搜档网
当前位置:搜档网 › 用蒙特卡罗随机方法计算圆周率近似值

用蒙特卡罗随机方法计算圆周率近似值

用蒙特卡罗随机方法计算圆周率近似值
用蒙特卡罗随机方法计算圆周率近似值

用蒙特卡罗随机方法计算圆周率近似值

在平面内画一个2*2的正方形,一个单位圆内切于正方形内。在平面内随机取点,计算落在圆内点的概率P.根据面积关系

P=π/4

因此

π=4*P

实验结果:

实验分析:随着实验次数的增加,实验结果越接近于圆周率。

附matlab代码

function pi=yzl(n)

s=0;

for i=1:1:n

x=rand(1);

y=rand(1);

if x*x+y*y<=1 s=s+1;

end

end

pi=s/n*4

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

圆周率计算公式

圆周率计算公式Revised on November 25, 2020

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

892 π= 902 π=25434 912 π= 922 π= 932 π= 942 π= 952 π= 962 π= 972 π= 982 π= 992 π= 1002 π=31400 12~1002 12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262=676 272=729 282=784 292=841 302=900 312=961 322=1024 332=1089 342=1156 352=1225 362=1296 372=1396 382=1444 392=1521 402=1600 412=1681 422=1764 432=1849 442=1936 452=2025

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

第19章-蒙特卡罗法与自助法

? 陈强,《高级计量经济学及Stata 应用》课件,第二版,2014 年,高等教育出版社。 第 19 章蒙特卡罗法与自助法 19.1 蒙特卡罗法的思想与用途 通过计算机模拟从总体抽取大量随机样本的计算方法统称为“蒙特卡罗法”(Monte Carlo Methods,简记MC)。 例(计算圆周率π):在边长为1 的正方形中内接1单位圆。正方形面积为1,1 4圆面积为π 4。如知道1 4单位圆占 正方形面积的比例,就可计算π。

图19.1 计算圆周率 的随机实验 向这个正方形随机地射箭,落点在正方形上服从二维均匀分布。重复实验n 次,其中有m 次落在1 4圆内。 2

3 ? ? 根据大数定律,m n ?p ?→π 4,故π≈ 4m n 。 在计量中,常用 MC 来确定统计量的小样本性质。 【例】对于y i = x i 'β + εi (i = 1, , n ),对H 0 : R β = r 进行显著性水平 为 5%的大样本检验: W ≡ n (R β? - r )' ? R A var(β?)R '?-1 (R β? - r ) ?d ?→ χ 2 (m ) 其中β? 为 OLS 估计量,m 为线性约束个数。 渐近χ 2 分布只是真实分布的近似,故“5%”可能只是“名义显著 性水平”(nominal size),而非“真实显著性水平”(true or actual size),二者之差称为“显著性水平扭曲”(size distortion)。

可用MC 来确定“真实显著性水平”。 第一步,给定β的具体取值,以及x 与的概率分布。第二步,从x 与的分布中随机抽样,得到{x1, {ε 1, ε2 , , εn }。 x 2 , , x n }与 第三步,根据方程y i=x i'β +εi 计算{y1,y2 , , y n }。 第四步,对此样本进行OLS 估计,计算统计量W ,与χ2 (m)的5%临界值比较,确定是否拒绝原假设H0 : Rβ =r 。 第五步,大量重复第二至第四步,得到M 个随机样本(比如,M =1 000),进行M 次检验,则拒绝原假设的比例就是真实显著性 4

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.sodocs.net/doc/9b4343991.html, Eric Haskin haskin@https://www.sodocs.net/doc/9b4343991.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

蒙特卡罗方法及应用实验讲义2016

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

数学实验:怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班

实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论和方法: 方法一:数值积分法(单位圆的面积是,只要计算出单位圆的面积也就计算出了的值) 其具体内容是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G是一个扇形, 由曲线()及坐标轴围成,它的面积是,算出了S的近似值,它的4倍就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分是一个曲边梯形:它的左方、右方的边界是相互平行的直线段,类似于梯形的两底;上方边界是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的看成直线段,从而将近似的看成一个梯形来计算它的面积;梯形的高(也就是它的宽度)h=1/n,两条底边的长分别是和,于是这个梯形面积可以作为曲边梯形面积的近似值。所有这些梯形面积的和T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之和T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法 其具体内容是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法

其具体内容是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,看其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica中语句是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的的近似值。 分析:图一中的扇形面积S实际上就是定积分。 与有关的定积分很多,比如的定积分

蒙特卡洛方法及其在风险评估中的应用(1)

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值 解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测 值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的 测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失, 以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.sodocs.net/doc/9b4343991.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

历史上一些圆周率计算方法

历史上一些圆周率计算方法 从古至今,计算圆周率一直挑战着人类的探索能力极限,人们为此提出了效率越来越高的计算方法。可是,你知道多少圆周率的另类计算法呢?今天我们就来和大家分享一下,历史上出现的几个最奇怪的圆周率计算法。 功亏一篑的人肉计算记录 电脑计算圆周率屡破记录,但新时代对机器的信任和依赖使得人们已经主动放弃了自己手动演算的能力。为了打破手算圆周率的记录,让人们重新拾回对自己演算能力的信心,澳大利亚一个 16 岁的小伙子决定人肉计算圆周率的前 100 位。他挑选了圆周率的一个广义连分数公式,准备了 2000 张草稿纸,并精心地规划了一番。从此开始,他总是把这厚厚的一叠草稿纸带在身边。不管是在家还是在学校,他都端坐在草稿纸面前,不停地挥动着手中的笔。他很快成为了学校的一道风景线——无视上下课铃声,雷打不动地做着枯燥的加法和除法。 2 年后的某堂历史课上,就在他书写最后一个除法竖式时,悲剧发生了:新来的代课老师发现他有小动作,点名叫他起来回答问题。当他无视老师继续埋头苦算时,不明真相的代课老师一怒之下抢过草稿纸,并撕成了无数碎片。 最辗转的计算方法 在一本统计学读物中,为了告诉读者在日常生活中数字无处不在,作者统计出了自家厕所的卷筒纸平均每多少天换一次,乘以平均每天的大便次数,乘以平均每次大便需要扯下来的卫生纸张数,乘以每一截卫生纸的长度,乘以把一长截卫生纸对折 10 次的厚度,除以 1024 ,除以自动切割机从卷筒纸最外层切到最里层(厚度为 R-r )的时间,除以切完整个卷筒纸(剩余的 R+r )还需要的时间,除以切割机移动的速度,得出了圆周率近似值。 作者顺便指出,若读者愿意,还可以在末尾乘以平均每个男人拥有的 jj 根数。 用生命换来的圆周率 这个多少有些标题党了,但实际情况就是如此——这个 3.14 真的是由无数人的鲜血换来的。 2003 年,美国纽约警方搜集了 30 年来发生在斑马线上的车祸,从里面抽取了所有身高在 5 英尺 6 英寸到 8 英寸之间(大概从 1.68 米到 1.73 米)的遇难行人,统计了他们的尸体与斑马线相交的概率,并应用Buffon 投针实验理论得到了圆周率的近似值。纽约警方还专门发表了文章,称由此他们得出,行人被撞事故是完全随机的,一切都是遵循大自然的规律的。文章末尾请求出行人看开一些,生命在规律面前弱不禁风,该发生的总会发生。 凶案现场也有圆周率

蒙特卡罗方法的计算程序

关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT 等。这些程序大多经过了多年的发展,花费了几百人年的工作量。除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT 2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。 ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。 ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。 NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。 FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

圆锥体计算方法

圆锥体计算方法 圆锥体的体积=底面积×高×1/3(圆锥的体积是等底等高圆柱体的三分之一)=1/3πr2h 圆柱体的表面积=高×底面周长+底面积×2 即S圆柱体=(π×d×h)+(π×r2×2) 圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。 圆锥的表面积 一个圆锥表面的面积叫做这个圆锥的表面积. S=πl2×(n/360)+πr2或(α*l^2)/2+πr2(此α为角度制)或πr(l+r)(L表示圆锥的母线) 圆锥的计算公式 圆锥的侧面积=母线的平方×π×360百分之扇形的度数 圆锥的侧面积=1/2×母线长×底面周长 圆锥的侧面积=π×底面圆的半径×母线 圆锥的侧面积=高的平方*3.14*百分之扇形的度数 圆锥的表面积=底面积+侧面积S=πr2+πrl (注l=母线) 圆锥的体积=1/3底面积×高或1/3πr2h 圆锥的母线:圆锥的顶点到圆锥的底面圆周之间的距离。 圆锥的其它概念 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高圆锥只有一条高。 圆锥的侧面积: 将圆锥的侧面积不成曲线的展开,是一个扇形 圆锥的母线: 圆锥的顶点到圆锥的底面圆周之间的距离。一般用字母L表示。 知识总结:一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。 要知道了锥度的计算公式,你的问题就都可以解决了. 公式是C=(D-d)/L C表示锥度比D 表示大端直径d表示小端直径L表示锥的长度①已知锥度比C,小头直径d,总长L,则

大头直径D=C*L+d ②已知大头直径D,锥度比C,总长L,则小头直径d=D-C*L ③已知大头直径D,小头直径d,锥度比C,则总长L=(D-d)/C ④已知大头直径D,小头直径d,总长L,则锥度比C=(D-d)/L 各种管材理论重量计算公式、钢材理论重量计算公式1、角钢:每米重量=0.00785×(边宽+边宽—边厚)×边厚 2、管材:每米重量=0.02466×壁厚×(外径—壁厚) 3、圆钢:每m重量=0.00617×直径×直径(螺纹钢和圆钢相同) 4、方钢:每m重量=0.00786×边宽×边宽 5、六角钢:每m重量=0.0068×对边直径×对边直径 6、八角钢:每m重量=0.0065×直径×直径 7、等边角钢:每m重量=边宽×边厚×0.015 8、扁钢:每m重量=0.00785×厚度×宽度 9、无缝钢管:每m重量=0.02466×壁厚×(外径-壁厚) 10、电焊钢:每m重量=无缝钢管 11、钢板:每㎡重量=7.85×厚度 12、黄铜管:每米重量=0.02670×壁厚×(外径-壁厚) 13、紫铜管:每米重量=0.02796×壁厚×(外径-壁厚) 14、铝花纹板:每平方米重量=2.96×厚度 15、有色金属密度:紫铜板8.9 黄铜板8.5 锌板7.2 铅板11.37 16、有色金属板材的计算公式为:每平方米重量=密度×厚度 17、方管: 每米重量=(边长+边长)×2×厚×0.00785 18、不等边角钢:每米重量=0.00785×边厚(长边宽+短边宽--边厚) 19、工字钢:每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 20、槽钢:每米重量=0.00785×腰厚[高+e(腿宽-腰厚)]

用蒙特卡罗方法计算π值实验报告

本科生实验报告 实验课程蒙特卡罗模拟 学院名称核技术与自动化工程学院专业名称核技术及应用 学生姓名王明 学生学号2017020405 指导教师 邮箱511951451@https://www.sodocs.net/doc/9b4343991.html, 实验成绩 二〇一七年九月二〇一八年一月

实验一、选择一种编程语言模拟出π的值 一、实验目的 1、理解并掌握蒙特卡罗模拟的基本原理; 2、运用蒙特卡洛思想解决实际问题; 3、分析总结蒙特卡洛解决问题的优缺点。 二、实验原理 用蒙特卡洛思想计算π的值分为如下几部: 第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4; 第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。 第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。 第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百

万个计数。 三、实验内容 1、用matlab编写的实验代码,总计数率为1000。zfx_x=[1,-1,-1,1,1]; zfx_y=[1,1,-1,-1,1]; plot(zfx_x,zfx_y) axis([-3 3 -3 3]); hold on; r=1; theta=0:pi/100:2*pi; x=r*cos(theta); y=r*sin(theta); rho=r*sin(theta); figure(1) plot(x,y,'-') N=1000; mcnp_x=zeros(1,N); mcnp_y=zeros(1,N); M=0; for i=1:N x=2*(rand(1,1)-0.5); y=2*(rand(1,1)-0.5); if((x^2+y^2)<1) M=M+1; mcnp_x(i)=x; mcnp_y(i)=y; end end plot(mcnp_x,mcnp_y,'.') PI1=4*M/N; 2、用matlab绘制的图形

蒙特卡罗法

第3章蒙特卡罗法3.1蒙特卡罗法的基本原理 3.1.1蒙特卡罗法的基本过程 3.1.2蒙特卡罗法的基本问题 1. 蒙特卡罗法的收敛性

2 计算机辅助绘图基础(第4版) 2. 蒙特卡罗法的误差 3. 蒙特卡罗法的费用 3.1.3蒙特卡罗法的特点 1. 收敛速度与问题维数无关 2. 受问题条件限制的影响不大 3. 不必进行离散化处理 4. 蒙特卡罗法是一种直接解决问题的方法 5. 误差容易确定

计算机辅助绘图基础(第4版) 3 6. 蒙特卡罗法的缺点 3.1.4蒙特卡罗法待研究的若干问题 1. 随机数 2. 已知分布的随机抽样 3. 非归一问题的随机抽样 4. 蒙特卡罗法的基本技巧 5. 蒙特卡罗法的并行化计算方法 3.1.5随机变量的基本规律 1. 随机变量 2. 数学期望值 3. 方差 4. 特征函数 5. 中心极限定理

4 计算机辅助绘图基础(第4版) 6. 分布函数的基本性质 7. 随机变量序列的收敛性 图3.1几种收敛的关系3.1.6大数定律及中心极限定理的一般形式 1. 大数定律 2. 中心极限定理 3.1.7 4个常见的中心极限定理 1. 勒维·林德伯格(Lévy Lindeberg)中心极限定理

计算机辅助绘图基础(第4版) 5 2. 棣莫弗·拉普拉斯(De Moivre Laplace)中心极限定理 3. 李雅普诺夫(Ляпунов)中心极限定理 4. 林德伯格(Lindeberg)中心极限定理 3.1.8几种常见的概率模型和分布 1. 贝努利概型——二项分布 2. 泊松(Poisson)分布 3. 均匀分布

蒙特卡洛模拟法简介

蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 蒙特卡洛模拟法的概念 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。

蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 蒙特卡洛模拟法的实例 资产组合模拟: 假设有五种资产,其日收益率(%)分别为 0.02460.0189 0.0273 0.0141 0.0311 标准差分别为 0.95091.4259, 1.5227, 1.1062, 1.0877 相关系数矩阵为 1.0000 0.4403 0.4735 0.4334 0.6855 0.4403 1.00000.7597 0.7809 0.4343 0.4735 0.75971.0000 0.6978 0.4926 0.4334 0.78090.6978 1.0000 0.4289 0.6855 0.43430.4926 0.4289 1.0000 假设初始价格都为100,模拟天数为504天,模拟线程为2,程序如下%run.m

相关主题