搜档网
当前位置:搜档网 › 三角函数 积分公式 求导公式

三角函数 积分公式 求导公式

一.三角函数二.常用求导公式三.常用积分公式

第一部分三角函数

第二部分 求导公式

1.基本求导公式

⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',2

1

)1(x x

-

=',x

x 21)(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln =';一般地,)1,0( ln 1

)(log ≠>='a a a

x x a 。 2.求导法则 ⑴ 四则运算法则

设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)

()()()()())()((

2

≠'-'='x g x g x g x f x g x f x g x f ,特别21()

()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''==

第三部分 积分公式

1.常用的不定积分公式

(1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4

3

,2,),1( 114

3

32

21αααα

; (2) C x dx x

+=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x

; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分

()()|()()b

b a a

f x dx F x F b F a ==-?

⑴ ???+=+b

a b

a b

a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法

设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则

??-=b a

b a

b

a

x du x v x v x u x dv x u )()()

()()()(

反三角函数求导公式证明

§2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

高等数学常用导数和积分公式

高等数学常用导数和积分公式 导数公式:基本积分表:三角函数的有理式积分: (一)含有的积分() 1.= 2.=() 3.= 4.= 5.= 6.= 7.= 8.= 9.= (二)含有的积分10.=11.=12.=13.=14.=15.=16.=17.=18.= (三)含有的积分19.=20.=21.= (四)含有的积分22.=23.=24.=25.=26.=27.=28.= (五)含有的积分29.=30.= (六)含有的积分31.==32.=33.=34.=35.=36.=37.=38.=39.=40.=41.=42.=43.=44.= (七)含有的积分45.==46.=47.=48.=49.=50.=51.=52.=53.=54.=55.=56.=57.=58.=

(八)含有的积分59.=60.=61.=62.=63.=64.=65.=66.=67.=68.=69.=70.=71.=72.=(九)含有的积分73.=74.=75.=76.=77.=78.=()含有或的积分79.=80.=81.=82.=(一)含有三角函数的积分83.=84.=85.=86.=87.==88.==89.=90.=91.=92.=93.=94.=95.=96.=97.=98.=99.==100.=101.=102.=103.=104.=105.=106.=107.=108.=109.=110.=111.=112.=(二)含有反三角函数的积分(其中)113.=114.=115.=116.=117.=118.=119.=120.=121. =(三)含有指数函数的积分122.=123.=124.=125.=126.=127.=128.=129.=130.=131.=(四)含有对数函数的积分132.=133.=134.=135.=136.=(五)含有双曲函数的积分137.=138.=139.=140.=141.=(六)定积分142.==0143.=0144.=145.=146.==147. ===(为大于1的正奇 数),=1 (为正偶数),=

三角函数积分公式求导公式

三角函数常用求导公式常用积分公式第一部分三角函数 同角三角函数的基本关系式 倒数关系: tan a ?cot a= 1 sin a ?CSC a= 1 COS a ?Sec a= 1 商的关系: sin a /cos a = tan a = Sec a /CSC a cos a /sin a = cot a = CSC a /sec a 平方关系: .2 | 2 . Sin a + CoS a= 1 1 + tan 2a = sec2a 1 + cot 2a = CSC 2a 诱导公式 n (— a)= —sin a CoS (—a) = CoS a tan (—a)=— tan a cot (— co n(n /2 — a)= cos a sin (n — a)= sin a sin (3n /2 sin

(n2 — a)= sin a COS (n — a)=—COS a —a)= —COS a)= (n2 —a)= COt a tan (n — a)=—tan a a COS (2 (n2 — a)= tan a COt (n — a)=—COt a COS(3 n /2 — a) =C sin (n + a)=—sin a =—sin a tan (2 (n2 + a)= COS a COS (n + a)=—COS a tan (3 n /2 — a) =— (/2 + a)=—sin a tan (n + a)= tan a =COt a cot (2 (/2 + a)=—COt a COt (n + a)= COt a cot (3 n /2 — a) =— (n + a)=—tan a =tan a sin a)= sin (3 n /2 + a) COS (2 =—COS a =C COS (3 n /2 + a) tan (2 =sin a =t tan (3 n /2 + a) cot (2 =—COt a =C COt (3 n /2 + a) (其中 =—tan a

三角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) = cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa

tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2 (tan 1)2(tan 1a a +- tana=2)2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

反角函数求导公式的证明

反三角函数求导公式的证明 §2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可 导,而且0)(≠'y ?,则反函数)(x f y =在间},)(|{y x I y y x x I ∈==?内也是单调、可 导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'=

证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= ' 类似地,我们可以证明下列导数公式:

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

三角函数反三角函数积分公式求导公式

三角函数反三角函数积分公式求导公式 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinACosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina

sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx

最新导数公式、微分公式和积分公式

基本公式 导数公式微分公式 积分公式 反三角函数公式 导数公式微分公式 积分公式

基本三角函数公式 导数公式微分公式 积分公式 其他积分公式 C a x x a x x C a x a x a x dx x a + ± + = ± + + - = - ? ? 2 2 2 2 2 2 2 2 2 ln d arctan 2 2 () C x x e x x e C x x e x x e C a x x a x x x a x x x x x + + = + - = + ± + + ± = ± ? ? ? ) cos (sin 2 1 d cos cos sin 2 1 d sin ln 2 d2 2 2 2 2 2

青岛市高三统一质量检测 数学(理科) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数 i i +12的实部为 A .2 B .2- C .1 D .1- 2. 设全集R U =,集合{} 2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N M = A .{}|21x x -≤< B .{}|01x x <≤ C .{}|11x x -≤≤ D .{}|1x x < 3. 下列函数中周期为π且为偶函数的是 A .)22sin(π - =x y B. )2 2cos(π-=x y C. )2sin(π+=x y D .)2cos(π +=x y 4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90 B .54 C .54- D .72- 5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是 A .若l m ⊥,l n ⊥,且,m n α?,则l α⊥ B .若平面α内有不共线的三点到平面β的距离相等,则βα// C .若n m m ⊥⊥,α,则α//n D .若α⊥n n m ,//,则α⊥m 6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是 A .16π B .14π C .12π D .8π 7. 已知抛物线x y 42 =的焦点为F ,准线为l ,点P 为抛物 线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于 正视图 俯视图 左视图

常用求导与定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数) (x f y =在对应区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+?

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

反三角函数求导公式证明

§ 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

三角函数和反三角函数

第二章 三角、反三角函数 一、考纲要求 1.理解任意角的概念、弧度的意义,能正确进行弧度和角度的互换。 2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式的证明。 5.了解正弦函数、余弦函数,正切函数的图像和性质,会用“五点法”画正弦函数,余弦函数和函数y=Asin(wx+?)的简图,理解A 、w 、?的物理意义。 6.会由已知三角函数值求角,并会用符号arcsinx 、arccosx 、arctgx 表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决三角形的计算问题。 8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三 9.能够熟练地写出最简单的三角方程的解集。 二、知识结构 1.角的 (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。其中射线OA 叫角α的始边,射线OB 叫角α的终边,O 叫角α的顶点。 (2)正角、零角、负角:由始边的旋转方向而定。 (3)象限角:由角的终边所在位置确定。 第一象限角:2k π<α<2k π+2 π ,k ∈Z 第二象限角:2k π+ 2 π <α<2k π+π,k ∈Z 第三象限角:2k π+π<α<2k π+2 3π ,k ∈Z 第四象限角:2k π+2 3π <α<2k π+2π,k ∈Z (4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内(而且只有这样的角),可以表示为k 2360°+α,k ∈Z 。 (5)特殊角的集合: 终边在坐标轴上的角的集合{α|α= 2 π k ,k ∈Z } 终边在一、三象限角平分线上角的集合{α|α=k π+4π ,k ∈Z } 终边在二、四象限角平分线上角的集合{α|α=k π-4π ,k ∈Z } 终边在四个象限角平分线上角的集合{α|α=k π-4 π ,k ∈Z } 2.弧度制: (1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。 (2)角度与弧度的互化: 1°= 180 π 弧度,1弧度=( π 180 )° (3)两个公式:(R 为圆弧半径,α为圆心角弧度数)。

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

三角函数积分公式求导公式整理

同角三角函数的基本关系式 诱导公式

化asin α ±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴ 0)(=' C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(=' x ,x x 2)(2=',2 1 )1(x x -=',x x 21)(= '。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln = ';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'= ',特别)())((x f C x Cf '='(C 为常数) ; (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数 ()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式 1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 1143 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3) ??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法

三角函数公式(数学专业完整版)

级数定义 正弦函数(蓝色)十分接近于它的 5 次泰勒级数(粉红色)。 只使用几何和极限的性质,可以证明正弦的导数是余弦,余弦的导数是负的正弦(在微积分中,所有角度都以弧度来度量)。使用泰勒级数,可以继续证明下列恒等式对于所有实数x都成立: 这些恒等式经常被用做正弦和余弦函数的定义。它们经常被用做三角函数的严格处理和应用的起点(比如,在傅立叶级数中),因为无穷级数的理论可从实数系的基础上发展而来,不需要任何几何方面的考虑。这样,这些函数的可微性和连续性便可以单独从级数定义来确立。 其他级数可见于:[1] 这里的 是n次上/下数,

是n次伯努利数, (下面的)是n次欧拉数。 在这种形式的表达中,分母是相应的阶乘,分子称为“正切数”, 它有一个组合解释:它们枚举了奇数势的有限集合的交错排列 (alternating permutation)。 在这种形式的表达中,分母是对应的阶乘,而分子叫做“正割数”, 有组合解释:它们枚举偶数势的有限集合的交错排列。 从复分析的一个定理得出,这个实函数到复数有一个唯一的解析 扩展。它们有同样的泰勒级数,所以复数上的三角函数是使用上 述泰勒级数来定义的。 [编辑]与指数函数和复数的联系 可以从上述的级数定义证明正弦和余弦函数分别是复指数函数 在它的自变量为纯虚数时候的虚数和实数部分: 这个联系首先由欧拉注意到,叫做欧拉公式。在这种方式下, 三角函数在复分析的几何解释中变成了本质性的。例如,通

过上述恒等式,如果考虑在复平面中e i x所定义的单位圆,同 上面一样,我们可以根据余弦和正弦来把这个圆参数化,复 指数和三角函数之间联系就变得更加明显了。 进一步的,这样就可以定义对复自变量z的三角函数: 这里的i2 = ?1。还有对于纯实数x, 我们还知道,这种指数过程与周期行为有密 切的联系。 恒等式 主条目:三角恒等式 三角函数之间存在很多恒等式,其中最著名的是毕达哥拉斯恒等式,它说明对于任何角,正弦的平方加上余弦的平方总是1。这可从斜边为 1 的直角三角形应用勾股定理得出。用符号形式表示,毕达哥拉斯恒等式为: 更常见的写法是在正弦和余弦符号之后加“2”次幂: 在通常情况下括号可以省略。 另一个关键的联系是和差公式,它根据两个角度自身的正弦和余弦而给 出它们的和与差的正弦和余弦。它们可以用几何的方法使用托勒密的论 证方法推导出来;还可以用代数方法使用欧拉公式得出。

最全高等数学导数和积分公式汇总表

高等数学导数及积分公式汇总表 一、导数公式 1.幂函数 0='c 1)(-='n n nu u 2.指数函数 a a a u u ln )(=' e e e u u ln )(=' 3.对数函数 a u a u ln 1 )(log =' u u 1)(ln = ' 4.三角函数 u u cos )(sin =' u u sin )(cos -=' u u 2sec )(tan =' u u 2csc )(cot -=' u u u tan sec )(sec =' u u u cot csc )(csc -=' 5.反三角函数 2 11)(arcsin u u -= ' 2 11)(arccos u u -- =' 11)(arctan u u +=' 11)cot (u u arc +-=' 6.其他 1='u 2 11)(u u -=' u u 21)(= ' 2 3 21 1 )( u u - =' 2 2 )(22a u u a u ±= '± 二、积分公式 1.幂函数 C du =?0 C u du u n n n += ++?11 1 2.指数函数 C e du e u u +=? C du a a a u u += ?ln 3.有关对数 C u du +=? ln 4.三角函数 C u udu +-=?cos sin C u udu +=?sin cos C u udu +=?tan sec 2 C u udu +-=?cot csc 2 C u udu u +=?sec tan sec C u udu u +-=?csc cot csc C u udu +-=?cos ln tan C u udu +=?sin ln cot C u u udu ++=?tan sec ln sec C u u udu +-=?cot csc ln csc 5.反三角函数 C a u u a u du +±+=? ±22ln 2 2 C a u u a du +=?-arcsin 2 2 C u a u a a u a du += -+-?ln 212 2 C a u a u a du +=? +arctan 12 2 6.其他 C u u du +-=? 12 C u du u +=? 23 3 2 C u du u +=? 2 1 21 C u u udu +-=? -222 2 C u u udu ++=? +2 2111ln 2

相关主题