搜档网
当前位置:搜档网 › Preh BMS introduction

Preh BMS introduction

储能电站总体技术方案

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (10) 3.4并网控制子系统 (14) 3.5储能电站联合控制调度子系统 (16) 4.储能电站(系统)整体发展前景 (19)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

电池管理系统 (BMS)

如何重新定义电动汽车电池管理系统 (BMS )? 来源:英飞凌公司 作者:Klaus & Bj?rn2013年12月13日 12:01 0 分享 订阅 [导读] 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。 关键词:电池管理处理器英飞凌电动汽车 随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未 来,甚至车辆控制单元 (VCU ) 的部件和功能也会与 BMS 相关联。 图1 配备所有相关部件的电动汽车电池管理系统 (BMS )

未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂定制,会因系统配置不同而存在很大差异。因此,不可能制定出适用于每一个电动汽车制造商的完整的 BMS 要求列表。然而,电池管理系统处理的任务范围不断扩大,这一事实毋庸置疑。BMS 最常见的要求包括安全要求、控制和监控功能、待机功能、热管理、加密算法和预留可扩展接口增加新功能。 安全要求 在 ISO 26262 安全标准范围内,如 BMS 等特定的电气和电子系统将被归类为从 ASIL C 至 ASIL D 的高安全类别。与之对应的故障检测率至少为 97% 至 99%。电池系统中最危险的故障来源有:因电缆磨损或事故而导致车辆底盘出现高电压漏电而未被发现;各种引起高电压电池起火或爆炸的原因:例如对电池过度充电(例如在公用电网上或因停电恢复引起)、电池过早老化(例如爆炸性气体泄漏)、液体进入和短路(例如因雨水引起)、滥用(例如维修不当)和热管理错误(例如冷却失效)等。 在安全方面,主开关(主继电器)在避免与高电压相关的事故中起到了重要的作用,它可确保 BMS 电子系统能够作出充分的故障反应。发生故障时,BMS 模块会在适当的故障反应时间内断开开关(例如 10ms 以内)。非关键故障安全条件的特征通常是:如果 BMS 微控制器(MCU)失效,甚至在控制器逻辑完全失效的情况下,独立的外部安全元件(例如窗口看门狗)仍可确保主开关继电器可靠地打开逆变器(正/负)的两个高电压触点。BMS 系统中还集成了其他安全功能,包括漏电电流监控和主开关继电器监控。 控制和监控功能: 其他 BMS 功能包括对电动汽车中昂贵的高电压电池的监控、保养和维护。BMS 控制和监控功能来源于安装于电池包中的电子平衡单元。管理各个电池组内(battery slave pack)的平衡,同时精确地感测各个单电池的电压。平衡芯片通常可管理多达 12 个单电池组成的群组。相关数量的电池群组串联后可产生高达数百伏的高中间电路电压以供逆变器控制之用,这是电动汽车的逆变器电驱动所必需的。 位于主开关对所有高电压电池的总电流的测量,以及从芯片对各个单电池电压的单电池精确同步监控,BMS 可使用特定算法(例如,基于电池化学 Matlab Simulink 模型)评估充电状态及健康状态等电池参数。BMS 通常不会安装在非常靠近高电压电池的位置,但是通常会通过冗余的流电去耦总线系统(比如 CAN 或其他适合的差分总线)与电子平衡从动元件相连接。它由汽车电压(12 伏电池)供电,因此可通过现有的网络架构与现有的控制单元群组结合使用,无需进一步的流电去耦措施。最后,它还改善了安全性,因为它让 BMS 能够在高电压电池发生机构或化学缺陷时确保功能正常并且安全地断开主开关。 随着电池专用的化学/电气算法日益复杂,预计 BMS 将需要使用拥有 2.5MB 至 4MB 闪存和强大的多核处理器架构的 AURIX 等微控制器(MCU)。这种组合可以保证有足够的内存用于全面校准参数并提供足够的计算能力(图 2)。

储能电站技术方案

储能电站总体技术方案 页脚内容1

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (15) 3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 页脚内容2

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 页脚内容3

电池管理系统BMS硬件技术要求书

BMS硬件技术要求 MA/SIR X.X.X 编制 审核 会签 批准

1. 产品技术要求 硬件选型要求 BMS 的主控单元微处理器必须满足如下的性能要求: 序号项目主板MCU性能要求 1 处理器类型16位汽车级芯片 2处理器总线时钟频率≥80MHz 3Internal RAM(随机读写存储器)≥64Kbyte 4Flash(存储器)≥1Mbyte 5EEPROM (电可擦除读写存储器)≥4Kbyte 电池管理系统关键元器件要求采用汽车级产品并满足汽车电子相应的测试标准。 环境要求 相对湿度15% ~90%RH; 海拔高度-100~5000m; 气压范围56.9~106.3kPa; 工作环境温度范围为-40℃~+85℃。 序号项目主板MCU性能要求 1 相对湿度15% ~90%RH 2海拔高度-100~5000m 3气压范围56.9~106.3kPa 4工作环境温度-40℃~+85℃ 电源管理要求 1.3.1 基本功能要求 N o. 序 Cont ents 目录 Description 描述 R&D Requirements 设计要求 Remar ks 说明

1.3.2 供电要求 1).BMS应支持6V-32V常火供电,工作模式下功耗(不含外部继电器)不超过 0.5A@12V,系统应用仅支持12V系统; 2).BMS应支持12V/24V(±15%)A+供电; 3).BMS应支持钥匙信号唤醒、VCU信号唤醒、A+信号唤醒、CC唤醒、预留定时唤醒、CAN唤醒,并预留1路硬线唤醒,内部应具备唤醒源识别功能;在无唤醒信号的情况下进入休眠模式,功耗要求不高于1mA。CC在线不充电状态系统进行低功耗模式,功耗要求不高于5mA。 4).在汽车启动电池出现馈电异常情况时,BMS内部供电电路应避免出现充电系统相关接口(A+或CP)向汽车启动电池补电而导致硬件损坏的风险; 5).在供电系统9V-16V范围内,BMS的所有功能模块应能正常工作; 6).在供电系统6V-9V范围内,BMS的对外通讯功能正常工作,能判断电源欠压状态; 7).在供电系统16V-32V范围内,BMS的对外通讯功能正常工作,且能正常检测充电连接信号和电源过压状态,12V系统应用时为保护外部高压继电器,在24V A+供电时BMS 应进入保护状态,严禁常火24V系统应用环境;

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能电站技术方案设计

储能电站总体技术方案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

电池管理系统BMS控制策略方案书

项目编号: 项目名称:电池管理系统(BMS)文档版本:V0.01 技术部 2015年月日

版本履历

目录 1.前言 (4) 2.名词术语 (5) 3.概要 (6) 4.总体要求 (7) 5.系统原理图 (9) 6.模块的构成 (10) 6.1BMS程序模块图 (10) 6.2整体方案图 (10) 7.电池串管理单元BCU (11) 7.1模块的概述 (11) 7.2模块的输入 (11) 7.3模块的功能 (11) 7.4模块的输出 (11) 8.电池检测模块BMU (11) 8.1模块的概述 (11) 8.2模块的输入 (11) 8.3模块的功能 (11) 8.4模块的输出 (12) 9.绝缘检测模块LDM (12) 9.1模块的概述 (12) 9.2模块的输入 (12) 9.3模块的功能 (12) 9.4模块的输出 (12) 10.强电控制系统HCS (12) 10.1模块的概述 (12) 10.2模块的输入 (12) 10.3模块的功能 (12) 10.4模块的输出 (13) 11.电流传感器CS (13) 11.1模块的概述 (13) 12.显示屏LCD (13) 12.1模块的概述 (13) 13.后记 (14) 14.参考资料 (15)

1.前言 开发电动汽车电池管理系统,此系统的全面实时监控,具有良好的电池均衡性能,检测精度高。

2.名词术语 BMS:电池管理系统 BCU:电池串管理单元 BMU:电池检测单元 LDM:绝缘检测模块 HCS:强电控制系统 SOC: 电池荷电状态

3.概要 电动汽车电池管理系统(BMS),管理系统状态用于监测电动汽车的动力电池的工作状态,从而采集动力电池的状态参数,实现动力电池的SOC状态、温度、充放电电流和电压的监控。电池管理系统主要是BMS通过CAN总线与整车控制器、智能充电器、仪表进行通讯,对电池系统进行安全可靠、高效管理。电池管理系统包括BCU和BMU,BCU主要作用是:根据动力电池的工作状态,对电池组SOC进行动态估计,通过霍尔电流传感器,实现对充放电回路电流的实时监测,保护电池系统,可以实现与BMU、整车控制器、充电机等进行通信,交互电压、温度、故障代码、控制指令等信息;BMU的功能是通过对各个单体电压的实时监测、对箱体温度的实时监测,通过CAN总线将电池组内各单体的电压、箱体温度以及其他信息传送到BCU,通过与智能充电桩交互数据信息,充电期间实时估算电池模块SOC,对电芯进行充电均衡,提高单节电芯的一致性,提高整组电池使用性能,对电池进行主动式冷热管理,保护电池使用寿命,延长电池寿命。

储能电站总体技术方案

储能电站总体技术方案 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的

应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为 1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

储能电站技术要求概要

性能要求 2.1 总体要求 2.1.1 2.1.2 测。 2.1.3 电池储能系统的监控系统及其子系统(包括电池管理系统、变流装电池储能系统要求能够自动化运行,运行状态可视化程度高。交直流回路及监控软件须能够对交直流各回路进行电流和电压监 置就地控制器、储能系统配套升压变及高低压配电装置监控单元等)所采用的通讯协议应向客户完全开放,且需符合国际通用标准及客户要求。 2.1.4 电池组的布置和安装应方便施工、调试、维护和检修,若有特殊要 求应特别注明;变流器应安装简便,无特殊性要求。 2.1.5 电池储能系统设备均为室内布置。投标方所提供的设备尺寸和数量 (考虑了检修和巡视通道后)应满足房间尺寸要求,不得大于该房间尺寸。 2.2 环境条件 表2.1 环境条件参数表 环境项目 海拔高度(m)安装地点 最高温度(℃)最低温度(℃) 户外环境温度 最大日温差(K)最高日平均气温(℃) 耐地震能力 (按IEC61166进行试验,安全系数1.67) 水平加速度 g 垂直加速度 招标人要求值≯1600m 户内 投标人保证值 2.3 技术参数与指标 2. 3.1 投标方应提供的技术数据表 投标文件中应包含如下数据(按2MW电池储能系统填写)及所依据的计算方法,并保证供货设备的性能特性与提供的数据一致。 表2.2 磷酸铁锂电池储能系统(以2MW为单元) 序号 1 额定放电功率

名称 招标人要求值 2MW 投标人保证值投标人填写 备注 性能应达到1.5倍放 电功率 额定充电功率 2MW 8MWh(第一包填写) 3 额定储能容量 12MWh(第二包填写) 投标人填写 即2MW×6h 投标人填写 投标人填写即2MW×4h 4 储能能量效率—投标人填写 以35kV侧出线侧为考核点 5 6 7 8 充放电转换时间单体电池数量电池串并联方式柜体或台架材料外形尺寸<1s ——— 投标人填写额定功率时投标人填写投标人填写投标人填写 9 (长×深×高,mm) 10 11 12 13 14 15 15.1 15.2 重量(kg)防护等级(户内)噪音 —投标人填写 — IP2X 65dB 投标人填写投标人填写投标人填写投标人填写投标人填写 投标人填写投标人填写投标人填写投标人填写投标人填写 距离设备1m处 20~200Ah 运行环境温度(户内)℃~+35℃待机损耗防雷能力标称放电电流残压额定容量(Ah)额定电压 <3% >25kA <1kV 投标人填写—— 16

电池管理系统BMS的常见测试方法

电池管理系统BMS的常见测试方法 一、BMS是什么? BMS全称BATTERY MANAGEMENT SYSTEM,电池管理系统。BMS是电池与用户之间的纽带,其主要目的是提高电池的利用率,防止电池的过度充电和放电。 二、BMS要实现哪些功能? 一般对电池管理系统BMS而言,需要实现以下几个功能: 对电池组的工作状态的监测与管理——单体和电池组的电压监测、电流监测、温度监测、SOC (荷电状态State of Charge))估算,均衡控制等 对电池组异常状态的管理——单体和电池组的过充、过放、过流、温度超限、失衡等 对电池组故障的管理——传感器丢失、单体故障等 三、BMS测试的必要性及测试方法 BMS是个功能特别复杂的电子设备。在其设计阶段,需要对原型的功能进行验证;在生产阶段,需要对产品的功能进行测试;如果设备出现故障,需要进行检修。在这些阶段都需要有对应的测试设备来支持。 BMS的各项功能涉及到包括数据采集、数据通讯、过程控制等多种技术,需要用ADC、DIO、PWM、CAN、继电器等多种端口和设备,功能和算法都比较复杂。为了对这些复杂的功能进行全面的测试(很多情况还要进行性能测试和评估),目前的测试方法主要有两种: 1、通过实物进行测试:将被管理的电池组实物与BMS对接进行测试。 这种测试方法最直接,所有的测试参数都与实际情况一致,看似比较理想,但是从实际应用上来看还是存在比较多的问题: 1)测试时间长:电池组的充放电都会需要比较长的时间,在测试循环中需要等待的时间比 较长,难以进行批量测试。 2)需要的辅助设备多:为了模拟各种环境状态,需要大型恒温箱等辅助设备。 3)调整参数困难:如果用于BMS单项功能的验证和调试,在开始实验之前要通过充电和 放电来调整电池组的状态。 4)可控性差:单体的容量、内阻等重要参数都会受到实物的限定,没有调整空间。受制于 电池组装配工艺等多方面因素的影响,无法调整任意一个单体的SOC等运行状态,另外随着循环次数的增加,电池组自身的装填也会发生变化。 5)存在安全隐患:电池组本身就是一个储存了很大能量的装置,这种测试方法虽测试人员 的人身安全存在威胁。 6)能源消耗大:电池组的充电和放电需要很大的能源。

BMS电池管理系统说明书讲解

BMS电池管理系统说明书 BMS Battery Mnagement System Specification 概述 深圳市沃特玛电池有限公司动力电池组OPT电池管理系统(Battery Management System,简称BMS)主要由功能模块(主机模块、采集模块、显示屏模块)和附件(线束、霍尔、直流继电器、主控箱等)组成,外加绝缘检测模块做监测装置,完成对动力电池的管理和应用。 OPT电池管理系统作为电动汽车电源的重要零部件,其主要任务是:监测动力蓄电池组的单体电压、温度、总电压和总电流的状态,车体绝缘性能,与整车进行数据通讯,预测蓄电池的荷电状态(State Of Charge,简称SOC),与充电机通讯并对充电状态进行控制,热管理,存储电池单体电压等运行数据、故障报警和继电器控制记录,对电池出现的故障进行诊断和报警,最终达到防止电池过充和过放,延长其使用寿命等功能。 OPT电池管理系统一般是由一个主机模块,一个显示屏模块,一个绝缘检测模块和多个采集模块组成,各个组成模块之间通过CAN通讯进行信息交换和控制管理,每个采集模块能采集12串电池,可根据电池组型号和电池包结构等条件配置采集模块数,采集模块把采集到的单体电压、温度、电流等信号上传到主机模块处理和显示屏模块显示,显示屏模块能显示BMS状态信息和进行参数配置,主机模块通过CAN总线与整车控制器通讯上报电池组信息和继电器控制状态,并且能在充电时与充电机通讯,控制充电电压和电流进行充电管理。 OPT BMS系统运行拓扑图如下:

图1 OPT BMS拓扑图 1.系统结构示图 OPT电池管理系统一般分一体箱和分体箱,根据客户需求和电池型号配置而设计。 一体箱是主机模块、采集模块等组件都放置于同一个箱体,统一的对外接口,比较典型的一体箱结构示意图如下: 图2 BMS一体箱示意图 分体箱是由主控箱和电池箱组成,主控箱一般配置主机模块、霍尔传感器、控制继电器、保险丝、线束等,主要负责系统控制管理、总电流与总电压采集、系统供电、配电和通讯控制等,以下为典型的一个主控箱示意图: 图3 BMS主控箱结构示意图 电池箱是根据客户需求和电池型号,配置不同的采集模块和风扇数量,实现采集单体电压、温度并通过CAN总线上报主机,并能进行热管理,其中典型的一个电池箱结构示意图如下:

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无法正常工作。为了使动力电池组保持在合理的温度范围内工作,电池组必须拥有科学和高效的热管理系统。目前,国内外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国内外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测; 韩国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最

储能电站技术方案设计

储能电站总体技术案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11)

3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配

合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设期短;绿色环保,促进环境友好;集约用地,减少资源消耗等面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求 GJB 4477-2002 锂离子蓄电池组通用规 QC/T 743-2006 电动汽车用锂离子蓄电池 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡

电池管理系统(BMS)

电池管理系统(BMS) 电池管理系统(BMS)概述电池管理系统(BMS)为一套保护动力电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。 恒润科技作为国内优质的动力系统供应商,在控制系统开发方面拥有雄厚的实力和丰富的经验,可以为客户在电池管理系统开发方面提供优质的工程和配套服务。 BMS 的硬件拓扑 BMS 硬件的拓扑结构分为集中式和分布式两种类型。集中式是将电池管理系统的所有功能集中在一个控制器里面,比较合适电池包容量比较小、模组及电池包型式比较固定的场合,可以显著的降低系统成本。 分布式是将BMS 的主控板和从控板分开,甚至把低压和高压的部分分开,以增加系统配置的灵活性,适应不同容量、不同规格型式的模组和电池包。 恒润科技可以提供上述集中式或分布式的各种BMS 硬件方案。 BMS 的状态估算及均衡控制

针对电池在制造、使用过程中的不一致性,以及电池容量、内阻随电池生命周期的变化,恒润科技团队创造性的应用多状态联合估计、扩展卡尔曼滤波算法、内阻/ 容量在线识别等方法,实现对电池全生命周期的高精度状态估算。经测算,针对三元锂电池,常温状态下单体电池SOC 估算偏差可达最大2%,平均估算偏差1%。 同时针对电池单体间的不一致性,使用基于剩余充电电量一致等均衡策略,最大程度的挥电池的最大能效。 电池内短路的快速识别 电池内短路是最复杂、最难确定的热失控诱因,是目前电池安全领域的国际难题,可导致灾难性后果。电池内短路无法从根本上杜绝,目前一般是通过长时间(2 周以上)的搁置观察以期早期发现问题。 在电池的内短路识别方面,恒润科技拥有10 余项世界范围内领先的专利及专利许可。利用对称环形电路拓扑结构(SLCT)及相关算法,可以在极短时间内(5 分钟内)对多节电池单体进行批量内短路检测,能够识别出0~100kΩ量级的内短路并准确估算内短阻值。这种方法可显著降低电芯生产企业或模组组装厂家的运营成本,提高电池生产及使用过程的安全性。 恒润科技正在开发的电池内短路检测设备,可以达成如下指标: ? 检测范围:0~100kΩ量级内短路 ? 内短路阻值估计:规定区间内精度达±5% ? 单次检测时长:1~5min(根据精度需求调节) ? 检测对象:电池(无体系容量限制)、电容等 ? 单台设备年监测能力:

电池管理系统(BMS)主要涵盖以下几个功能

看到最近电池管理系统(BMS)好像挺火的,尤其是电动汽车电池管理系统。但是看到好多网上的资料大都谈论的都是比较宽泛,涉及到具体设计及控制策略方面的比较少。所以结合以前做过的产品的一些经验,将一些具体设计发出来,抛砖引玉,还希望能有高手出来指点。每天时间比较少,可能需要一段时间才能写完。对于其中的内容,主要以电动汽车的BMS为例。 BMS:battery management system电池管理系统是电池与用户之间的纽带,主要对象是二次电池。二次电池存在下面的一些缺点,如存储能量少、寿命短、串并联使用问题、使用安全性、电池电量估算困难等。电池的性能是很复杂的,不同类型的电池特性亦相差很大。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。-------引自百度百科名片:) 电池管理系统(BMS)主要涵盖以下几个功能 1)电池工作状态监控:主要指在电池的工作过程中,对电池的电压,温度,工作电流,电池电量等一系列电池相关参数进行实时监测或计算,并根据这些参数判断目前电池的状态,以进行相应的操作,防止电池的过充或过放。 2)电池充放电管理:在电池的充电或放电的过程中,根据环境状态,电池状态等相关参数对电池的充电或放电进行管理,设置电池的最佳充电或放电曲线(如充电电流,充电上限电压值,放电下限电压值等) 3)单体电池间均衡:即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。均衡器是电池管理系统的核心部件,但目前国内在这方面的技术还不成熟。 注:目前很多电动汽车上都会专门区分BMS和BBS(BATTERY BALANCE SYSTEM),这很容易让人产生一种误解,觉得是两个各自独立的部件,实际上是一种从属关系。且当前国内汽车上在充放电管理和均衡器这两个部分的功能上比较弱,BMS实际上仅仅是进行电量的计算和实现一个过欠压(组与单体)保护及通信的功能。 电池管理系统主要包括以下几个部分 1)信号采集模块:主要用于对电池组电压,充电电流,放电电流,单体电压,电池温度,等参数进行采集。通常采用隔离处理的方式。(除温度信号) 2)电池保护电路模块:通常这部分是采用软件控制一些外部器件来实现的。如通过信号控制继电器的通断来允许或禁止充放电设备或电池的工作以实现对电池保护。 3)均衡电路模块:主要用于对电池组单体电压的采集,并进行单体间的均衡充电使组中各电池达到均衡一致的状态。目前主要有主动均衡和被动均衡两种均衡方式。(实在想不出来还会有第三种么?不主不被的?)也可称之为无损均衡和有损均衡。 4)下位机模块:信号处理,控制。通讯。

储能系统方案.doc

序 术语 定义 号 1 单体蓄电池, Cell 由电极和电解质组成,构成蓄电池组的最小单元,能将所获得的电 能以化学能的形式贮存并将化学能转为电能的一种电化学装置。 2 电池模块 ,Battery Module 用电气方式连接起来的用作能源的两个或者多个单体蓄电池。 3 电池簇 ,Battery Cluster 由若干个电池模块串联,并与电路系统相联组成的电池系统,电路 系统一般由监测、保护电路、电气、通讯接口及热管理装置等组成。 4 电池堆 ,Battery Array 由连接在同一台能量转换系统( PCS )上的若干个电池簇并联而成的 可整体实现功率输入、输出的电池系统,并受后台监控系统控制。 电池管理系统 ,Battery 用于对蓄电池充、放电过程进行管理,提高蓄电池使用寿命,并为 5 用户提供相关信息的电路系统的总称,由 BMU 、MBMS 和 BAMS 等管理 Management System,BMS 单元组成,可根据储能系统配置选用两层或三层架构。 具有监测电池模块内单体电池电压、温度的功能,并能够对电池模 6 电池管理单元 ,Battery 块充、放电过程进行安全管理,为蓄电池提供通信接口的系统。 BMU Management Unit, BMU 是电池管理系统( BMS )的最小组成管理单元,通过通信接口向电池 簇管理系统( MBMS )提供电池模块内部信息。 是由电子电路设备构成的实时监测与管理系统, 有效地对电池簇充、 电池簇管理系统 ,Main 放电过程进行安全管理,对可能出现的故障进行报警和应急保护处 7 Battery Management 理,保证电池安全、可靠、稳定的运行。 MBMS 是电池管理系统的中 System,MBMS 间层级,向下收集电池管理单元( BMU )信息,并向上层电池堆管理 系统( BAMS )提供信息。 电池堆管理系统 ,Battery 是由电子电路设备构成的实时监测与管理系统,对整个储能电池堆 8 Array Management System, 的电池进行集中管理,保证电池安全、可靠、稳定的运行。 BAMS 是 BAMS 电池管理系统的最高层级,向下连接接电池簇管理系统( MBMS )。 9 电池荷电状态 ,State of 电池当前实际可用电量与额定电量的比值。 Charge,SOC 10 电池健康状态 ,State of 电池当前可充放电总电量与额定电量的比值。 Health,SOH 11 能量转换系统 Power 实现电池与交流电网之间双向能量转换的装置,其核心部分是由电 Conversion System,PCS 力电子器件组成的换流器。 后台监控系统 , Supervisory 对储能系统、外部电网、负载进行监测和协调控制的系统平台,由 12 Control And Data BAMS 或 MBMS (二层构架时)与其进行通信,完成储能电池堆的信息 Acquisition, SCADA 传输和后台控制。

解读电池管理系统BMS的现状与未来

解读电池管理系统(B M S)的现状与未来 导读:在新能源电动汽车上也有俗称的“三大件”:电池、电机和电控,由于新能源电动汽车在全球范围内仍是较新的行业,各国企业的起步相差并不大。本文重点给大家介绍新能源电动汽车“三大件”里的电控(业内普遍称之为电池管理系统BMS)。 随着新能源概念的普及推广,新能源汽车也逐步走入了千家万户,新能源汽车作为寻常百姓的新购车选择已经开始侵占着原本属于传统燃油汽车的市场,作为目前新能源汽车最大的市场,中国的企业依靠着新能源汽车首次与国外企业站在同一起跑线,不断涌现的新技术新工艺,让中国的新能源汽车行业有了更充足的底气去放眼世界,心系未来。 提到传统燃油汽车的核心关键自然离不开俗称的“三大件”:发动机、底盘以及变速箱,在这“三大件”上,中国技术落后以德日美为首的国外汽车厂商已是共识。而在新能源电动汽车上也有俗称的“三大件”:电池、电机和电控,由于新能源电动汽车在全球范围内仍是较新的行业,各国企业的起步相差并不大,这也让我国企业在汽车这个1886年发明至今的多用途动力驱动工具上拥有了与国外企业一较高下的条件。本文重点给大家介绍新能源电动汽车“三大件”里的电控(业内普遍称之为电池管理系统BMS)。 新能源电动汽车与传统燃油汽车最大的区别是用动力电池作为动力驱动,而作为衔接电池组、整车系统和电机的重要纽带,电池管理系统BMS的重要性不言而喻,国内外许多新能源车企都将电池管理系统作为企业最核心的技术来看待,最著名的例子就是大家耳熟能详的特斯拉,特斯拉的电动汽车“三大件”中,电池来自于松下,电机来自于台湾供应商,而只有电池管理系统是特斯拉自主研发的核心技术,2008年-2015年期间特斯拉所申请的核心知识产权大都与电池管理系统相关,由此可见电池管理系统对于新能源汽车的重要性。而国内,电池管理系统BMS的研发生产主要集中在这三类企业: 1、新能源汽车厂商,代表企业:比亚迪 2、电池PACK厂商,代表企业:沃特玛、普莱德 3、专业BMS厂商,代表企业:惠州亿能、深圳国新动力 电池管理系统BMS到底有什么作用? 电池管理系统BMS是一个本世纪才诞生的新产品,因为电化学反应的难以控制和材料在这个过程中性能变化的难以捉摸,所以才需要这么一个管家来时刻监督调整限制电池组的行为,以保障使用安全,其主要功能为: 1、准确估测动力电池组的荷电状态 准确估测动力电池组的荷电状态 (State of Charge,即SOC),即电池剩余电量,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤,从而随时预报混合动力汽车储能电池还剩余多少能量或者储能电池的荷电状态。 2、动态监测动力电池组的工作状态 在电池充放电过程中,实时采集动力电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象。同时能够及时给出电池状况,挑选出有问题的电池,

相关主题