搜档网
当前位置:搜档网 › MATLAB在推导任意晶系晶面间夹角通用公式中的应用

MATLAB在推导任意晶系晶面间夹角通用公式中的应用

MATLAB在推导任意晶系晶面间夹角通用公式中的应用
MATLAB在推导任意晶系晶面间夹角通用公式中的应用

MATLAB在推导任意晶系晶面间夹角通用公式中的应用

摘要以往工作关于晶体学公式的介绍有不少,但是极少有资料给出求解任意晶系晶面间夹角的通用公式,对于其推导过程,至今尚未见有报道。本文推导出了该通用公式,然后利用MATLAB语言的核心-矩阵与数值计算,编写了相应的程序,简短易懂,具有一定的实际意义和理论价值。

关键词晶面,倒易点阵,MATLAB,向量

晶面间夹角关系是晶体学的重要内容之一,许多教材都有所提及,但是没有系统全面的介绍。求解晶体学问题通常局限于晶体投影法和用晶面与晶向指数表示的解析法[1]。前者因涉及到球面投影、极射投影、乌氏网、极式网、标准投影等多方面晶体投影学知识,当遇到高指数晶面时,不但操作过程比较复杂,而且其结果准确性较差,故很少用来推导公式。绝大多数教材与资料都采取解析法,并且都引进倒易点阵的概念,但因其涉及到倒易矢量相乘等计算,实际求解很不方便而且过程特别复杂[2],所以往往只给出最后结果,并无完整的推导过程。对于晶面夹角问题,几乎所有教材均只给出正交、立方、六方三种简单晶系的最后求解公式,没有推导过程,对于其他晶系则几乎从未提及,所以必须想办法得到其他晶系晶面夹角公式。但是各大晶系因晶格参数不同,其晶面间夹角公式也不尽相同,如果每遇到一种晶系都去用不同的公式求解的话,则非常麻烦而且难于记忆。对此,文献[3]用C语言编写了任意晶系晶面间夹角的计算程序,但并没有给出具体公式,也没有推导过程,而且该程序比较复杂。由此可见,非常有必要推导出通用公式,并给出简单实用的求解方法。

近年来,计算机在各个领域的应用越来越广泛。在材料科学方面,从宏观数据的处理到微观层次结构的计算,都已经离不开计算机了。MATLAB语言是一种易学且功能强大的程序设计语言,它几乎能够解决材料科学工作者遇到的各种问题。

1.任意晶系晶面间夹角通用公式的推导

[1]将晶轴用矢量表示

晶面间距计算公式

晶面间距计算公式 正交晶系 1/d2=h2/a2+k2/b2+l2/c2 单斜晶系 1/d2={h2/a2+k2sin2β/b2+l2/c2-2hlcosβ/(ac)}/ sin2β 立方晶系 d=a/(h2+k2+l2) 六角晶系 四角晶系 单斜晶系

三斜晶系 If Φ is the angle between plane (h 1 k 1 l 1) and (h 2 k 2 l 2), then for Orthorhombic 2 /12 2222222 22 /12 212 212 2 1221221221)()()(cos ??? ? ??++??? ? ??++++= Φc l b k a h c l b k a h c l l b k k a h h Tetragonal []() 2 /12 2 2222 22 2 /12 21221 21 2 212212 1))/)(cos ??? ? ??++???? ??++++= Φc l a k h c l a k h c l l a k k h h Cubic

()()[] 2 /122 2222 21 21 21 212121cos l k h l k h l l k k h h ++++++= Φ Hexagonal ()() 2 /12222222 222212211212121221221212143434 321 cos ? ????????? ??+++???? ? ?++++++ += Φl c a k h k h l c a k h k h l l c a K h k h k k h h VOLUME: Orthorhombic: =abc Tetragonal: =c a 2 Cubic: =3a Hexagonal: = c a 2 2 3 hcp transition between (UVW) and (uvtw) U=u-t, V=v-t, W=w u=1/3(2U-V), v=1/3(2V-U), t= - (u+v), w=W.

晶体学基础

第一章晶体学基础 同学们,今天我们开始第一章的学习,晶体学基础。其实大家在本科阶段也学过固体物理,相信在座的各位对晶体的相关知识并不陌生,下面就让我们一起,对晶体学的内容做一回顾和扩展。 本章我按照四部分内容进行讲解:晶体相关概念和特性、晶体结构与空间点阵、倒易空间和倒易点阵、晶带和晶带定律。里面的学习要点主要有:晶体结构周期性与点阵、7大晶系和14种布拉菲格子、晶胞,晶带,晶向,晶面,晶面间距计算,晶面夹角计算、倒易点阵,晶带。 通过这一章的学习,我希望大家能够了解晶体的相关特性,掌握表达晶体性结构与它的点阵的各种概念,能够掌握晶面指数与晶向指数的标定方法,会计算晶面夹角和晶面间距,理解倒易点阵,知道晶带相关的一些概念。 1晶体相关概念和特性 我们知道,固体是由大量的原子或离子组成,每单位体积内大约有1023数量级的原子或离子,这么多的原子,按照一定的方式排列,原子或离子的排列方式称为固体的结构。固体材料又分为晶体、非晶体和后来发现的准晶体,都是按照原子或离子的排列方式而言的。我们说的晶体或者说是理想晶体,它内部的原子或离子排列的是十分有规则的,主要体现在原子排列的周期性。因此也就导致了晶体具有一些其他固体不具有的特性,那就是:均匀性、各向异性、固定熔点、规则外形和对称性。晶体内部各个部分的宏观性质是相同即为均匀性;各向异性指在晶体的不同方向上具有不同的物理性质;晶体在熔化时,温度在熔点处是恒定的,这也是区别晶体和非晶体的一个重要的性质;理想环境中生长的晶体应为凸多边形,而且理想外形和内部结构都是高度对称的。请看PPT中的图片,刚玉,邻苯二甲酸氢,石榴石,冰洲石,石墨等等。当然从外形观察还不能完全确定晶体,下面我们就一起进入第二节晶体机构的介绍。 2晶体机构与空间点阵 2.1结构基元和空间点阵 晶体结构的几何特征是其结构基元(原子、离子、分子或其它原子集团)一定周期性的排列。通常将结构基元看成一个相应的几何点,而不考虑实际物质内

晶面间距及晶包参数计算公式

空间点阵必可选择3个不相平行的连结相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的平行六面体单位,称为晶面间距。空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为空间格子或晶格。点阵和晶格是分别用几何的点和线反映晶体结构的周期性,它们具有同样的意义。 1概述 空间点阵必可选择3个不相平行的连结相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的平行六面体单位,称为晶面间距。空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为空间格子或晶格。点阵和晶格是分别用几何的点和线反映晶体结构的周期性,它们具有同样的意义。 2 计算 不同的{hkl}晶面(标准卡片可读出hkl为衍射指数),其面间距(即相邻的两个平行晶面之间的距离)各不相同。总的来说,低指数的晶 面其面间距较大,而高指数面的面间距小。以图1-22所示的简单立 方点阵为例,可看到其{100}面的晶面间距最大,{120}面的间距较小,而{320}面的间距就更小。但是,如果分析一下体心立方或面心立方 点阵,则它们的最大晶面间距的面分别为{110}或{111}而不是{100},说明此面还与点阵类型有关。此外还可证明,晶面间距最大的面总是阵点(或原子)最密排的晶面,晶面间距越小则晶面上的阵点排列就越

稀疏。正是由于不同晶面和晶向上的原子排列情况不同,使晶体表现为各向异性。 简单立方点阵晶面间距d与点阵常数之间的关系: 。 面心立方晶体(FCC)晶面间距与点阵常数a之间的关系: 若h、k、l 均为奇数,则 ;否则, 。 体心立方晶体(BCC)晶面间距与点阵常数a之间的关系: 若h+k+l=偶数,则 ;否则,

结构化学-晶棱和晶面指数的计算方法

§1-2 晶棱和晶面指数 这一节主要是讨论表示利用晶格的概念来表示晶棱和晶面的方法。 晶棱与晶向:由于晶体结构的周期性,晶格中各格点的周围情况都是一样的,因此通过任意两个格点作一条直线,则在直线上所有格点的周期相同,这样的直线称为晶棱。再通过其它格点还可以做许多与此晶棱平行的直线,这些平行直线组成一个晶棱族,如图1-8所示。同一晶棱族的方向相同,而且能把所有点子包括无遗。此外,通过同一格点还可沿不同方向作无限多晶棱,如图1-9中通过O的晶棱有1、2、3、4、5等等,其中每一个晶棱都有一组晶棱与之对应,就是说,可以做无限多个晶棱族,各族晶棱可以通过取向不同而加以区别。晶棱的取向也简称晶向。只要表出了晶向,该组晶棱的特点也就知道了。 图1-8 一族晶棱示意图 图1-9 通过格点O的部分晶棱示意图 晶向的表示方法:取格点O为原点,a、b、c为晶胞的三个基矢,则其它任一格点A 的位置矢量为

式中l1、l2、l3为整数(或有理数)。取l1、l2、l3的互质比,即l1:l2:l3来表示晶棱OA 的方向,通常不直接用比例记号,该用方括号[l1l2l3]表示。例如在图1-9中,晶棱1上A点为l1=1,l2=1,l3=0;B点为l1=2,l2=2,l3=0;比值为:l1:l2:l3=1:1:0=2:2:0,由此可得晶棱1 的方向为[110]。同理可得晶棱2的方向为[320],晶棱4的方向为[30],其中记号“”代表“-1”。三个晶轴a、b、c的方向分别为[100]、[010]、[001](c轴与图平面垂直,未画出)。 晶面与晶面指数:晶格中,还可以从各个方向上划分成无限多平面,即晶面族,如图1-10所示。同一族晶面中,彼此距离相等,方向相同,格点在晶面上的分布也相同。晶体的表面也是晶面,通常应该是原子面密度比较大的面。现在问题是如何表示这些晶面族的方向。 图1-10 部分晶面族示意图 从立体几何中知道,要描述一个平面的方向,就是表示出这个平面在三个坐标轴上的截距。描写晶面方向的方法也是如此。选取与晶轴平行的基矢a、b、c为坐标轴。假设有一个晶面与此三个坐标轴相交于M1、M2和M3三点(如图1-11所示),截距分别等于:OM1=ra,OM2=sb,OM3=tc,例如在图1-11中晶面的三个截距分别是r=3,s=2,t=1。因为一族晶面一定包含了所有格点,所以截距的长度是一组有理数,或者说截距的倍数是晶格常数的整数倍,如果晶面与某一坐标轴平行,则晶面在此坐标轴的截距为无限大(例如,若晶面与b 轴平行,则s=∞)。为了避免使用无限大,常采用截距倒数的互质整数比,即用 来表示晶面的方向。通常不用比例记号,该用圆括号(hkl)来表示晶面的方向。(hkl)称为晶面指数,或称为米勒(Miller)指数。如图1-11中的晶面指数为, 即M1M2M3面的米勒指数为(236)。有时也称M1M2M3面为(236)晶面。

测定晶体的晶面间距 (1)

测定晶体的晶面间距 ——X射线衍射法(布拉格法) 一、前言 X射线的波长非常短,与晶体的晶面间距基本上在同一数量级。因此,若把晶体的晶面间距作为光栅,用X射线照射晶体,就有可能产生衍射现象。科学家们深入研究了X射线在晶体中的衍射现象,得出了著名的劳厄晶体衍射公式、布拉格父子的布拉格定律等等。在他们的带领下,人们的视野深入到了晶体的内部,开辟了X射线理论和应用的广阔天地。他们也因自己的卓越研究,都获得了诺贝尔奖。 今天,X射线的衍射原理和方法在物理、化学、地质学、生命科学、……、尤其是在材料科学等各个领域都有了成熟的应用,而且仍在继续兴旺发展,特别是在材料的微观结构认识与缺陷分析上仍在不断揭示新的奇妙现象,正吸引着科学家们致力于开创新的理论突破! 二、实验目的: 1)掌握X射线衍射仪分析法(衍射仪法)的基本原理和方法; 2)了解Y-2000型X射线衍射仪的结构、工作原理和使用方法。 三、实验原理 1912年英国物理学家布拉格父子(W. H. B ragg & W. L. B ragg)通过实验,发现了单色X射线与晶体作用产生衍射的规律。利用这一规律,发明了测定晶格常数(晶面间距)d的方法,这一方法也可以用来测定X射线的波长λ。在用X射线分析晶体结构方面,布拉格父子作出了杰出贡献,因而共同获得1915年诺贝尔物理学奖。 晶面间距与X射线的波长大致在同一数量级。当用一束单色X射线以一定角度θ照射晶体时,会发生什么现象呢?又有何规律呢?见图1: 图1 晶体衍射原理图 用单色X射线照射晶体: 1)会象可见光照射镜面一样发生反射,也遵从反射定律:即入射线、衍(反)射线、法线三线共面;掠射角θ与衍射角相等。 2)但也有不同:可见光在0°~180°都会发生反射,X射线却只在某些角度有较强的反射,而在其余角度则几乎不发生反射,称X射线的这种反射为“选择反射”。 选择性反射实际上是X射线1与X射线2互相干涉加强的结果,如图1(b)所示。当X射线1与2的光程差2 δ是波长λ的整数倍时,即2 δ = n λ(n∈Z﹢)时,会发 生干涉: ∵δ = d Sin θ 2 δ = 2 d Sinθ ∴ 2 d Sin θ = n λ ( 1 ) 此即著名的布拉格公式。 布拉格公式指出,用波长为λ的X射线射向晶体表面时,当在某些角度的光程差正好为波长λ的整数倍时,会发生干涉加强。让试样和计数器同步旋转(即转过扫查角度范围),用记数器记录下单位时间发生衍射的光量子数CPS,用测角仪测出发生衍射的角度( 2 θ),如图2所示。 图2 测量衍射示意图 用CPS(CPS–C ounts P er S econd )作纵坐标,2 θ作横坐标,描绘出所记录到的光量子数与角度的关系曲线,就可以得到如下衍射波形图: 图3 S i的衍射波形图 衍射峰对应的横坐标值即测得的2 θ角,而实验中的X射线管发出的X射线的波长λ

晶面夹角公式

晶面夹角公式: 设晶面(h 1k 1l 1)和晶面(h 2k 2l 2)的面间距分别为d 1、d 2,则二晶面的夹角ω以下列公式计算(V为单胞体积)。 立方晶系: cos φ= 正方晶系:121212 22 cos h h k k l l φ++= 六方晶系:( )2 1212122112 213cos a h h k k h k h k l l φ++++= 正交晶系:121212 222cos h h k k l l φ++=菱方晶系: ()()()42212 1212121221122112212cos sin cos cos a d d h h k k l l k l k l l h l h h k h k V φααα??=+++-+++++??单斜晶系:()2122112121212222 2cos sin cos sin l h l h d d h h k k l l a b c ac ββφβ+?? =++-???? 三斜晶系: ()()()12 1112221233122312211312211212212cos d d S h h S k k S l l S k l k l S l h l h S h k h k V φ= ++++++++???? 立方晶系: cos φ= 正方晶系:121212 22 cos h h k k l l φ++=

立方晶系:( )2 1212122112 213cos a h h k k h k h k l l φ++++= 正交晶系:121212 222cos h h k k l l φ++= 菱方晶系: ()()()422 121212121221122112212cos sin cos cos a d d h h k k l l k l k l l h l h h k h k V φααα??=+++-+++++?? 单斜晶系: ()2122112121212222 2cos sin cos sin l h l h d d h h k k l l a b c ac ββφβ+?? =++-???? 三斜晶系: ()()()12 1112221233122312211312211212212cos d d S h h S k k S l l S k l k l S l h l h S h k h k V φ= ++++++++??? ?

如何确定晶面间距

通过HRTEM的高分辨衬度条纹,可以量出相应的晶面间距为0.5nm,可以对材料的PDF 卡片看下这个间距对应的是哪个晶面的晶面间距,这样就可以把条纹所代表的晶面确定下来。最下面的SAED点比较杂乱,可能是所选区处含有多种晶向的晶体,因此可能会得到几种方向斑点重合的的SAED。你所测得的0.297nm或0.387nm都是对的,但是对应于不同的晶面衍射,究竟是对应哪个还是需要对比PDF卡片数据进行指认。 你这里的HRTEM与SAED并没有很明显的对应关系,可能原因是打HRTEM是区域较小,但打SAED时选区包含的晶粒较多,又出现不同取向造成的。或者他们根本就不是在一个地方打的。 FFT结合HRTEM可以进一步确定晶体的晶面及取向信息。 从HRTEM量得的明显的条纹间距就是0.5nm。你也可以用电子尺通过标尺来量取间距。一次可以量10个,然后再平均。正常情况同样晶面得到的晶格条纹间距是应该相等的,如果你量取的值出现与标准值有差别的情况,如果差得不多是正常的,还要再结合SAED指认晶面。或者看FFT的点分布能与什么样的拍摄几何构型对得上。总之当一种图片里信息不好确定情况下,要采用其它佐证。 关键要对FFT中的点进行标定,这也要结合HRTEM,如果测试结果正确,分析过程没问题,HRTEM的晶格条纹是会给出可信的晶面信息的,然后看FFT可以看出晶面的对称信息。从你这个FFT可以看出与电子束入射方向平行的晶面应该是有六方对称存在的,只不过电子束方向在实际测试时并没有与这些晶面都很好地平行,所以测得的HRTEM并不理想,只有一种晶面看得最清楚。 这张图照得很好,可以同时看到两种晶面的信息,竖条的如果是(220),那么横条就是与之成近90度的另一晶面。都需要测量,然后给标定出来,如果横条的与竖条间距一致,那么说明这两个是同一族晶面,正常标定就可以了。 HRTEM所测得的条纹间距,就是相应晶面的晶格间距。SAED打出的六方感觉的点不一定就说明材料是六方相,我们知道对于立方相的(111)方向打SAED就是很完美的六方点,但材料本身是立方相。关键要看电子束是从晶体的哪个面入射的。SAED的多晶环,每个环对应一种晶面,但HRTEM要想照出很好的晶格对电子束与晶体之间的角度是有关系的。所以有时候就算晶体很薄,电子束可以透过,也可能会出现HRTEM打不出晶格的情况,或者只能打出一种晶面的晶格条纹。HRTEM与FFT有对应关系,但与测的SAED除非晶体很完美,如果是纳米晶,一般就很难有完美的对应。 1.L*λ叫相机常数,依赖于不同的仪器。 2. r是用直尺所量的长度 所以,很明显,这是老仪器的套路。 要把图置于真实尺寸下量取距离,带入公式即可计算。 现在是ccd成像,scale bar直接在照片上,量出来的中心点至衍射点的距离,就直接是d值的倒数, 按你的图,即1/nm。 3. 中心点就是圆心。 4. 标衍射点,请先做理论计算或者叫“模拟”,按你的晶体结构jcpds77-2042进行,晶

晶面指数

引用晶面指数、晶向指数、晶面间距 第二章X射线衍射方向 【教学内容】 1.晶体几何学基础。 2.X射线衍射的概念与布拉格方程(布拉格定律、衍射矢量方程、爱瓦德图解、劳埃方程)。 3.布拉格方程的应用与衍射方法。 【重点掌握内容】 1.晶体几何学的基本概念,包括布拉菲点阵,晶面和晶向指数等。 2.布拉格方程,这是本章的重中之重。 3.关于反射级数,X射线衍射与可见光反射的区别,以及衍射产生的条件及其在实际分析工作应用。 【了解内容】 1.复习晶体几何学的某些概念,如晶体、空间格子、晶带、晶带定律和晶面间距和晶面夹角的计算。 2.布拉格方程的应用和主要的衍射分析方法。 【教学难点】 1.倒易点阵。 2.衍射矢量方程、爱瓦德图解。 【教学目标】 1.熟练掌握X射线衍射的基本原理,尤其是布拉格方程。 2.培养学生善于利用这些理论去指导实际分析工作的能力。 【教学方法】 1.以课堂教学为主,通过多媒体教学手段,使学生掌握较抽象的几何结晶学的概念和布拉格方程。 2.通过做习题加深对X射线衍射理论的理解。 一、X射线衍射的发现 上章已经X射线的波动本质。我们对X射线的应用很大程度依赖于它的波动性。 第一个成功对X射线波动性进行的研究是德国物理学家劳厄(M. V. Laue)(照片)。1912年,劳厄是德国慕尼黑大学非正式聘请的教授。在此之前,人们对光的波动性已经进行了很多的研究,有关的理论已相当成熟。比如,光的衍射作用。人们知道,当光通过与其波长相当的光栅时会发生衍射作用。另一方面,人们对晶体的研究也达到相当的水平,认为晶体内部的质点是规则排列的,且质点间距在1-10A之间。当时,同校的一名博士研究生厄瓦耳(P. P. Eward)正在研究关于“各向同性共振体按各向异排列时的光学散射性质”。一天,他去向劳厄请教问题。劳厄问他,如果波长比晶体的原子间距小,而不象可见光波

晶面间距计算公式

正交晶系 1/d2=h2/a2+k2/b2+l2/c2 单斜晶系 1/d2={h2/a2+k2sin2β/b2+l2/c2-2hlcosβ/(ac)}/ sin2β 立方晶系 d=a/(h2+k2+l2) 六角晶系 四角晶系 单斜晶系

三斜晶系 If Φ is the angle between plane (h 1 k 1 l 1) and (h 2 k 2 l 2), then for Orthorhombic 2 /12222222222 /1221221221221221221)()()(cos ??? ? ??++??? ? ??++++= Φc l b k a h c l b k a h c l l b k k a h h Tetragonal []() 2 /1222222222 /1221221212 2 122121 ))/)(cos ??? ? ??++???? ??++++= Φc l a k h c l a k h c l l a k k h h Cubic ()()[] 2 /122 2222 21 2 1 21 212121cos l k h l k h l l k k h h ++++++= Φ Hexagonal ()() 2 /12222 222 2222122 11212121221221212143434 321 cos ????? ????? ??+++???? ??++++++ += Φl c a k h k h l c a k h k h l l c a K h k h k k h h

VOLUME: Orthorhombic: =abc Tetragonal: =c a2 Cubic: =3a 3 Hexagonal: =c a2 2 hcp transition between (UVW) and (uvtw) U=u-t, V=v-t, W=w u=1/3(2U-V), v=1/3(2V-U), t= - (u+v), w=W.

相关主题