搜档网
当前位置:搜档网 › 动态法测油滴电荷量研究报告

动态法测油滴电荷量研究报告

动态法测油滴电荷量研究报告
动态法测油滴电荷量研究报告

动态法测油滴电荷量的研究

组员

日期 时间 班级

摘要:OM99 CCD 微机密立根油滴仪是用于验证电荷的不连续性及测量基本电荷电量的物理实验仪器,也是学习了解CCD 图象传感器的原理与应用、学习电视显微测量方法的实验仪器。适用于理科、工科及大、中专学校的近代物理实验和普通物理实验的教案。

关键词:动<静)态测量法 密立根油滴仪 匀速上升

1 实验目的

会使用OM99 CCD 微机密立根油滴仪验证电荷的不连续性及测量基本电荷电量的物理实验仪器,学习了解CCD 图象传感器的原理与应用、学习电视显微测量方法的实验仪器。

2 实验原理

一个质量为m ,带电量为q的油滴处在二块平行极板之间,在平行极板未加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离后,油滴将作匀速运动,速度为Vg ,这时重力与阻力平衡<空气浮力忽略不计),如图1所示。根据斯托克斯定律,粘滞阻力为

式中

是空气的粘滞系数,a是油滴的半径,这时有

<1)

当在平行极板上加电压V 时,油滴处在场强为E的静电场中,设电场力q E与重力相反,如图2所示,使油滴受电场力加速上升,由于空气阻力作用,上升一段距离后,油滴所受的空气阻力、重力与电场

力达到平衡<

空气浮力忽略不计),则油滴将以匀速上升,此时速度为Ve,则有:

<2)

又因为 E=V/d <3) 由上述<1)、<2)、<3)式可解出

1

图2

<4)

为测定油滴所带电荷q,除应测出V、d和速度ve、vg外,还需知油滴质量m,由于空气中悬浮和表面张力作用,可将油滴看作圆球,其质量为

<5)

式中是油滴的密度。

由<1)和<

<6)

考虑到油滴非常小,空气已不能看成连续媒质,空气的粘滞系数应修正为

<7)

式中b为修正常数,p为空气压强,a为未经修正过的油滴半径,由于它在修正项中,不必计算得很精确,由<6)式计算就够了.

实验时取油滴匀速下降和匀速上升的距离相等,设都为l,测出油滴匀速下降的时间tg,匀速上升的时间te,则

<8)

由作图求出斜率K和截距B

再由公式:求得电荷量:

带入修正后的系数

求出a、m、n。分析结果

3 实验仪器

OM99油滴仪

仪器主要技术指标

平均相对误差:<3% 平行极板间距离:

5.00mm 0.01mm

极板电压:±DC0~700V可调提升电压:200V~300V

数字电压表:0~999V 1V 数字毫秒计:0~99.99秒0.01秒

电视显微镜:放大倍数60×<标准物镜),120×<选购物镜)

分划板刻度:2种分划板,电子方式,垂直线视场分八格,每格值0.25mm

电源:~220V、50HZ

4 实验过程

1 检查并打开仪器,重点检查油滴洞是否堵塞,

2 用喷壶喷入油滴,从油滴中选择一个平衡电压在100V左右,下降时间在10s到30s 之间的油滴,记录其平衡电压

3将仪器的平衡电压先降低,再上升,记录其电压和上升时间,并填入表格

5 数据处理

式中

1油雾

2

3防风

4上电

5油滴

6下电

7座架

图3

油的密度<20℃)

重力加速度<南京)

空气粘滞系数

油滴匀速下降距离

修正常数

大气压强

平行极板间距离

式中的时间t g应为测量数次时间的平均值。实际大气压可由气压表读出。

计算出各油滴的电荷后,求它们的最大公约数,即为基本电荷e值。若求最大公约数

有困难,可用作图法求e值。设实验得到m个油滴的带电量分别为,由于

电荷的量子化特性,应有,此为一直线方程,n为自变量,q为因变量,e为斜

率。因此m个油滴对应的数据在n ~ q坐标中将在同一条过圆点的直线上,若找到满足这一关系的直线,就可用斜率求得e值。

将e的实验值与公认值比较,求相对误差。<公认值e = 1.60 ×10-19库仑)

-165.02*

-126.58*

-97.46*

-49.85*

43.03*

59.88*

77.92*

95.60*

113.03*

132.16*

151.98*

172.61*

184.96*

作图<用坐标纸作图)

图4

图得上图4得

将K、vB值代入以下方程组

带入修正后的系数

可以得到:

6 结论:

本实验采用一种比较简单的方法来测定电子的电荷量e,通过密立根油滴实验来验证电荷的量子化,即电量不是连续变化的,而是基本电荷<电子的电量绝对值)的整数倍。通过实验时对仪器的调整、油滴的选择、耐心地跟综和测量以及数据的处理等,培养学生严肃认真和一丝不苟的科学态度。

7 误差分析

1计时器本身存在一定系统误差,当时间值大于10S小于30S误差尤其大

2钟油本身可能不纯净,亦可能和空气中的灰尘相结合导致误差

3由于实验中大量用手动操作,计时时可能存在误差

4油滴仪的电压值本来就有一定误差,可能导致值出问题

8 注意事项

1计时是要用手动控制,要注意与油滴上升同步

2所选取油滴上升时间应在10到30s之间,避免计时器误差过大

3在实验操作时要注意油滴要控制好不能中途跑走

参考文献:

[1]李学慧 .大学物理实验[M].北京.高等教育出版社,2005

实验与报告基本要求

1、测量数据表1,测量不同电压下Vi对应的油滴的下落时间te<用B5纸),

盖戳。

2、对电子版文件进行校对,

3、作图:<统一坐标纸,要求参考教材)

<1)、根据表1求出某个上升时间对应的油滴的上升速度,

<2)、在坐标纸上根据电压和速度画出实验点,根据实验点发布划直线,

<3)、求出直线斜率K,截距B

4、计算每一个变量,物理单位要统一

5、对计算部分进行排版校对。

6、打印文件,装订

<有原始数据、图、计算,用A4纸打印,两人一组,一份报告注明同组人员)。

7、15周,周三交报告。

8、注:B和V

是一个量

B

——天天向上?2018-11-19

实验二 基本电荷测定 密立根油滴实验

- 4 - 实验二 基本电荷测定??密立根油滴实验 密立根(R. A. Millikan )是著名的实验物理学家,1907年开始,他在总结前人实验的基础上,着手电子电荷量的测量研究,之后改为以微小的油滴作为带电体,进行基本电荷量的测量,并于1911年宣布了实验的结果,证实了电荷的量子化.此后,密立根又继续改进实验,精益求精,提高测量结果的精度,在前后十余年的时间里,做了几千次实验,取得了可靠的结果,最早完成了基本电荷量的测量工作.密立根的实验设备简单而有效,构思和方法巧妙而简洁,他采用了宏观的力学模式来研究微观世界的量子特性,所得数据精确且结果稳定,无论在实验的构思还是在实验的技巧上都堪称是第一流的,是一个著名的有启发性的实验,因而被誉为实验物理的典范.由于密立根在测量电子电荷量以及在研究光电效应等方面的杰出成就而荣获1923年诺贝尔物理学奖. 【实验目的】 1.学习密立根油滴实验的设计思想; 2.通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测定基本电荷量e ; 3.通过对实验仪器的调整,油滴的选择、跟踪和测量,以及实验数据处理等,培养学生严谨的科学实验态度. 【实验原理】 利用带电荷的微小油滴在均匀电场中运动的受力分析,可将油滴所带的微观电荷量q 的测量转化为油滴宏观运动速度的测量. 1.静态平衡测量法 一带电油滴在水平的平行板均匀电场中受到重力mg 、电场力qE 和空气浮力f 作用,平衡时有f qE mg +=,即 E f mg q -= (1) 因表面张力作用,油滴呈小球状,设油滴半径为r ,油滴密度为0r ,空气密度为r ¢, 则重力和浮力分别为 g r f g r mg r r ¢==303 π34 π34 (2) 上式中油滴半径r 为未知量.由此,油滴电荷量q 的测量转 化为微小油滴半径r 的测量. 当平行板未加电压,油滴在重力作用下降落时,除有 空

密立根油滴实验报告

近代物理实验报告密立根油滴实验 学院数理与信息工程学院 班级物理 姓名 学号 时间 2013年12月9日

密立根油滴实验 【摘要】 本实验我们根据密立根油滴实验原理,引进了CCD摄像技术,从监视器上观察油滴运动,测定了油滴带电量q,并运用差值法处理了相应数据,得出了元电荷e的值,验证了电荷的量子性,同时也了解了密立根巧妙的设计思想,进一步提高了实验技能。 【关键词】油滴;平衡态;非平衡态;电荷大小 【引言】 1917年密立根设计并完成了密立根油滴实验,其重要意义在于它直接地显示出了电量的量子化,并最早测定了电量的最小单位——基本电荷电量e,即电子所带电量。这一成就大大促进了人们对电和物质结构的研究和认识。油滴实验中将微观量测量转化为宏观量测量的巧妙设想和精确构思,以及用比较简单的仪器,测得比较精确而稳定的结果等都是富有创造性的。由于上述工作,密立根获得了1923年度诺贝尔物理学奖。密立根的实验装置随着技术的进步而得到了不断的改进,但其实验原理至今仍在当代物理科学研究的前沿发挥着作用,例如,科学界用类似的方法测定出基本粒子——夸克的电量。 【实验方案】 一、实验原理 1、静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m,所带的电量为q,两极板间的电压为V ,如图1 所示。

图1 如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=6.17×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 图2

大学物理密立根油滴实验数据分析

班级: 姓名: 学号: 实验日期: 1.静态法测量 静态法测油滴带电量 斜率C e 19 01059219.1-?= 其与标准值C e 19 10 602.1-?=的相对误差为: %612.0%1000*=?-= e e e E 序号 U(V) t1 t2 t3 t4 t5 tg(s) r(m) q(C) n e(C) 1 23 2 5.45 5.32 5.5 5.39 5.42 5.416 1.54104E+12 3.17276E-18 20 1.58638E-19 2 205 14.22 14.16 14.22 14.09 14.14 14.166 9.52863E+11 8.48827E-19 5 1.69765E-19 3 175 5.85 5.86 5.95 5.92 5.94 5.904 1.47598E+12 3.69561E-18 23 1.60679E-19 4 151 3 2.9 32.06 31.93 31.66 32.9 32.29 6.31132E+11 3.34861E-19 2 1.67431E-19 5 217 26.93 26.69 26.62 27.55 26.99 26.956 6.90759E+11 3.05493E-19 2 1.52746E-19

班级: 姓名: 学号: 实验日期: 选做内容: 2.动态法测量 动态法测油滴带电量序号 U(V) te(s) tg(s) a(m) q(C) n e(C) 1 286 25.25 5.45 2.6428E-06 2.9609E-18 18 1.64494E-19 2 29 3 10.13 7.9 4 2.18954E-06 2.38917E-18 1 5 1.59278E-19 3 290 37.51 6.6 2.40155E-06 2.10977E-18 13 1.6229E-19 精品文档, 你值得期待 153 7.81 2.71 3.74782E-06 1.77207E-17 111 1.59646E-19 斜率C e 19 01059442.1-?= 其与标准值C e 19 10602.1-?=的相对误差为:

采油工程(1).

目录 1.设计任务 (1) 1.1设计目的 (1) 1.2设计内容 (1) 1.3设计原则 (1) 1.4设计步骤 (2) 2.基本数据 (2) 3.设计计算方法 (3) 3.1油井产能预测或流压的确定 (3) 3.1.1确定井底流压 (3) 3.1.2确定沉没压力 (3) 3.1.3确定下泵深度 (4) 3.2初选抽汲参数 (4) 3.2.1泵效 (4) 3.3初选抽油杆柱 (5) 3.4 有杆抽油装置的设计(API方法) (7) 3.4.1 S=3,N=8(Dp=44.45mm) (7) 3.4.2 S=2.67,N=9(Dp=44.45mm) (9) 3.4.3 S=2,N=12(Dp=44.45mm) (11) 3.4.4结论 (14) 4.参考文献 (14) 5.设计小结、体会与建议 (15)

1.设计任务 1.1设计目的 给定的新井和转抽井选定一套合理的机、杆、泵组合,并确定其合理的工作参数,并对目前的生产井调整工作参数。 1.2设计内容 在上述已知条件下,通过系统设计,最后可完成的设计内容包括以下三个方面: (1)确定油井产量或已知产量下的流压; (2)计算各种载荷并确定系统中各机械设备(主要指抽油机、抽油杆、抽油泵和原动机)的类型和规格; (3)确定系统的工作参数。 在确定系统中各机械设备的同时,还要选定系统的工作参数,这里只要指的是抽油机的冲程长度S、冲数n、所需的平衡力矩M。然后根据S,n,M即可进一步确定连杆销轴在曲柄上的位置、电动机小皮带带轮尺寸,以及平衡重的调整位置。 1.3设计原则 要合理地设计有杆抽油系统,应遵循以下几条基本原则: (1)符合油层及油井的工作条件。 所选的抽油设备,应该适合该井或该地区的自然条件和生产条件,诸如气候条件、地表条件、流体物性条件、生产维护条件等等。 (2)能充分发挥油层的生产能力。 所选择的抽油设备,应该在其经济寿命期内,能满足油井在开发界限上的最大供液能力,以防止因抽油设备的限制而是油井生产受到影响。 (3)设备利用率较高且能满足安全生产的需要。 所选的抽油设备,应在使用周期中的大部分时间内有较高的载荷利用率、扭矩利用率、电

《采油工程方案设计》试题及答案

《采油工程方案设计》综合复习资料参考答案 一、名词解释 1.油气层损害2.吸水指数3.油井流入动态 4. 蜡的初始结晶温度5.面容比 6.化学防砂 7. 破裂压力梯度8.财务内部收益率9.油田动态监测 10. 单位采油(气)成本 二、填空题 1.砂岩胶结方式可分为、、、。 2.油气层敏感性评价实验有、、、、和等评价实验。 3.常用的射孔液有、、、和等。 4.油田常用的清防蜡技术,主要有、、、、和等六大类。 5.碳酸盐岩酸化工艺分为、和三种类型。 6.目前常用的出砂预测方法有、、和等四类方法。 7.采油工程方案经济评价指标包括、、、、、和等。8.按防砂机理及工艺条件,防砂方法可分为、、和等。9.电潜泵的特性曲线反映了、、和之间的关系。 10.酸化过程中常用的酸液添加剂有、、、等类型。 11.水力压裂常用支撑剂的物理性质主要包括、、、等。 三、简答题 1.简述采油工艺方案设计的主要内容。 2.简述油井堵水工艺设计的内容。 3.试分析影响酸岩复相反应速度的因素。

4.简述完井工程方案设计的主要内容。 5.简述注水井试注中排液的目的。 6.试分析影响油井结蜡的主要因素。 7. 简述油水井动态监测的定义及其作用。 8. 简述采油工程方案经济评价进行敏感性分析的意义。 9. 简述注水工艺方案设计目标及其主要内容。 10. 简述低渗透油藏整体压裂设计的概念框架和设计特点。

《采油工程方案设计》综合复习资料参考答案 一、名词解释 1.油气层损害:入井流体与储层及其流体不配伍时造成近井地带油层渗透率下降的现象。 2.吸水指数:单位注水压差下的日注水量。 3.油井流入动态:油井产量与井底流动压力的关系。 4.蜡的初始结晶温度:随着温度的降低,原油中溶解的蜡开始析出时的温度。 5. 面容比:酸岩反应表面积与酸液体积之比。 6.化学防砂:是以各种材料(如水泥浆、酚醛树脂等)为胶结剂,以轻质油为增孔剂,以硬质颗粒为支撑剂,按一定比例搅拌均匀后,挤入套管外地层中,凝固后形成具有一定强度和渗透性的人工井壁,阻止地层出砂的工艺方法。 7.破裂压力梯度:地层破裂压力与地层深度的比值。 8.财务内部收益率:项目在计算期内各年净现金流量现值累计等于零时的折现率。 9.油田动态监测:通过油水井所进行的专门测试与油藏和油、水井等的生产动态分析工作。 10.单位采油(气)成本:指油气田开发投产后,年总采油(气)资金投入量与年采油(气)量的比值。表示生产1t原油(或1m3天然气)所消耗的费用。 二、填空题 1.砂岩胶结方式可分为基质胶结、接触胶结、充填胶结、溶解胶结。 2.油气层敏感性评价实验有速敏、水敏、盐敏、碱敏、酸敏和应力敏等评价实验。 3.常用的射孔液有无固相清洁盐水射孔液、聚合物射孔液、油基射孔液、酸基射孔液、乳化液射孔液等。 4.油田常用的清防蜡技术,主要有机械清蜡技术、热力清防蜡技术、表面能防蜡技术、化学药剂清防蜡技术、磁防蜡技术、微生物清防蜡技术等六大类。

长庆油田采油采气工程工艺技术指标

附件1: 长庆油田采油采气工程工艺技术指标 设置论证情况 本次采油采气工程工艺指标设置是依据国家、石油行业、集团公司、油田公司相关规范、制度及规定,同时结合长庆油田开发实际,经多部门论证优选,初步确定出机械采油、油田注水、井下作业、采气工艺、油田集输、气田集输六个专业41项指标(其中:采油7项、作业8项、注水7项、采气6项、油田集输6项、气田集输7项),并对指标的计算与统计方法进行规范统一,具体如下: 一、机械采油指标 参照石油行业标准《抽油机和电动潜油泵油井生产指标统计方法》(SY/T 6126-1995)为基础,参考石油行业、集团公司、油田公司的相关标准、规范及要求,确定出采油工艺指标7项:油井利用率、采油时率、泵效、检泵周期、免修期、抽油机井系统效率、平衡度,具体见下表: 机械采油指标论证结果表

二、井下作业指标 参照石油行业、集团公司、油田公司的相关标准、规范及要求,通过论证优选,初步确定井下作业生产指标8项:措施有效期、措施有效率、平均单井作业频次、平均单井检泵作业频次、施工一次合格率、返工率、占井周期、资料全准率,具体见下表: 井下作业指标论证结果表

三、油田注水指标 参考油田开发治理纲要、油田注水治理规定、油田水处理和注水系统地面生产治理规定,初步确定油田注水工艺指标7项:配注合格率、分层配注合格率、分注率、水质达标率、采出水有效回注率、注水系统效率、注水系统单耗,具体见下表: 油田注水指标论证结果表

四、采气工艺指标 目前石油行业、集团公司、油田公司均无采气工艺指标相关标准、规范及要求,故本规范结合长庆气田开发实际,初步确定气田采气工艺指标6项:气井利用率、开井时率、排水采气措施有效率、排水采气增产气量完成率、缓蚀剂加注合格率、气井甲醇消耗率。 五、油田集输指标 依据中石油勘探与生产分公司《油田地面工程治理规定》等相关要求,初步确定油田集输工艺指标6项:油井计量合格率、外输原油合格率、密闭集输率、原油损耗率、原油稳定率、伴生气综合利用率、具体见下表:

密立根油滴实验数据处理

密立根油滴实验数据处理 罗泽海 摘要:本文主要讨论了大学物理实验中的密立根油滴实验数据处理。其中主要讲解了MOD-8型密立根油滴实验仪的使用及其实验实验事项、密立根油滴实验的基本原理,重点介绍密立根油滴实验平衡测量的数据处理,实验数据处理过程由的数值计算和图形绘制来实现,通过运用microsoft excel图表对数据处理,计算出电荷e的实验值幷与理论值进行比较,作出实验误差小结个人预见。 关键词:油滴实验数据处理个人预见

Dense grain root oil drops experimental data processing Luozehai Abstract: This paper discusses the physics experiment Millikan oil drop experiment data proce- ssing. Mainly explained MOD-8 type Millikan oil drop experiment and the experiment using the experimental instrument matters, Millikan oil drop experiment of the basic principles, focusing on balance Millikan oil drop experiment measurement data processing, data processing process from the numerical computation and graphics rendering to achieve, through the use of microsoft excel chart of data processing to calculate the charge e of the experimental data are compared with the theoretical value Bing, individuals predicted to experimental error summary. Key words:Oil Drop Experiment;Data Processing;Individual predicted

油田开发指标定义计算方法

油田开发指标定义计算方法 教学内容:1、油田各主要开发指标的概念 2、油田各主要开发指标的计算公式 3、油田各主要开发指标的计算方法 教学目的:1、掌握油田各主要开发指标的概念 2、掌握油田各主要开发指标的计算公式 3、能熟练地应用计算公式计算油田各主要开发指标 教学重点:1、油田各主要开发指标的概念 2、油田各主要开发指标的计算公式 教学难点:1、灵活应用计算公式计算油田各主要开发指标 教学方式:多媒体讲授 教学时数:45分钟 授课提纲: 油田开发指标 油田开发指标是指根据油田开发过程中实际生产资料,统计出一系列能够评价油田开发效果的数据,常规注水开发油田的主要指标有:原油产量、油田注水、地层压力。下面主要讲解原油产量、油田注水等主要的开发指标。 1、采油速度 1)定义:年产油量与其相应动用地质储量之比。分为折算采油速度和实际采油速度。 2)计算公式: 折算采油速度=(十二月份的日产油水平×365/动用地质储量)×100% 实际采油速度= 实际年产油量/动用地质储量×100% 3)应用: ①计算年产油量 ②计算动用的地质储量 ③配合其它资料计算含水上升率 例1:江汉油田06年动用石油地质储量10196.5×104t,实际生产原油78.5016×104t,求06年实际采油速度?解:实际采油速度=实际年产油量/动用地质储量×100% =78.5016×104/(10196.5×104)×100% =0.77% 答:06年实际采油速度0.77%。 2、采出程度 1)定义:累计产油量与其相应动用地质储量之比。表示从投入开发以来,已经从地下采出的地质储量,符号为R。 2)计算公式: 采出程度(R)=累计产油量/动用地质储量×100% 例2:江汉油田06年动用石油地质储量10196.5×104t,截止06年12底累计产油2982.35×104t,求截止06年12底采出程度? 解:采出程度(R)=累计产油量/动用地质储量×100% =2982.35×104/(10196.5×104)×100% =29.25% 答:截止06年12底采出程度29.25%。 3、综合含水率

密立根油滴实验报告

创作编号:BG7531400019813488897SX 创作者: 别如克* 密立根油滴实验——电子电荷的测量 【实验目的】 1. 通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续 性,并测定电荷的电荷值e 。 2. 通过实验过程中,对仪器的调整、油滴的选择、耐心地跟踪和测量以及 数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。 3. 学习和理解密立根利用宏观量测量微观量的巧妙设想 和构思。 【实验原理】 1. 静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d 的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m ,所带的电量为q ,两极板间的电压为V ,如图 1 所示。如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定

律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=6.17×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 至于油滴匀速下降的速度g v ,可用下法测出:当两极板间的电压V 为零时,设油滴匀速下降的距离为l ,时间为t ,则 g g t l v = (4) 最后得到理论公式: V d pa b t l g q g 2 3 )1(218????? ? ??????+= ηρπ (5) 2. 动态(非平衡)测量法 非平衡测量法则是在平行极板上加以适当的电压V ,但并不调节V 使静电力和重力达到平衡,而是使油滴受静电力作用加速上升。由于空气阻力的作用,上升一段距离达到某一速度υ 后,空气阻力、重力与静电力达到平衡(空气浮力忽略不计),油滴将匀速上升,如图 3 所示。这时: mg d V q v a e -=ηπ6 (6) 当去掉平行极板上所加的电压V 后,油滴受重力作用而加速下降。当空气 阻力和重力平衡时,油滴将以匀速υ 下降,这时: mg v g =πη6 (7) 化简,并把平衡法中油滴的质量代入,得理论公式: 2 12 3 1111218???? ?????? ??+???? ???????????? ? ? +=e e e t t t v d pa b l g q ηρπ (8)

采油工程方案设计试题及答案

一、名词解释 1.油气层损害2.吸水指数3.油井流入动态4. 蜡的初始结晶温度5.面容比 6.化学防砂 7. 破裂压力梯度8.财务内部收益率9.油田动态监测10. 单位采油(气)成本 二、填空题 1.砂岩胶结方式可分为、、、。 2.油气层敏感性评价实验有、、、、和等评价实验。 3.常用的射孔液有、、、和等。 4.油田常用的清防蜡技术,主要有、、、、和等六大类。 5.碳酸盐岩酸化工艺分为、和三种类型。 6.目前常用的出砂预测方法有、、和等四类方法。 7.采油工程方案经济评价指标包括、、、、、和等。 8.按防砂机理及工艺条件,防砂方法可分为、、和等。 9.电潜泵的特性曲线反映了、、和之间的关系。 10.酸化过程中常用的酸液添加剂有、、、等类型。 11.水力压裂常用支撑剂的物理性质主要包括、、、等。 三、简答题 1.简述采油工艺方案设计的主要内容。 2.简述油井堵水工艺设计的内容。 3.试分析影响酸岩复相反应速度的因素。 4.简述完井工程方案设计的主要内容。 5.简述注水井试注中排液的目的。 6.试分析影响油井结蜡的主要因素。 7. 简述油水井动态监测的定义及其作用。 8. 简述采油工程方案经济评价进行敏感性分析的意义。 9. 简述注水工艺方案设计目标及其主要内容。 10. 简述低渗透油藏整体压裂设计的概念框架和设计特点。

《采油工程方案设计》综合复习资料参考答案 一、名词解释 1.油气层损害:入井流体与储层及其流体不配伍时造成近井地带油层渗透率下降的现象。 2.吸水指数:单位注水压差下的日注水量。 3.油井流入动态:油井产量与井底流动压力的关系。 4.蜡的初始结晶温度:随着温度的降低,原油中溶解的蜡开始析出时的温度。 5. 面容比:酸岩反应表面积与酸液体积之比。 6.化学防砂:是以各种材料(如水泥浆、酚醛树脂等)为胶结剂,以轻质油为增孔剂,以硬质颗粒为支撑剂,按一定比例搅拌均匀后,挤入套管外地层中,凝固后形成具有一定强度和渗透性的人工井壁,阻止地层出砂的工艺方法。 7.破裂压力梯度:地层破裂压力与地层深度的比值。 8.财务内部收益率:项目在计算期内各年净现金流量现值累计等于零时的折现率。9.油田动态监测:通过油水井所进行的专门测试与油藏和油、水井等的生产动态分析工作。 10.单位采油(气)成本:指油气田开发投产后,年总采油(气)资金投入量与年采油(气)量的比值。表示生产1t原油(或1m3天然气)所消耗的费用。 二、填空题 1.砂岩胶结方式可分为基质胶结、接触胶结、充填胶结、溶解胶结。 2.油气层敏感性评价实验有速敏、水敏、盐敏、碱敏、酸敏和应力敏等评价实验。 3.常用的射孔液有无固相清洁盐水射孔液、聚合物射孔液、油基射孔液、酸基射孔液、乳化液射孔液等。 4.油田常用的清防蜡技术,主要有机械清蜡技术、热力清防蜡技术、表面能防蜡技术、化学药剂清防蜡技术、磁防蜡技术、微生物清防蜡技术等六大类。 5.碳酸盐岩酸化工艺分为酸洗、酸化、酸压三种类型。 6.目前常用的出砂预测方法有现场观测法、经验法、数值计算法、实验室模拟法等四类方法。 7.采油工程方案经济评价指标包括财务内部收益率、投资回收期、财务净现值、财务净现值率、投资利润率、投资利税率和单位采油(气)成本等 8.按防砂机理及工艺条件,防砂方法可分为机械防砂、化学防砂、砂拱防砂和焦化防

密立根油滴实验报告.docx

广东第二师范学院学生实验报告 实验项目名称 年 月曰 密立根油滴实验 实验时间 实验成绩 实验地点 指导老师签名 内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳 算等)、实验结果与分析、实验心得、实验问题回答 一、 实验目的 1、 通过对带电油滴在重力和静电场中运动的测量, 验证电荷的不连续性, 2、 通过实验对仪器的调整,油滴的选择耐心的跟踪和测量以及数据的处理等, 一丝不苟的科学实验方法和态度。 二、 实验使用仪器与材料 MOD-5C 型微机密立根油滴仪、棕油 三、 实验步骤 1、 调节仪器上的三只调平手轮,将水泡调平。 2、 打开监视器和油滴仪的电源,在监视器上先出现“ CCD 微机密立根油滴仪” ,5秒钟之后自动 进入测试状态,显示出标准分划板刻度及电压值和时间值。 3、 将喷雾器中的油滴喷进油滴仪的油雾杯中, 上线。 4、 按K3 (计时/停),让计时器停止计时, 匀速下降的同时,计时器开始时,到“终点” (数据、图表、计 并测定电子的电荷值 培养严肃认真和 e 。 选择一颗合适的油滴,调节电压使其停在第二格 (值未必要为O ),然后将K2按向“测量”,油滴开始 (取第七格下线)时迅速将 K2按向“平衡”,油滴 立即静止,计时也立即静止,此时电压值和下落时间值显示在屏幕上。 5、 对同一颗油滴进行 3次测量,而且每次测量都要重新调整平衡电 压。 6油的密度:P =981 kg? m 3(20 C ) 重力加速度:g=9.78m ? s -2(广州) 空气粘滞系数:η =1.83 × 10-5 kg? m 1 ? s -1 3 3 油滴匀速下降距离:l=0.25 × 1O - × 6=1.5 × 1O - m 6 修正常数:b=6.17 × 1O - m? CmHg 大气压强:p=76.0cmHg _ I _3 平行极板间距离d=5.00 × 10 m

采油工程

采油的基本任务就是在经济条件许可的情况下,最大限度地把原油从地层中采到地面上来。采油方法通常是指将流到井底的原油采到地面上所采用的方法。常规的采油方法:自喷采油法,深井泵采油法,气举采油法。自喷采油法:如果油层具有的能量足以把油从油层驱至井底,并从井底把油举出井口,这种依靠油层自然能量采油的方法称为自喷采油法,这种井称为自喷井。动力来源于油层压力。是最经济、最简单的采油方法,可以节省大量的动力设备和维修管理费用。一般自喷井井口流程有以下的作用:(1)控制和调节油井的产量; (2)录取油井的动态资料,如记录油、套压,计量油、气产量,井口取样等;(3)对油井产物和井口设备进行加热保温。 井口装置是井口流程的主要设备之一。它一般由套管头、油管头和采油树三部分组成。节流阀其作用是控制自喷井的产量,有可调式节流阀(针形阀)和固定式节流阀(油嘴)两种。一般采气树上装可调式节流阀,采油树上装固定节流阀(油嘴)。常用的卡扣式油嘴。 根据油井生产过程中,油气的流动主要有四个流动过程:1 油层到井底的流动—油层中的渗流;2 从井底到井口的流动—井筒中的流动(井筒多相管流);3原油到井口后,通过油嘴的流动——嘴流。4 从井口到分离器—在地面管线中的水平或倾斜管流。 (1)四种流动过程同处于一个动力系统中 既遵循自身特有的流动规律,又相互联系,又相互制约关系;联系:从各流动过程的压力概念及实质讲。制约:一点的压力变化,会引起各处的压力变化。 例:从油层流到井底的剩余压力称为井底压力(或井底流动压力,简称流压)。把油气推举到井口后剩余的压力称为井口油管压力(简称油压)。 提问:如何改变自喷井的工作制度?什么叫生产压差?如何改变它? 压力的损失:是指某一流动过程中,克服其中沿程阻力损失,而使其压力下降值。 总压降:流体从油层流至分离器总压力损失。 ①地层渗流:单相流动:多相渗流:压力的损失:占总压降的10%~15%。动力:油层压力(或气体的膨胀能);阻力:渗流阻力; 提问:为何在油井生产管理中尽量控制井底压力实现在油层中为单相流动? ②油井垂直管流:单相流动:当井口油压高于饱和压力时(很少);多相渗流:?当井口油压低于饱和压力时。压力损失占总压降的30%~80%。动力:井底流压和气体的膨胀能。阻力:(含重力损失、摩擦损失和滑脱损失)③嘴流: 油气通过油嘴节流后的压力损失一般占总压力损失的5%~30%; 动力:井口油压;阻力:节流损失; ④出油管线流动:压力损失一般占总压力损失的5%~10%; 动力:井口回压(下游压力对上游压力的反作用力);(能量来源于井口回压和气体的膨胀能。)阻力:沿程阻力损失;(主要是摩擦损失和气流速度变化引起的动能损失)分析四种流动过程的能量损失发现了什么? 引入:采油工作者最关心什么?利用最少的投资,获得最大的油气产量。 油井产量的大小与哪些因素有关呢?能否利用相对简单方法就能分析其影响产量的因素,并制定出切实可行方法,达到预期的目的呢? 其中油井产量与井底流动压力的关系即油井流入动态,是进行油井设计和动态分析的基础。油井流入动态:是指油井产量与井底流动压力的关系,它反映了油藏向该井供油能力的大小。流入动态曲线:表示产量与流压关系的曲线(Inflow Performance Relationship);简称IPR曲线。IPR曲线的基本形状与油藏驱动类型有关。它既是确定油井工作方式的依据,也是分析油井动态的基础。单相流体的流入动态 定律,圆形地层中心一口井的产量公式为:

密立根油滴实验

北京航空航天大学物理研究性实验报告 专题:密立根油滴实验

目录 摘要 .............................................................. - 3 -实验目的 ........................................................ - 3 -实验原理 ........................................................ - 3 -实验器材 ........................................................ - 5 -实验步骤 ........................................................ - 5 - 1.调整仪器................................................ - 5 - 2.练习测量................................................ - 5 - 3.正式测量................................................ - 6 -注意事项 ........................................................ - 7 -原始数据和数据处理 .................................... - 7 -对实验的进一步讨论(研究性学习)......... - 9 - 一、误差分析........................................... - 9 - 二、对油滴的控制方法分析................... - 9 - 二、对实验的改进意见........................... - 9 -参考文献 ...................................................... - 10 -

采油工程指标计算方法

①总关井数=计划关井数+停产井数+待废弃井关井数 开井:是指当月内连续生产24小时以上,并有一定采油、采气和注入量的生产井的井数 停产井:指连续停产三个月以上的井 ②月油、气、水井开井率(%)=〔油、气、水井当月开井数/油、气、水井当月总井数〕*100% 油、气、水井年(季度、半年、年)开井率(%)=(∑当月开井数/∑当月总井数)*100% 月油、气、水井生产时率(%)=〔油、气、水井开井当月累计生产时间 / 油、气、水井开井当月累计日历时间〕*100% ③油井综合利用率(工程)=各开井实际采油小时之和/(各采油井日历小时之和—计划关井日历小时之和—待报废井日历小时之和)×100%=油井利用率×生产时率*100% 油井综合利用率(油藏)=各开井实际采油小时之和/各采油井日历小时之和×100% =油井开井率×生产时率*100% ④油、气、水井月躺井率(%)=(当月躺井次数/当月开井数)*100%; 油、气、水井(季度、半年、年)躺井率(%)=(∑当月躺井次数/∑当月开井数)*100%。 平均检泵周期=单井检泵周期之和/统计井数之和(天) 作业频次总(维护、措施)作业频次= ∑总(措施、维护)作业井次/期末开井数 油井躺井说明:(1)抽油机井躺井:指正常生产井由于抽油杆断脱、泵管漏

失、砂卡、结蜡、抽油设备故障以及电故障、集输故障等造成油井突然停产,在24h内未能恢复生产的抽油井均为躺井(不包括有计划的检泵、电路检修、环空测压、流程改造、计量站改造等)。(2)电泵井:指正常生产井由于井下泵机械故障、电缆故障、卡泵、地面供电系统故障等造成油井突然停产,在24h内未能恢复生产的,均为躺井(不包括有计划的检泵、电路检修、地面设备维护等)。(3)自喷井:指正常生产井由于地层压力下降而造成停喷,或由于结蜡、砂垢、井口设备故障、集输故障等造成油井停产,在24h内未能开始上举升措施、恢复生产的,均为躺井(不包括有计划的关井测压、清蜡、地面流程改造、计量站改造等)。(4)工艺实验井,因实验设备、工具出故障停产超过三天不能恢复生产算躺井。(5)作业返工井不算躺井(作业开井1个月内因作业质量导致的返修井)。(6)带产上措施不属于躺井。因故障停井后,上措施作业算躺井。 ⑤平均动液面:H=ΣH动/n 平均泵挂深度:L=ΣL/n(m) 平均沉没度=由平均泵挂深度-平均动液面 沉没度=泵挂深度-动液面 平均泵效η=ΣQ实/ΣQ理*100% 原油计量误差=〔(井口产量-核实产量)/井口产量〕 *100% ⑥系统效率 式中:η——系统效率,%; Q ——油井产液量,m3/d;

密立根油滴实验

实验XX 密立根油滴实验 油滴实验是近代物理学中测量基本电荷e (也称元电荷)的一个经典实验,该实验是由美国著名物理学家密立根(Robert A. Millikan )经历十多年设计并完成的。这一实验的设计思想简明巧妙、方法简单,而结论却具有不容置疑的说服力,因此堪称物理实验的精华和典范。1908年,在总结前人实验经验的基础上,密立根开始研究带电液滴在电场中的运动过程。结果表明,液滴上的电荷是基本电荷的整数倍,但因测量结果不够准确而不具说服力。1910年,他用油滴代替容易挥发的水滴,获得了比较精确的测量结果。1913年,密立根宣布了其开创性的研究结果,这一结果具有里程碑的意义:(1)明确了带电油滴所带的电荷量都是基本电荷的整数倍,(2)用实验的方法证明了电荷的不连续性,(3)测出了基本电荷值(从而通过荷质比计算出电子的质量)。此后,密立根又继续改进实验,提高实验精度,最终获得了可靠的结果(经过很多次的实验,密立根测出的实验数据是e=1.5924(17)×10?19C ,这与现在公认的值相差仅1%),最早完成了基本电荷的测量工作。这一结果再次证明电子的存在,使对“电子存在”的观点持怀疑态度的物理学家信服。由于在测定基本电荷值和测出普朗克常数等方面做出的成就,密立根在1923年获得了诺贝尔物理学奖。 随着现代测量精度的不断提高,目前元电荷的公认值为e =(1.60217733±0.00000049)×10-19C 。本实验采用CCD 摄像机和监视器,可非常清楚地看到钟表油油滴的运动过程,大大改善了实验条件,使测量结果更为准确。 【实验目的】 1. 学习用油滴实验测量电子电荷的原理和方法。 2. 验证电荷的不连续性。 3. 测量电子的电荷量。 4. 了解CCD 摄像机、光学系统的成像原理及视频信号处理技术的工程应用等。 5. 训练学生在实验过程中严谨的态度、实事求是的作风。 【实验原理】 密立根油滴实验测量基本电荷的基本设计思想是使带电油滴在两金属极板之间处于受力平衡状态。按运动方式分类,可分为平衡法和动态法。本实验采用平衡法,其原理如下: 质量m 、带电量为q 的球形油滴,处在两块水平放置的平行带电平板之间,如图1所示。改变两平板间电压U ,可使油滴在板间某处静止不动,此时油滴受到重力、静电力和空气浮力的作用。若不计空气浮力,则静电力qE 和重力mg 平衡,即 d U q qE mg == (1) 式中E 为两极板间的电场强度,d 为两极板间的距离。只要测 出U 、d 、m 并代入(1)式,即可算出油滴带电量q 。然而因 油滴很小(直径约为m 106-),其质量无法直接测得。 两极板间未加电压时,油滴受重力作用而下落,下落过程 中同时受到向上的空气粘滞阻力r f 的作用。根据斯托克斯定律,同时考虑到对如此小的油滴来说空气已不能视为连续媒质,加上空气分子的平均自由程和大气

采油工程名词解释

采油工程名词解释 1、采油指数 采油指数是一个反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。其数值等于单位生产压差下油井的油井产油量。 2、折算液面(深度) 把一定套压下测得的液面折算成套管压力为零时的液面。 或 把套压不为零时的液面(深度)折算成套压为零时的液面(深度)。 3、吸水指数 表示单位注水压差下的日注水量。 4、米吸水指数 地层吸水指数除以油层有效厚度,表示1米厚地层在1MPa注水压差下的日注水量。 5、酸岩复相反应速度 单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量来表示。 6、滑脱效应 在气液多相垂直管流中,由于气象密度小于液相密度,产生气相超越液相流动的现象叫滑脱效应。由滑脱效应产生的附加压力损失叫滑脱压力损失。 7、油嘴临界流动 指油气混合物通过油嘴的流动速度达到压力波在该流体介质中的传播速度。 8、滤失速度 地层综合滤失系数与时间t的开方的比值 9、光杆功率 通过光杆来提升液体和克服井下损耗所需要消耗的功率。 10、滤失百分数 压裂液滤失体积除以地面单元体积液在缝中的剩余体积。 11、砾石充填 将割缝衬管或是绕丝筛的管下入井内防砂层段处,用一定质量的流体携带地面选好的具有一定粒度的砾石,充填于管和油层之间,形成一定厚度的砾石层,以防止油层砂粒流入井内防砂方法。 12、酸液有效作用距离 酸液由活性酸变为残酸前所流经的裂缝距离。 13、过滤速度 14、泵的充满程度 泵工作过程中被液体充满的程度等于进入泵内的液体体积和柱塞让出的体积之比。15、压裂井增产倍数 压裂后的采油指数与压裂前采油指数的比值。 16、酸岩反应速度 单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量。 17、动液面、静液面 静液面是关井后环形空间中液面恢复到静止(与地层压力相平衡)时的液面。可以用从井口算起的深度,也可以用从油层中部算起的液面高度来表示其位置。 动液面是油井生产时,油套环形空间的液面。可以用从井口算起的深度,亦可用从油层中部算起的高度来表示其位置。

采油工程复习题(带答案)

1.油井流入动态及曲线类型?采油指数的物理意义是什么?影响单相流与油气两相流采油指数的因素有何异同? 油井流入动态:油井产量(qo) 与井底流动压力(pwf) 的关系,反映了油藏向该井供油的能力。 采油指数:单位生产压差下的油井产油量,是反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标 异:单向流单位生产压差下的产油量IPR曲线其斜率的负倒数便是采油指数 多相流增加单位生产压差时,油井产量的增加值,PR曲线其斜率的负倒数时刻变化 同:两者影响因素相同,单多相流的因素岁流压变化 因素:油层性质、厚度、流体参数、完井条件及泄油面积饱和地层压力 2 .试分析多油层油藏的油井产量、含水率与油、水层压力及采油、采水指数的关系。 A.随着流压降低,参加工作的层数增多,产量将大幅度上升采油指数随之增大,层数不变时采油指数不变B.流体压力降低,到油层静压之前,,油层不出油,水层产出的一部分水转渗入油层,油井含水为100%。当流压低于油层静压后,油层开始出油,油井含水随之而降低。只要水层压力高于油层压力,油井含水必然随流压的降低而降低,与采油指数是否高于产水指数无关,而后者只影响其降低的幅度。这种情况下,放大压差提高产液量不仅可增加产油量,而且可降低含水。 3.已知P r=18MPa, P b=13MPa, P wf=15MPa时的产量q o =25m3/d 。试求P wf=10MPa时的产量与采油指数。 4.已知P r =16MPa, P b=13MPa, P wf=8MPa时产量q o =80 m3/d,FE=0.8,试计算: 1)FE=1和0.8时该井的最大产量; 2)FE=0.8,P wf为15MPa和6MPa的产量及采油指数。 5.已知某井P r =14MPa< P b。当P wf=11MPa时q o =30 m3/d,FE=0.7。试求P wf=12MP时的产量及油井最大产量。 6.井筒中可能出现的流动型态有哪些?各自有何特点? 纯油流:P> Pb,油在压差作用下流向井口井筒中为纯油流,压力损失以重力损失为为主 泡流:气体是分散相,液体是连续相,气体主要影响混合物的密度,对摩擦阻力影响不大,滑脱现象比较严重段塞流:油气的相对流动要比泡流小,滑脱也小,气体是分散相,液体是连续相滑脱损失变小,摩擦损失变大,重力损失变大 环流:气液两相都是连续的,气体举油作用主要是靠摩擦携带。滑脱损失变小,摩擦损失变大雾流:气体是连续相,液体是分散相;气体以很高的速度携带液滴喷出井口;气、液之间的相对运动速度很小;气相是整个流动的控制因素。 7.滑脱现象及对油气流动的影响? 滑脱现象:混合流体流动过程中,由于流体间的密度差异,引起的小密度流体流速大于大密度流体流速的现象。 8.两相管流压力分布的计算步骤(按压力增量或深度增量迭代任意一种) 9. 计算气液两相管流压力梯度的方法有哪些?各自特点与区别?贝格斯-布里尔方法的基本思路是什么? 。Orkiszewski 方法强调了要从观察到的物理现象来确定存容比(多相流动的某一管段中,某相流体体积与管段容积之比也称滞留率)。计算段塞流压力梯度时要考虑气相与液体的分布关系。他提出的四种流动型态是泡流、段塞流、过渡流及环雾流,只适用于垂直管流

密立根油滴实验报告

密立根油滴实验——电子电荷的测量 【实验目的】 1. 通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测 定电荷的电荷值e 。 2. 通过实验过程中,对仪器的调整、油滴的选择、耐心地跟踪和测量以及数据的 处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。 3. 学习和理解密立根利用宏观量测量微观量的巧妙设想 和构思。 【实验原理】 1. 静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d 的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m ,所带的电量为q ,两极板间的电压为V ,如图 1 所示。如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 至于油滴匀速下降的速度g v ,可用下法测出:当两极板间的电压V 为零时,设油滴匀速下降的距离为l ,时间为t ,则

g g t l v = (4) 最后得到理论公式: V d pa b t l g q g 2 3 )1(218????? ? ??????+= ηρπ (5) 2. 动态(非平衡)测量法 非平衡测量法则是在平行极板上加以适当的电压V ,但并不调节V 使静电力和重力达到平衡,而是使油滴受静电力作用加速上升。由于空气阻力的作用,上升一段距离达到某一速度υ 后,空气阻力、重力与静电力达到平衡(空气浮力忽略不计),油滴将匀速上升,如图 3 所示。这时: mg d V q v a e -=ηπ6 (6) 当去掉平行极板上所加的电压V 后,油滴受重力作用而加速下降。当空气 阻力和重力平衡时,油滴将以匀速υ 下降,这时: mg v g =πη6 (7) 化简,并把平衡法中油滴的质量代入,得理论公式: 2 12 31111218???? ?????? ??+???? ???????????? ? ?+=e e e t t t v d pa b l g q ηρπ (8) 【实验仪器】 根据实验原理,实验仪器——密立根油滴仪,应包括水平放置的平行极板(油滴盒),调平装置,照明装置,显微镜,电源,计时器(数字毫秒计),改变油滴带电量从q 变到q ′的装置,实验油,喷雾器等。 MOD -5 型密立根油滴仪的基本

相关主题