influence on the potential of the photogenerated holes.[37]The influence of RGO on the recombination of electron–hole pairs was further con-firmed by photoluminescence (PL)measurements,which are widely used to study the efficiency of charge-carrier trapping,migration,and transfer in photocatalysts.The PL spectra of Cu 2O and Cu 2O/RGO composites under an excitation wave-length of 400nm are presented in Figure 8b.Cu 2O shows a broad PL emission peak at around 605nm.As expected,Cu 2O/RGO shows an extremely reduced PL intensity,which in-dicates the mitigated charge recombination in comparison to Cu 2O.[38]Generally,this is attributed to the efficient charge transfer from Cu 2O to RGO,which leads to an improvement in the separation efficiency of the light-stimulated carriers.[39]Following the significantly improved photocatalytic activity and stability,the apparent quantum yield of Cu 2O/RGO was measured in the visible region to be approximately 0.34%at 400nm.

Based on these results,the reasons for the superior photoca-talytic activity and stability of Cu 2O/RGO during noble-metal-free CO 2reduction are illustrated in Scheme 1.The electronic structures of Cu 2O and RGO are discussed first.With a band gap of 1.94eV and a valance band at around 0.5eV,the con-duction band of Cu 2O in the composites is estimated to be à1.44eV vs.NHE (pH 0).RGO,with superior conductivity,can enhance the charge separation significantly,which is crucial

for

Figure 7.(a)Leaching of Cu caused by photocorrosion after 3h reaction time.(b)EIS of Cu 2O and Cu 2O/RGO composite

electrodes.

Figure 8.(a)Mott–Schottky plots of Cu 2O and Cu 2O/RGO.(b)PL spectra of Cu 2O and Cu 2O/RGO.

the electron-dominated reduction reaction.[39,40]Secondly,with a lower activation potential and more active sites for the pho-toreduction reaction,RGO is considered as a promising2D substrate for solar fuel production compared to others report-ed for water splitting.[41]Furthermore,it has been reported that the restrained accumulation of electrons and decreased local electron density in graphene-based composites can facili-tate the two-electron interaction for CO production selective-ly.[42]Finally,the role of RGO as an electron acceptor that can extract electrons from Cu2O retards the possible reduction of Cu2O efficiently and improves photostability of the photocata-lyst significantly.[43]Furthermore,the presence of the RGO layer also prevents the direct contact of Cu2O with water,which slows the oxidation of Cu2O into CuO.[44]

Conclusions

A microwave-assisted in situ reduction chemical method has been used to fabricate Cu2O/reduced graphene oxide(RGO) junction composites for the photocatalytic reduction of CO2. By coupling with RGO,the photoreduction activity of Cu2O was enhanced by two times,with CO as the only reduction product.Furthermore,an almost linear reactivity for CO2con-version has been achieved,which represents an approximately six times increase of the CO production rate in the20th hour compared with blank Cu2O to result in an apparent quantum yield of approximately0.344%in the visible region(at 400nm).Stability is an issue for a Cu2O photocatalyst.The in-corporation of RGO into Cu2O improves the photocatalyst sta-bility remarkably,which shows a great potential for CO2con-version in a sustainable manner.Based on the optical and elec-trochemical measurements,the superior photocatalytic activity and stability of Cu2O/RGO composites are ascribed to the re-tarded electron–hole recombination,efficient charge transfer, and protective function of RGO.This work opens a promising prospect for the utilization of Cu2O/RGO as a visible-light-driven photocatalyst for CO2photoconversion without the need for a noble-metal co-catalyst.

Experimental Section

Synthesis of Cu2O/RGO junction

composites

Graphene oxide(GO)solution was

synthesized from natural graphite

powder by a modification of

Hummers’method.[45]Cu2O/RGO

composites were fabricated by

a microwave-assisted hydrothermal

reaction.Firstly,Cu(NO3)2was

added to a mixture of ethanol and

water in the ratio of64:36.Then,

a calculated amount of GO solu-

tion and formic acid(3mL)were

added.For optimization,Cu2O/

RGO composites with different amounts of RGO were also synthesized,which include Cu2O/0.25% RGO,Cu2O/0.5%RGO,and Cu2O/1%RGO,in which x%represents the calculated weight ratio of the GO added to Cu2O.After stirring for2h,the homogeneous solution was heated with stirring in the microwave system at1508C for3h.After the product was cooled to RT,the final product was collected by centrifugation,washed with water five times,and dried at708C.Blank Cu2O was synthe-sized through the same procedure,except for the addition of GO solution.

Characterization

XRD was performed by using a Rigaku RINT2100diffractometer at a voltage of40kV.The morphologies of the products were charac-terized by field-emission scanning electron microscopy(FESEM, JEOL-6701F)and TEM(JEOL-2010F).UV/Vis spectra were recorded by using a Shimadu UV/Vis2550spectrophotometer.XPS measure-ments were performed by using a Thermo Scientific XPS spectrom-eter.PL emission spectra were measured at RT by using a fluores-cence spectrophotometer(F-4500,Hitachi).

Fabrication of film electrodes and electrochemical measurements

Photocatalyst(5mg)and Nafion solution(10m L,5wt%)were dis-persed in a water/isopropanol mixture(1mL,3:1v/v)by at least 30min sonication to form a homogeneous catalyst colloid.For the measurements,the catalyst colloid(100m L)was deposited onto an area of approximately1cm2of the FTO conductive glass to form the working electrode.A Pt wire was used as a counter electrode, and an Ag/AgCl electrode was the reference electrode in the three-electrode photo-electrochemical system.The electrolyte was 0.5m NaSO4aqueous solution degassed with Ar.Electrochemical measurements were performed by using an iviumstat potentiostat equipped with Ivium software.EIS were recorded under an alter-nating current perturbation signal of10mV over the frequency range of1MHz to100mHz.Mott–Schottky plots were obtained under direct current potential polarization.The potential ranged fromà1.0to0V with a potential step of10mV at a frequency of 1kHz.

Photocatalytic activity measurements

The CO2reduction reaction was performed in batches by using a septum-sealed glass chamber with a volume of120mL,

which Scheme1.Schematic illustration of the charge transfer in Cu2O/RGO composites.

was heated at1608for1h prior to measurement.To remove possi-ble trace organic contaminants,photocatalysts were treated at 2008C for3h in a tubular furnace under the protection of Ar or in air(denoted Cu2O treated in Ar or air).A typical photocatalytic ex-periment was conducted by using0.5g of photocatalysts and 3mL of deionized water in a CO2-purged120mL reactor.Excess (0.7m)sodium sulfite was added to each batch as a hole scaveng-er.[15,46]A150W Xe lamp(Newport)was used as a light source.The light output was measured by using a Newport1918-R high-per-formance optical power meter fitted with a Newport918-D cali-brated photodetector equipped with an integrated attenuator.The reaction product was monitored by periodical sampling of the gas phase from the glass chamber by using a gas-tight syringe and an-alyzed by GC(Varian GC-450)with a thermal conductivity detector (TCD,connected to a molecular sieve column)to detect H2,O2, and N2and a flame ionization detector(FID,connected to a CP-SIL 5CB capillary column)to detect hydrocarbons.Ar was used as the GC carrier gas.A methanizer was installed to enable the FID to detect CO with1000 higher sensitivity.For the isotope-tracer ex-periment,the same photocatalytic procedure was used.After the addition of Cu2O/RGO(0.5g)into CO2-saturated water(10mL),the septum-sealed reactor was purged by Ar gas for10min.Then, 13CO

2

(13C99%,Sigma–Aldrich)was introduced.The sample was ir-radiated with a150W Xe lamp for30min,and then0.5mL of the reaction product taken from the vessel headspace was analyzed by GC–MS(Shimadzu QP-2010SE)with a molecular sieve5 capillary column.He gas was used as carrier gas during the measurement.

Acknowledgements

X.A and J.T.acknowledge financial support from the European Commission under the7th Framework Energy Program(Project reference:309636).K.L.and J.T.are also thankful for a grant from the Qatar National Research Fund under its National Priori-ties Research Program award number NPRP09-328-2-122.The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund.

Keywords:carbon·copper·graphene·photosynthesis·reduction

[1]S.Habisreutinger,L.Schmidt-Mende,J.Stolarczyk,Angew.Chem.Int.Ed.

2013,52,7372–7408;Angew.Chem.2013,125,7516–7557.

[2]T.Inoue,A.Fujishima,S.Konishi,K.Honda,Nature1979,277,637.

[3]J.Tang,J.Durrant,D.Klug,J.Am.Chem.Soc.2008,130,13885–13891.

[4]J.Tang,A.Cowan,J.Durrant,D.Klug,J.Phys.Chem.C2011,115,3143–

3150.

[5]S.Navalón,A.Dhakshinamoorthy,M.Alvaro,H.Garcia,ChemSusChem

2013,6,562–577.

[6]M.Wang,L.Sun,Z.Lin,J.Cai,K.Xie,C.Lin,Energy Environ.Sci.2013,6,

1211–1220.

[7]A.Paracchino,N.Mathews,T.Hisatomi,M.Stefik,S.Tilley,M.Gr?tzel,

Energy Environ.Sci.2012,5,8673–8681.

[8]P.Tran,L.Wong,J.Barberbcd,J.Loo,Energy Environ.Sci.2012,5,5902–

5918.

[9]G.Ghadimkhani,N.Tacconi,W.Chanmanee,C.Janakyab,K.Rajeshwar,

https://www.sodocs.net/doc/9416122094.html,mun.2013,49,1297–1299.[10]A.Handoko,J.Tang,Int.J.Hydrogen Energy2013,38,13017–13022.

[11]A.Paracchino,https://www.sodocs.net/doc/9416122094.html,porte,K.Sivula,M.Gr?tzel,E.Thimsen,Nat.Mater.

2011,10,456–461.

[12]B.Li,T.Liu,L.Hu,Y.Wang,J.Phys.Chem.Solids2013,74,635–640.

[13]Z.Zhang,R.Dua,L.Zhang,H.Zhu,H.Zhang,P.Wang,ACS Nano2013,

7,1709–1717.

[14]W.Tu,Y.Zhou,Q.Liu,S.Yan,S.Bao,X.Wang,M.Xiao,Z.Zou,Adv.

Funct.Mater.2013,23,1743–1749.

[15]P.Wang,Y.Bai,P.Luo,J.Liu,https://www.sodocs.net/doc/9416122094.html,mun.2013,38,82–85.

[16]X.Lv,W.Fu,C.Hu,Y.Chen,W.Zhou,RSC Adv.2013,3,1753–1757.

[17]Y.Liang,B.Vijayan,K.Gray,M.Hersam,Nano Lett.2011,11,2865–2870.

[18]P.Tran,S.Batabyal,S.Pramana,J.Barber,L.Wong,S.Loo,Nanoscale

2012,4,3875–3878.

[19]J.Lee,K.You,C.Park,Adv.Mater.2012,24,1084–1088.

[20]N.Li,Y.Xiao,C.Hu,M.Cao,https://www.sodocs.net/doc/9416122094.html,n J.2013,8,1960–1965.

[21]X.An,J.Yu,F.Wang,C.Li,Y.Li,Appl.Catal.B2013,129,80–88.

[22]X.An,J.C.Yu,Y.Wang,Y.Hu,X.Yu,G.Zhang,J.Mater.Chem.2012,22,

8525–8531.

[23]X.Qiu,M.Miyauchi,K.Sunada,M.Minoshima,M.Liu,Y.Lu,D.Li,Y.Shi-

modaira,Y.Hosogi,Y.Kuroda,K.Hashimoto,ACS Nano2012,6,1609–1618.

[24]H.Liu,J.Wang,X.M.Fan,F.Z.Zhang,H.R.Liu,J.Dai,F.M.Xiang,Mater.

Sci.Eng.2013,178,158–166.

[25]Z.Wang,Y.Liu,W.Wang,W.Huang,D.Martin,J.Tang,Phys.Chem.

Chem.Phys.2013,15,14956–14960.

[26]A.Bazzo,A.Urakawa,ChemSusChem2013,6,2095–2102.

[27]S.Yan,S.Ouyang,J.Gao,M.Yang,J.Feng,X.Fan,L.Wan,Z.Li,J.Ye,Y.

Zhou,Z.Zou,Angew.Chem.2010,122,6544–6548.

[28]K.Maeda,K.Sekizawa,O.Ishitani,https://www.sodocs.net/doc/9416122094.html,mun.2013,49,10127–

10129.

[29]S.Sato,T.Morikawa,T.Kajino,O.Ishitani,Angew.Chem.Int.Ed.2013,

52,988–992;Angew.Chem.2013,125,1022–1026.

[30]Y.Zhang,Z.Tang,X.Fu,Y.Xu,ACS Nano2010,4,7303–7314.

[31]X.Lv,W.Fu,H.Chang,H.Zhang,J.Cheng,G.Zhang,Y.Song,C.Hu,J.

Li,J.Mater.Chem.2012,22,1539–1546.

[32]C.Guo,H.Yang,Z.Sheng,Z.Lu,Q.Song,C.Li,Angew.Chem.Int.Ed.

2010,49,3014–3017;Angew.Chem.2010,122,3078–3081.

[33]W.Wang,J.Park,P.Biswas,Catal.Sci.Technol.2011,1,593.

[34]X.An,J.Yu,J.Tang,J.Mater.Chem.A2014,2,1000–1005.

[35]Y.Hsu,C.Yu,Y.Chen,Y.Lin,J.Power Sources2013,242,541–547.

[36]Y.Qiu,K.Yan,H.Deng,S.Yang,Nano Lett.2012,12,407–413.

[37]Y.Hsua,C.Yua,Y.Chen,Y.Lin,Electrochim.Acta2013,105,62–68.

[38]G.Katsukis,J.Malig,C.Schulz-Drost,S.Leubner,N.Jux,D.Guldi,ACS

Nano2012,6,1915–1924.

[39]Y.Hou,https://www.sodocs.net/doc/9416122094.html,ursen,J.Zhang,G.Zhang,Y.Zhu,X.Wang,S.Dahl,I.Chor-

kendorff,Angew.Chem.Int.Ed.2013,52,3621–3625;Angew.Chem.

2013,125,3709–3713.

[40]B.Li,H.Cao,G.Yin,Y.Lu,J.Yin,J.Mater.Chem.2011,21,10645–10648.

[41]Q.Xiang,J.Yu,J.Phys.Chem.Lett.2013,4,753–759.

[42]W.Tu,Y.Zhou,Q.Liu,Z.Tian,J.Gao,X.Chen,H.Zhang,J.Liu,Z.Zou,

Adv.Funct.Mater.2012,22,1215–1221.

[43]L.Jia,D.Wang,Y.Huang,A.Xu,H.Yu,J.Phys.Chem.C2011,115,

11466–11473.

[44]C.Xiang,G.Kimball,R.Grimm,B.Brunschwig,H.Atwater,N.Lewis,

Energy Environ.Sci.2011,4,1311–1318.

[45]W.Hummers,R.Offeman,J.Am.Chem.Soc.1958,80,1339–1339.

[46]Q.Zhai,S.Xie,W.Fan,Q.Zhang,Y.Wang,W.Deng,Y.Wang,Angew.

Chem.Int.Ed.2013,52,5776–5779;Angew.Chem.2013,125,5888–5891.

Received:November7,2013

Revised:December18,2013

Published online on February26,2014

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯纤维纱的性能及其应用

石墨烯纤维纱的性能及其应用 石墨烯的发现 石墨烯是目前发现的最薄、最坚硬、导电性能最强的新型纳米材料,从2004年石墨烯在实验室被正式制备以来,受到全球广泛关注,被誉为“新材料之王”。在国内,相关技术人员通过打开分子链,嵌入金属模板,利用高科技高温煅烧这一航天技术,成功从玉米芯纤维素中研制出生物质石墨烯,全球首创,成为2016年纤维新秀。 用石墨烯纤维面料的独特功效 1、体温即可激发的远红外 石墨烯特有人体体温激发远红外功能,促进血液微循环,加速新陈代谢,有效放松肌肉缓解疲劳,用石墨烯纤维面料制作贴身衣物,亲肤能改善血液微循环,缓解慢性疼痛,有效改善人体亚健康。 2、抗菌抑菌 石墨烯纤维特有抗菌抑菌功能,有效抑制真菌的滋生,抑菌除臭功能显著。 3、吸湿透气 石墨烯纤维同时具有祛湿透气功能,能持久保持肌肤干爽,透气舒适,有效保护私处健康。 4、抗静电 天然抗静电功能,让穿着更舒适。 5、防紫外线 石墨烯纤维同时具防紫外线功能,无论制作贴身衣物还是外穿时装,功能同样出众。

石墨烯纤维的应用范围 、墨烯内暖纤维石墨烯内暖纤维是由生物质石墨烯与各类纤维复合而成的一种智能多功能纤维新材料,具备超越国际先进水平的低温远红外功能,集防静电等作用于一身。 石墨烯内暖纤维长丝、短纤规格齐全,短纤可与棉毛丝麻等纤维以及涤纶腈纶等其他各种纤维等其他各种纤维搭配混纺,长丝可与各种纤维交织,制备不同功能需求的纱线面料。 在纺织领域,可以制成袜类、婴幼服饰、家居面料、户外服装等。石墨烯内暖纤维的用途服装领域,还可以应用于车辆内饰、美容卫材、摩擦材料、过滤材料等。 墨烯内暖绒材料石墨烯内暖绒是由生物质石墨烯均匀分散于涤纶空白切片中进行共混纺丝生产而成。该技术既充分利用了可的低成本生物质资源,又将生物质石墨烯的功能充分展现到纤维中,获得了高性能、高附加值的新型纺织材料。石墨烯内暖绒材料具有远红外升温、保暖透气、抗静电等多功能特性,作为填充材料应用于棉被、羽绒服等,对提升纺织工业创新能力和推动高附加值产品开发具有重大意义和市场价值。

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯学习心得

石墨烯学习心得 最近这段时间断断续续搜集了很多纳米材料、半导体物理还有石墨烯的相关资料,主要是来自万方数据网、超星学术视频网站、百度文库还有一些相关网页博客资料。了解到了很多之前闻所未闻的知识,比如“纳米材料的神奇特性、纳米科技潜在的危害”等等。 对于石墨烯,主要有如下几方面不成熟的想法,还望老师您来指正。 (1) 在石墨烯新奇特性以及宏观应用预测方面 有人认为,石墨烯的这些新奇的特性以及预期应用并不能推广到宏观尺寸。 第一是认为很多实验数据都是来源于对微纳米级单层石墨烯的实验研究,不能把纳米微米级观察和测试到的数据无限夸大到宏观应用; 第二是认为单层悬浮石墨烯的特异性是依靠其边界碳原子的色散作用而稳定存在,大面积的单层悬浮石墨稀不可能稳定存在。第三是认为目前的大面积石墨烯的应用实例存在相当大的褶皱以及碳原子缺失。因而否定很多2010年诺贝尔物理奖的公告中对于石墨稀的宏观应用预测,并主张继续深入石墨烯微观性能研究,比如半导体器件等研究。 我想:我们最好还是不能放弃石墨烯在宏观尺度上应用的希望,应该尽最大努力用各种手段去克服所谓的褶皱、碳原子缺失等等导致石墨烯性质不能稳定存在的负面因素,比如采用衬底转移(CVD)的方式所制大面积石墨烯透明电极尺寸的方法(虽然制得的石墨烯还有很多的缺陷,但至少证明大面积石墨烯还是有可能稳定存在并最终为我们所用的吧,毕竟有宏观实际应用的材料才更有可能是有发展前景的新型材料)。 (2) 在石墨烯制备工艺方面 我们知道,石墨烯非常有希望在诸多应用领域中成为新一代器件,但这些元件要达到实际应用水平,还需要解决很多问题。那就是如何在所要求的基板或位置制作出不含缺陷及杂质的高品质石墨烯,或者通过掺杂 (Doping)法实现所期望载流子密度的石墨烯。用于透明导电膜用途时能否实现大面积化及量产化,而用于晶体管用途时能否提高层控制精度,这些问题都十分重要。今后,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。(3) 石墨烯在纳米存储器上的应用前景 传统的半导体工艺技术已逐渐逼近物理极限,难以大幅度提高存

石墨烯的制备

石墨烯的制备 摘要: 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势. 关键词: 石墨烯; 石墨烯氧化物; 制备; 功能化石墨烯。 背景摘要 2004年, 英国曼彻斯特大学的Geim研究小组首次制备出稳定的石墨烯, 推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论, 震撼了整个物理界[1], 引发了石墨烯的研究热潮[2]. 理想的石墨烯结构可以看作被剥离的单原子层石墨, 基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料, 这是目前世界上最薄的材料—单原子厚度的材料. 这种特殊结构蕴含了丰富而新奇的物理现象, 使石墨烯表现出许多优异性质[3-6], 石墨烯不仅有优异的电学性能(室温下电子迁移率可达 2×105cm2/(V·s))[7-8], 突出的导热性能

(5000 W/(m·K))[9-10], 超常的比表面积(2630 m2/g)[11], 其杨氏模量(1100 GPa)和断裂强度(125 GPa)[12-13]也可与碳纳米管媲美, 而且还具有一些独特的性能, 如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质[14]等. 与碳纳米管相比, 石墨烯的主要性能均与之相当, 甚至更好, 避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题, 而且制备石墨烯的原料价格便宜. 正是由于石墨烯材料具有如此众多奇特的性质, 引起了物理、化学、材料等不同领域科学家的极大研究兴趣, 也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。 一.石墨烯的制备方法概述 目前有关石墨烯的制备方法, 国内外有较多的文献综述,石墨烯的制备主要有物理方法和化学方法. 物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产. 目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[20]. 2006年Stankovich等[21]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称GO)的含氧基团从而恢复单层石墨的有序结构(氧化?还原法), 在此基础上人们

石墨烯基础及性能应用

Graphene Fundamentals and Performance Applications 石墨烯基础及性能应用 学校西安建筑科技大学 论文名称石墨烯基础及性能应用 班级材料科学1302 学号130502112 姓名王号强 指导教师李延军 2016年4月28日

目录 1.碳族材料概述 1.1碳的同素异形体—石墨和金刚石1.2碳的同素异形体—富勒烯 1.3碳的同素异形体—碳纳米管 1.4碳的同素异形体—石墨烯 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 2.2石墨烯的原子结构 2.3石墨烯与碳纳米管之间的关系2.4其它层状二维晶体 2.4.1氮化硼纳米片层 2.4.2二氧化钛纳米片 2.5纳米结构的石墨烯 3.石墨烯的性质及制备方法 3.1石墨烯的性质 3.2石墨烯的制备方法 4.石墨烯的表征 5.石墨烯的应用

1.碳族元素概述 1.1碳的同素异形体—石墨和金刚石 20世纪80年代以前,人们普遍认为碳有两种同素异形结构:石墨和金刚石。金刚石是闪闪发光且非常坚硬的晶体结构,有四个碳原子分别以sp3杂化(键角109度28分)形式相结合,形成三维的正四面体结构。石墨的结构完全不同于金刚石,碳原子采取sp2杂化(键角120度)形成相应的六方晶体结构。这两种材料的性质差异十分显著,例如,石墨中高度离域的π键网络结构表明,石墨比金刚石具有更高的导电率,而金刚石sp3碳原子有很强的共价键连锁网状结构,具有很高的硬度。加之,由于金刚石很宽的带隙(5.5ev),因而金刚石是一种绝缘体,而石墨是一种导体(带隙约为0.25ev)。 1.2碳的同素异形体—富勒烯 1985年,Kroto等人发现了富勒烯,在其1812种结构中,最稳定的是有12个五边形和20个六边形组成的32面体的笼状结构。一个C60分子的平均外径为1nm。由于富勒烯具有高度对称性,显示出可以在各种表面上滚动的特性,通过轮状富勒烯的转动,设计和合成的纳米车分子可直接在可控的表面上跑动。 1.3碳的同素异形体—碳纳米管 1991年,日本的电镜专家S.lijima在用石墨电弧发制备C60的过程中意外发现碳纳米管,该材料为中空结构管状物,由2—50层石墨层片卷曲而成,各层之间距离0.343nm,两端由半球形的端帽封闭。碳纳米管最有前景的应用是在场发射设备中作为电子发射器。 1.4碳的同素异形体—石墨烯 2004年,英国曼彻斯特大学的Andre Geim和konstantin Novoselov发现了石墨烯(graphene)。他们强行将石墨分离成较小的碎片,从碎片中剥离除较薄的石墨薄片,然后用一种特殊的胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二,不断重复,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成的新型的二维原子晶体—石墨烯。石墨烯的垩发现,充实了碳材料家族,形成了从零维的富勒烯、一维的纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 石墨烯仅是指排列在六方晶格中的准二维孤立碳原子层。单层石墨烯(single-layer graphene,SLG)和双层石墨烯(bilayer graphene,BLG)才是零带隙的半导体,它们各自只有一种电子和空穴。对于所谓的少层石墨烯(few-layer graphene,FLG,3-10层)而言,其导带和价带发生重叠,出现电荷载流子(charge carriers)。而更厚的石墨烯结构则被认为是石墨薄膜。 当石墨的层数少于10层时,就会表现出较普通三维石墨不同的电子结构,因此,将10层以下的石墨材料成为石墨烯材料。 2.2石墨烯的原子结构 单层石墨烯是单原子层紧密堆积的二位晶体结构,其中碳原子以六元环形状周期性排列于石墨烯平面内。每个碳原子通过*键与邻近三个原子相连,S、Px和Py三个杂化轨道形成强的共价键结合,组成SP2(120度键角)杂化结构,由于饱和烃的键角为109度28分,故120度的键角张力较小,所以赋予了石墨烯极高的力学性能。剩余的Pz轨道在与平面垂直的垩方向形成π轨道,此π电子可在石墨烯晶体平面内自由移动,而使石墨烯有良好的导电

石墨烯graphenems建模方法

2、build->make p1(目的是消除对称性,这样才能够删除一层原子)。 3、删除一层原子(选中原子->delete)。 4、修改晶格参数:build->crystal->rebuild crystal,设置方位角,, 5、构建supercell(方便掺杂,也为了好看):build->symetry->supercell,构建一个5x5x1的超原胞。 6、cleave surface(为了能够添加真空层):build->surface->cleave surface,(h,k,l)改为(0,0,-1) 7、添加20埃真空层(添加真空层是为了减小层与层之间的影响,至少20埃,大点没关系,最多是计算时时间长一点):build->srystal->build vacuum。 构建好后,模型如下: 两种模型的建立方法:第一种,导入软件内置模型执行file – import –structure –ceramics –,获得双层石墨烯,层间距为,将其扩充为6层,选定一层,将其移动到模型正中央,模型厚度为*3nm;第二种方法,建立晶胞,选择模型为第183型,设置参数为、和,然后将碳原子添加进去,设置坐标为、和,获得厚度为的晶胞,将其扩充为6层,因此它的厚度与第一种一样。 现在要确定两种模型的结点个数,为使体积接近,分别将其扩充为145和128个结点。 如图,显而易见,第一种模型边沿布满结点,而第二种模型边沿没有结点。 为使模型稳定,对它们初步先进行几何结构优化。优化以前,键角都是120°键长均为。 几何结构优化后,键长和键角均发生了一些轻微变化。 (模型一) (模型二) 导入石墨结构后,cleave surface,取石墨的C方向(001),选合适的thickness和position,使之只有一层原子(比如top:,thickness ),得到表面后再build vacuum slab,选thickness (比如20A),slab position可以选负的(比如-10A),这样就得到了,你还可以重新定义二维晶胞的晶格参数(build->symmetry->redefine lattice, 比如选B为-1 2 0,晶格就变成长方形的了,当然也可以在六方晶格的supercell上删掉一些原子得到长方形的supercell),使之更适合你的需要。 选择 Import |Structures| ceramics and import .然后选择 ,Build |Symmetry |Make P1,删除其中一层, 把剩下的一层移到中间,然后选择Build |Symmetry | Find Symmetry…|Find Symmetry |Impose Symmetry .接下来选择Build |Symmetry |Supercell ,创建5*5*1的石墨烯超晶胞 .接下来选择 Build |Crystals |Rebuild Crystal ... .把C

深度解读直接溶剂剥离法制备石墨烯

2.2 直接溶剂剥离法制备石墨烯流程图 石墨烯自发现以来,其优异的物理化学性质赋予了其广泛应用前景。要实现石墨烯的应用,必须寻找一种合适的是石墨烯制备方法。目前,石墨烯的制备方 法主要有机械剥离法,化学气相沉积法,还原氧化石墨烯法以及直接溶剂剥离法

等。微机械剥离法和化学气相沉积法虽然能得到高质量的石墨烯,但是产率低,难以满足石墨烯在复合材料等领域的应用。还原氧化石墨烯法实现了石墨烯的低成本大规模制备,但是所得到的石墨烯含有大量的缺陷。采用直接溶剂剥离法,既保持了石墨烯结构的完整性,又能够实现石墨烯的大规模制备,引起了研究者广泛关注,且听“材料+”小编为你慢慢道来。 直接溶剂剥离法在大规模、低成本制备高质量石墨烯方面展示出了极大的优越性,且所得到的石墨烯分散在不同的溶液中,不仅有利于对石墨烯的进一步修饰,而且利于石墨烯的加工应用,如溶液混合制备高性能复合材料,旋涂制备石墨烯薄膜等。因此,发展直接溶剂剥离法制备石墨烯具有重大意义。 何为液相或气相直接剥离法?文献中的定义是这样的:通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液,【材料+】微信平台将会为大家持续带来石墨烯的详细制备方法。 2.1.1 原料的选择 如果要制备片状石墨烯,最好选用鳞片石墨。当然,从石墨制备石墨烯产量相当低。例如,将石墨分散在有机溶剂中进行超声处理,得到石墨烯的产量不足1%。相对于石墨来说,膨胀石墨和石墨层间化合物具有更大的层间距,层与层之间的范德华力相对较小,得到单层石墨烯的产量更高。 2.1.2剥离溶剂的选择 Coleman小组研究表明;当溶剂的表面能与石墨烯相匹配时,溶剂与石墨

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用 摘要:纳米科学技术是当今社会科学中一个重要的研究话题。它是现代科学技术的重要内容,也是未来技术的主流。是基础研究与应用探索紧密联系的新兴高尖端科学技术。石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。 关键词;复合材料纳米材料石墨烯 正文; 一,石墨烯复合材料的制备 石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。 石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又 采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。 采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。研究表明PS微球通过公家方式连接到石墨烯的表面。通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

相关主题