搜档网
当前位置:搜档网 › ZA7783DATASHEET,MIPI转LVDS,MIPI转RGB888,RGB转LVDS

ZA7783DATASHEET,MIPI转LVDS,MIPI转RGB888,RGB转LVDS

ZA7783DATASHEET,MIPI转LVDS,MIPI转RGB888,RGB转LVDS
ZA7783DATASHEET,MIPI转LVDS,MIPI转RGB888,RGB转LVDS

ZA7783 DATASHEET ZA7783 Display Interface Converter

Datasheet

Version 0.7

Revision History

Ver. Date Author Content

0.5 2013-5-14 Dai Jin 1. Initial release

0.6 2013-9-29 Jiang Bo 1. Add typical application circuit

2. Add package information

3. Add functional block diagram

0.7 2014-2-12 Jiang Bo 1. Change LVDS_ATO to DVDD18

ZA7783 DATASHEET

Table of Contents

1. OVERVIEW (3)

2. TARGET APPLICATIONS (3)

3. FEATURE DESCRIPTION (3)

4. FUNCTIONAL BLOCK DIAGRAM (5)

5. PIN CONFIGURATION (6)

6. TYPICAL APPLICATION CIRCUIT (9)

7. PACKAGE INFORMATION (10)

ZA7783 DATASHEET 1. Overview

ZA7783 is a bridge chip which supports three kinds of display interfaces:

●MIPI DSI RX Interface (1 Clock Lane + 4 Data Lanes)

●LVDS TX Interface (1 Clock Lane + 4 Data Lanes)

●MIPI DPI TX/RX Interface (PCLK + RGB888 + VSYNC + HSYNC +

DATAEN)

The chip bridges these display interfaces in three working modes:

●MODE1: MIPI DSI RX => LVDS TX

●MODE2: MIPI DSI RX => DPI TX

●MODE3: DPI RX => LVDS TX

Besides, there is also an I2C control interface (XCLK + I2C_SCL + I2C_SDA) for the host chip (AP or BB) to access ZA7783’s software registers.

Analog IPs of ZA7783 are supplied by 3.3V voltage (typical). For Digital IOs, the host interface (XCLK + I2C_SCL + I2C_SDA) is supplied by DVDD18 (PIN32), while the DPI interface (PCLK + RGB888 + VSYNC + HSYNC + DATAEN) is supplied by DVDD33 (PIN45 and PIN59). Thus, ZA7783 is able to bridge AP or BB with 1.8V IO to RGB Panel with 3.3V IO. Besides, an embedded LDO converts 3.3V to 1.2V to supply the chip’s internal digital logic. In addition, an embedded POR implements a power on reset to the whole chip.

2. Target Applications

Tablet PC

3. Feature Description

MIPI DSI RX Interface

●Compliant to MIPI DSI V1.01 and MIPI D-PHY V1.00

● 1 Clock Lane + 4 Data Lanes

●Data rate up to 600Mbps per data lane (300MHz high-speed clock on clock lane)

● 2.4Gbps bandwidth on four data lanes in total, giving a display resolution up to

1366x768 24bpp @ 60fps

●Only support MIPI DSI Video Mode (Non-Burst Mode with Sync Pulses) and all lanes

are unidirectional from the host chip to the bridge chip

ZA7783 DATASHEET ●Only support using all of the four data lanes, in other words, using part of them is not

supported

●Support multiple packets within a single high-speed transmission

●Ignore received virtual channel field

●Only the following packet data types are supported:

6'h01=Sync Event, V Sync Start (Short)

6'h11=Sync Event, V Sync End (Short)

6'h21=Sync Event, H Sync Start (Short)

6'h31=Sync Event, H Sync End (Short)

6'h08=End of Transimission packet (EoTp) (Short)

6'h09=Null Packet, no data (Long)

6'h19=Blanking Packet, no data (Long)

6'h2E=Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format (Long)

6'h3E=Packed Pixel Stream, 24-bit RGB, 8-8-8 Format (Long) The other packet data types cannot be handled and must not be sent to ZA7783!

●Ignore received ecc field

●Ignore received checksum field

●RGB565 Packed Pixel Stream and RGB666 Packed Pixel Stream are not supported

●For a data lane, the connection of Dp/Dn can be exchanged

●The order of the four data lanes can be configured

●Dither function for converting RGB888 to RGB666

LVDS TX Interface

●Compliant to LVDS Spec

● 1 Clock Lane + 4 Data Lanes

●Support RGB888 and RGB666

RGB888: 1 Clock Lane + 4 Data Lanes

RGB666: 1 Clock Lane + 3 Data Lanes

●Support NS Mode and JEIDA Mode

●The polarity of VSYNC/HSYNC/DATAEN can be configured

●For a data lane, the connection of Dp/Dn can be exchanged

●The order of the four data lanes can be configured

●Dither function for converting RGB888 to RGB666

DPI TX/RX Interface

●PCLK + RGB888 + VSYNC + HSYNC + DATAEN

●The edge of PCLK can be configured

●The polarity of VSYNC/HSYNC/DATAEN can be configured

I2C Interface

●An external clock XCLK should be provided (e.g. 26MHz)

●Up to 400Kbps

●I2C Slave ID is 0x37

ZA7783 DATASHEET 4. Functional Block Diagram

ZA7783 DATASHEET

5. Pin Configuration

R4R5R6R7

DVDD12AVDD33MIPI_CLKP

MIPI_CLKN MIPI_D0P MIPI_D0N

MIPI_D1P

MIPI_D1N MIPI_D2P MIPI_D2N MIPI_D3P

MIPI_D3N M I P I _A V D D 33

M I P I _R E X T

M I P I _B G V D D 33

L V D S _A V D D 33

L V D S _D 0P

L V D S _D 0N

L V D S _D 1P

L V D S _D 1N

L V D S _C L K P

L V D S _C L K N

L V D S _D 2P

L V D S _D 2N

L V D S _D 3P

L V D S _D 3N

L V D S _P L L V D D 33

D V D D 18

I2C_SDA

I2C_SCL

XCLK B0B1

B2

B3DVSS

B4B5

B6B7DVDD33

DATAEN HSYNC

VSYNC G 0

G 1

G 2

G 3

D V S S

G 4

G 5

G 6

G 7

P C L K

D V D D 33

R 0

R 1

R 2

R 3

D V S S

No. Name Description

1 R4

2 R5

3 R6

4 R7 DPI R[7:4]

5

DVDD12

LDO 1.2V Output (connected to 1uF ceramic cap) Digital Core 1.2V Power Supply 6 AVDD33 LDO 3.3V Power Supply

7 MIPI_CLKP

ZA7783 DATASHEET

9 MIPI_D0P 10 MIPI_D0N 11 MIPI_D1P 12 MIPI_D1N 13 MIPI_D2P 14 MIPI_D2N 15 MIPI_D3P 16 MIPI_D3N MIPI DSI RX Data Lane 0~3

17 MIPI_AVDD33 MIPI PHY 3.3V Power Supply

18 MIPI_REXT Tie a 24KOhm resistor (1% accuracy) to analog ground 19 MIPI_BGVDD33 MIPI PHY 3.3V BandGap Supply 20 LVDS_AVDD33 LVDS TX 3.3V Power Supply 21 LVDS_D0P 22 LVDS_D0N LVDS TX Data Lane 0 23 LVDS_D1P 24 LVDS_D1N LVDS TX Data Lane 1 25 LVDS_CLKP 26 LVDS_CLKN LVDS TX Clock Lane 27 LVDS_D2P 28 LVDS_D2N LVDS TX Data Lane 2 29 LVDS_D3P 30 LVDS_D3N LVDS TX Data Lane 3

31 LVDS_PLLVDD33

LVDS TX 3.3V PLL Supply 32 DVDD18

Digital IO 1.8V Power Supply

This power supply is for XCLK/I2C_SCL/I2C_SDA. 33 I2C_SDA I2C Serial Data Line 34 I2C_SCL I2C Serial Clock Line 35 XCLK XCLK Input (e.g. 26MHz) 36 B0 37 B1 38 B2 39 B3 DPI B[3:0] 40 DVSS Digital Ground 41 B4 42 B5 43 B6 44 B7 DPI B[7:4]

45 DVDD33 Digital IO 3.3V Power Supply

This power supply is for DPI IF, including PCLK, R7~0, G7~0, B7~0, VSYNC, HSYNC, and DATAEN. 46 DATAEN DPI Data Enable 47 HSYNC DPI HSYNC 48 VSYNC DPI VSYNC 49 G0 50 G1 51 G2 52 G3 DPI G[3:0] 53 DVSS Digital Ground 54 G4 55 G5 DPI G[7:4]

ZA7783 DATASHEET

57 G7

58 PCLK DPI Pixel Clock

59 DVDD33 Digital IO 3.3V Power Supply

This power supply is for DPI IF, including PCLK, R7~0,

G7~0, B7~0, VSYNC, HSYNC, and DATAEN.

60 R0

61 R1

DPI R[3:0]

62 R2

63 R3

64 DVSS Digital Ground

EP(65) AVSS Analog Ground for LDO, MIPI PHY, and LVDS TX

ZA7783 DATASHEET 6. Typical Application Circuit

ZA7783 DATASHEET 7. Package Information

ZA7783 is provided in 8x8 QFN64 package, 0.4 pitch.

LVDS接口设计

LVDS的接口电路设计 丁宏伟 摘要:LVDS是一种小振幅差分信号技术,使用这种技术传输速率可以达到数百兆,甚至更高; LVDS具有更低的功耗、更好的噪声性能和更可靠的稳定性。简要地介绍了LVDS的原理及优势,分析了LVDS接口设计要注意的问题。 关键词:LVDS;接口;PCB 中图分类号:TP336 文献标志码:A 引言 LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。LVDS这种技术的核心是采用极低的电压摆幅(约350 mV)高速差动传输数据,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。 1 LVDS驱动器和接收器工作原理 LVDS定义在2个国际标准中: IEEE P1596.3 (1996 年3 月通过) , 主要面向SC I ( ScalableCoherent Interface) ,定义了LVDS的电特性,还定义了SC I协议中包交换时的编码; ANSI /EIA -644 (1995年11月通过) ,主要定义了LVDS的电特性,并建议了655 Mb / s的最大速率和1. 823Gb / s的无失真媒质上的理论极限速率。在2个标准中都指定了与物理媒质无关的特性,这保证了LVDS能成为多用途的接口标准[ 1]。 如图1所示,LVDS电路由驱动器和接收器以及终端匹配电阻组成。M1、M2、M3和M4是尺寸、工艺相同的NMOS管开关。驱动器的输出接在阻值为100Ω的终端电阻上,构成回路。驱动器工作时,NMOS开关M1和M4以及M2和M3在CMOS信号的作用下轮流导通和截止,在输出端产生±3.5 mA的回路电流。绝大部分驱动电流将流经100Ω的终端电阻,并在接收器输入端产生大约350 mV的压降。当驱动状态反转时,流经电阻的电流方向改变,于是在接收端产生了一个有效“0”或“1”的逻辑状态。从而把一个CMOS信号转换成了LVDS[ 2]。

液晶显示屏V-by-One与LVDS接口信号驱动原理

V-by-One接口信号驱动原理(3840*2160) 一、时钟与像素点关系 一场:60Hz-16.667ms,2250行(2160行有效) ——刷新像素点:3840*2160个/Vertical 一行:135KHz-7.407us,(=60Hz*2250),4400=550*8点(3840点=480*8点有效)——刷新像素点:3840个/ Horizontal Clock:74.25MHz-13.468ns,(=135KHz*550) ——刷新像素点:8个/Clock 以上,可参考《附录A:屏规格书信号时序特性》。 二、V-by-One信号传输规则 每个Clock(DCLK),V-by-O接口有8对差分对(lane0~lane7)同时传输,每对差分对负责一个Pixel;共8个Pixels一起传输数据。 以上,可参考《附录B:屏规格书每场画面时序》与《附录C:屏规格书单区与双区的驱动方式(每一行)》。 每对差分对同时串行传输4Bytes字节(共32bits,V-by-One传输协议有40bits);(每bit周期0.3367ns=13.468ns/40,2,97G带宽) 或按照公式计算:4(byte)×8×(10/8)×(594MHz/8lines)=2,97G 以上,可参考《附录D:屏规格书数据传输格式》与《附录E:V-by-O协议文件截图》。 信号最小单位为bit,1bit的数据长度合成眼图(1UI=0.3367ns=336.7ps),可通过眼图测试得具体信号特性; 以上,可参考《附录F:V-by-O接口输入端眼图》。

附录C:屏规格书单区与双区的驱动方式(每一行)

lvds液晶屏幕接口详解(1)

1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、 像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL 接口,数据传输速率不高, 传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL 多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢LVDS,即Low Voltage Differential Signaling ,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL 电平方式传输宽带高码率数据时功耗大、EMI 电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差 分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡 电缆上以几百Mbit /s 的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功 耗。目前,LVDS输出接口在17in 及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L 电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性 电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL 电平 的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。

lvds接口标准

LVDS接口标准 LVDS接口是LCD Panel通用的接口标准,以8-bit Panel为例,包括5组传输线,其中4组是数据线,代表Tx0+/Tx0-... Tx3+/Tx3-。还有一组是时钟信号,代表TxC+/TxC-。相应的在Panel 一端有5组接收线。如果是6-bit Panel则只有3组数据线和一组时钟线。 LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。LVDS 即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准。 1995年11月,以美国国家半导体公司为主推出了ANSI/TIA/EIA-644标准。1996年3月,IEEE公布了IEEE 1596.3标准。这两个标准注重于对LVDS接口的电特性、互连与线路端接等方面的规范,对于生产工艺、传输介质和供电电压等则没有明确。LVDS可采用CMOS、GaAs或其他技术实现,其供电电压可以从+5V到+3.3V,甚至更低;其传输介质可以是PCB连线,也可以是特制的电缆。标准推荐的最高数据传输速率是655Mbps,而理论上,在一个无衰耗的传输线上,LVDS的最高传输速率可达1.923Gbps。 ---- OpenLDI标准在笔记本电脑中得到了广泛的应用,绝大多数笔记本电脑的LCD显示屏与主机板之间的连接接口都采用了OpenLDI标准。OpenLDI接口标准的基础是低压差分信号(Low Voltage Differential Signaling,LVDS)接口,它具有高效率、低功耗、高速、低成本、低杂波干扰、可支持较高分辨率等特点。LVDS接口在电信、通讯、消费类电子、汽车、医疗仪器中广泛使用,并已经得到了AMP、3M、Samsung、Sharp、Silicon Graphics等公司的支持。为了向台式机领域渗透,NS公司又专门针对LCD显示器推出了新的支持OpenLDI标准的芯片组DS90C387和DS90CF388,新的芯片组支持从VGA(640×480)~QXGA(2048×1536)的分辨率。 ---- DVI标准虽然还没有OpenLDI标准那样声名显赫,应用也没有OpenLDI标准那样普遍。但是由于有Intel、IBM、HP等大公司的加入,DVI的应用前景被普遍看好,一些数字型CRT显示器、LCD显示器和数据投影机中已经采用了符合DVI标准的数字显示接口。 ---- 目前大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的D/A(数字/模拟)转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP等数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D2次转换后,不可避免地造成了一些图像细节的损失。 ---- DVI标准由DDWG于1994年4月正式推出,它的基础是Silicon Image公司的PanalLink 接口技术,PanalLink接口技术采用的是最小化传输差分信号(Transition Minimized Differential Signaling,S)作为基本电气连接。如附图所示,计算机中生成的图像信息传送到显示处理单元(显卡)中,经处理并编码成数据信号,数据信号中包含了一些像素信息、同步信息以及一些控制信息,信息通过3个通道输出。同时还有一个通道用来传送使发送和接收端同步的时钟信号。每一个通道中数据以差分信号方式传输,因此每一个通道需要2根传输线。由于

LVDS编码

LVDS接口介绍 LVDS 是英文Low-Voltage Differential Signaling 的缩写,即低压差分信号。LVDS 因其具有低噪声,低EMI,低功耗,高比特率,连接简单等特点,是当前液晶体电视中图像信号从信号处理板到显示屏的主要连接方式。一、LVDS LVDS 电路原理电路原理电路原理及电气特性及电气特性及电气特性 LVDS 的规范由TIA/EIA-644 标准定义,其驱动和接受电路如下: LVDS 的规范由TIA/EIA-644 标准定义,其驱动和接受电路如下: LVDS 的电气特性如下表所示: 因为LVDS 接口采用低摆幅的差分信号来传输数据,对应的功耗极低,噪声很小,因而可以有很高的传输速率和比较远的传输距离。标准中推荐的最大传输比特率655Mbps,而理论上的最大传输比特率可以达到1.923Gbsp,传输距离可以达到10M。 LVDS 数据发送方式 在液晶体电视中,需要输出到显示屏的信号是并行的图像信号和控制信号,而LVDS信号是串行传输的,所以在发

送端需要将并行数据转换为串行数据。以8bit RGB 显示屏接口为例,每个显示周期需要传输8bit 的R信号,8bit 的G 信号,8bit 的B信号,及VS,HS,DE信号,总共为27 BIT。而每对LVDS 信号线在一个TX 周期里只能传输7 BIT 数据,所以需要4 对数据线,外加一对时钟线。LVDS 并串转换如下图所示: 上图中的每一组对线称为一个Pair,4 组数据线加一对时钟线称为一个 Channel ,LVDS 发送器总是将一个像素数据映射到(remapping)一个Channel 的一个发送周期(TX CLK)中。如果是6BIT 显示屏,则并行数据有21 位(18位RGB 加3位控制信号),因此LVDS 接口每个Channel只需要3对数据线和一对时钟线。如果是10BIT 显示屏,则并行数据有33位(30位RGB 加3位控制信号),因此LVDS 接口每个Channel需要5对数据线和一对时钟线。 通常,LVDS 接口的时钟为20MHz 到85MHz,因此对于输出像素时钟低于85MHz的信号,只需一个Channel 就可以;而对于输出像素时钟高于85MHZ的信号,比如1080P/60HZ的输出,像素显示时钟为148.5MHz,就不能直接用一个Channel传输,而是将输出的像素按顺序分为奇像素和偶像素,将所有的奇像素用一组LVDS 传输,所有的偶像素用另外一组LVDS 传输。也就是说,需要两个Channel来传输1080P/60HZ 的信号。对于像素显示时钟更高的信号,比如1080P/120HZ显示,则需要4个Channel来传输。两Channel、4 Channel的像素分配分别如图4、图5所示:

lvds接口定义及原理知识

lvds接口定义及原理知识 LVDS接口定义 作者:bechade 更新时间:2007-9-22 7:31:10 文章录入:chfygl -------------------------------------------------------------------------------- 20PIN单6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:

LVDS接口定义

LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准。 如上图,就是一块单六位LVDS 30针接口的液晶屏,其中1脚GND就是地,2脚、3脚VCC就是电压,4、6、7脚为存储IC(一般为24C之类的芯片)的读写信号脚,就是我们常换DELL机器的屏所说的码片,这里面存储了屏的一些信息,如型号、生产日期等,DELL 之类的少类的机器就往屏上这个IC里写入了自家的识别信号。8脚R0-、9脚R0+为第一组LVDS信号,依次类推,每往下一组信号中间都空一脚,共三组R-及R+信号,一直到接口的17脚CLKIN-、18脚CLKIN+,这两脚很重要,断开一根线,屏就无法显示,R-+的信号,少了一根两根还可以点亮屏,当然会显示不正常!这四对信号用数字表量阻值表现为100欧--120欧(不同屏)。

像我以前装液晶显示器的时候,这个单六位LVDS,只要对应单六位,再对应屏的分辨率(分辨率很重要)写个程序,屏线只用十根线,几乎就可以点亮这类的屏!这类屏我们常称为单六,当然液晶显示器的屏还有单八,单八的就多了对R3-和R3+,别小看这多出的一对信号,液晶屏的色彩就会多很多~单八位的己经过时了,以前15寸的液晶显示器的屏很多都是单八位的。当然,还有双八的~现在的市面上的液晶显示器都是双八位的接口啦~ 这里,我可以大胆的说:笔记本上用的都是单六,和双六的~现在液晶显示器上用的都是双八位了,早期的还有TTL、TMDS、TCON接口的,这类接口的我们修本的完全不必了解。扯远了。。。当然,你别和我说:我狗年马日拆的一台液晶显示器里怎么就是单六的……这个就是中国的山寨文化了,你们都懂的……. 真正用于笔记本上的屏全部都是单六的,高档机有双六的,双六接口的就是我们所说的高分屏了。 以前如果超过了1280X800的分辨率的屏就一定是双六或双八的,当然现在出的LED的屏也是这样的,只不过单六的分辨率到了1366X768,略高一点点而己!LED的屏,屏信号也是LVDS的,说的LED只不过是背光源是LED发光的而己~ 双六接口的高分辨率的屏,多了四对信号: RS0-、RS0+,RS1-、RS1+,RS2-、RS2+,CLK2-、CLK2+。(有的屏的PDF档里为RB0-、RB0+之类的,其实都一样): 如果我们接双六屏线的时候,这四对信号不能接到R0-至CLK1+上面去,否则……你们懂的~ 早期的20针的笔记本屏的定义如下,懒得找图了,直接在百度找个定义说明,略加修改,你们自己研究下吧: 20PIN单6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空17空18空19 空20空; 每组信号线之间电阻为(数字表100~120欧左右) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+6;

LVDS接口与MIPI接口

LVDS接口与MIPI接口 MIPI?(Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。 MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风 /喇叭接口SLIMbus等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。 MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下:

CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY 采用1对源同步的差分时钟和1~4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。 D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M~1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保证了MIPI总线在需要传输大量数据(如图像)时可以高速传输,而在不需要大数据量传输时又能够减少功耗。下图是用示波器捕获的MIPI信号,可以清楚地看到HS和LP信号。

液晶电视中LVDS接口介绍

液晶电视中LVDS 接口介绍 LVDS 是英文Low-Voltage Differential Signaling 的缩写,即低压差分信号。LVDS 因其具有低噪声,低EMI ,低功耗,高比特率,连接简单等特点,是当前液晶体电视中图像信号从信号处理板到显示屏的主要连接方式。 一、LVDS LVDS 电路原理电路原理电路原理及电气特性及电气特性及电气特性 LVDS 的规范由 TIA/EIA-644 标准定义,其驱动和接受电路如下: 图1 LVDS 电路原理 LVDS 电路采用对线来传输信号。在发送端,产生一个3.5mA 的恒流源;在接收端,有一个100欧的负载电阻。电流流过对线,就在负载电阻上产生350mV 的电压。通过控制发送端来改变电流的方向,就会在接收端形成幅度相同而极性相反的电压,以这种方式来产生逻辑 1 和0,如下图所示: 图2 LVDS 逻辑

LVDS 的电气特性如下表所示: Parameter Min. Typ. Max. Units Differential Output 250 350 450 mV Common Mode Voltage 1.125 1.25 1.375 V 表 1 LVDS 电气特性 因为LVDS 接口采用低摆幅的差分信号来传输数据, 对应的功耗极低,噪声很小,因而可以有很高的传输速率和比较远的传输距离。标准中推荐的最大传输比特率655Mbps, 而理论上的最大传输比特率可以达到1.923Gbsp,传输距离可以达到10M。 数据发送方式 二、LVDS LVDS 数据发送方式 数据发送方式 在液晶体电视中,需要输出到显示屏的信号是并行的图像信号和控制信号,而LVDS信号是串行传输的,所以在发送端需要将并行数据转换为串行数据。以8bit RGB 显示屏接口为例, 每个显示周期需要传输8bit 的R信号,8bit的G 信号, 8bit 的B信号, 及VS,HS,DE信号,总共为27 BIT。而每对LVDS 信号线在一个TX 周期里只能传输 7 BIT 数据,所以需要4 对数据线,外加一对时钟线。 LVDS 并串转换如下图所示: 图3 LVDS 并串转换 上图中的每一组对线称为一个Pair,4 组数据线加一对时钟线称为一个 Channel , LVDS 发送器总是将一个像素数据映射到(remapping)一个Channel 的 一个发送周期(TX CLK) 中。如果是6BIT 显示屏,则并行数据有21 位(18位RGB 加3位控制信号),因此LVDS 接口每个Channel只需要 3对数据线和一对时钟线。如果是10BIT 显示屏,则并行数据有33位(30位RGB 加3位控制信号),因此LVDS 接口每个Channel需要 5对数据线和一对时钟线。

常见LVDS屏接口定义

2 常见屏的接口 LVDS接口: 比较常见的接口,有14针插接口,20P针插、30针插和片插等多为LVDS接口LVDS常用的驱动板: 2023(支持17寸以下含17寸的所有LVDS屏VGA烧录模式) 2025(支持19寸以下含19寸以下的所有LVDS屏VGA烧录模式) NTA91B(支持22寸或1680*1050以下的所有LVDS屏VGA烧录模式) 2621免程序驱动板(直接跳线就可支持14-19等LVDS屏免烧录) TTL接口:(与LVDS的屏线区别TTL的屏线相对较多) TTL屏要求驱动板输入单或双6位/8位的三基色的TTL电平,所以连接线用得比较多,一般有31扣41扣30软排线+40软排线60扣70扣80扣等,特点线比较多 驱动板: RTMC7B(新款TTL驱动板支持所有TTL接口协议还可支持TMDS TCON接口屏代替2013 2533 2033等驱动板) 鼎科2033V免程序驱动板 RSDS接口: 单50软排线、双40软排线(50+30)软排线一般为RSDS接口。 驱动板: MA4B:支持双40 30+50 单50软排线RSDS专用驱动板 TCON接口:Timing Controller(不常用) 现在很多的型号的液晶屏接受的是LVDS信号,而Driver IC收到的是RSDS信号,这中间就是由TCON实现的转换,不少屏是RSDS接口的,是PANEL厂家为了减少PANEL成本,省掉了TCON芯片,因为目前的很多驱动板IC都可以直接处理RSDS 信号了。 TMDS接口(不常用) 是一种类似于LVDS的接口。该接口在液晶发展中属于昙花一现。典型的有三星公司出的 LT181E2-131、LT170E2-131、日立的TX38D21V、LG的LP141X1等。 最新到货!!超小体积四灯小口高压板特价销售,联想方正系列超小体积电源高压一体板疯狂特价销 ? 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少 的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS的屏来解析一下,

LVDS接口与MIPI接口

LVDS接口与MIPI接口 MIPI (Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接 口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风 /喇叭接口SLIMbus 等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。 MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下:

CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY采用1对源同步的差分时钟和1,4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。 D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M,1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保

LVDS接口定义及标准

LVD LVD 低電對多線,廣泛盟)199公佈範,現,纜。高傳LVD 成,很高mV 在有的M 理很輸入1) S 接口定義DS 接口又稱電壓差分信多點的連接,也可以是平泛的應用。)的ANSI/T 95年11月佈了IEEE ,對於生產工,其供電電。標準推薦傳輸速率可DS 接口的原一個簡單,如圖1所高,驅動器電V 。通過驅有些最新生MAX9121/9在LVDS 很簡單,因為入端產生的來傳送信號表1是LV 表2 是接義及標準 稱RS-644信號,這種技接,具有低功平衡電纜。目前,流行TIA/EIA -6,以美國國1596.3標準工藝、傳輸電壓可以從+薦的最高數據可達1.923G 原理及電特單的LVDS 傳所示。驅動器電流大部分驅動器的開關生產的LVDS 9122等。 系統中,採為一對差分效果是相互號,從而可VDS 驅動器 接收器的主要4總線接口技術的核心是功耗、低誤。LVDS 在對行的LVDS 技644標準,國家半導體準。這兩個輸介質和供電+5V 到+3.3據傳輸速率Gbps 。 特性 傳輸系統由器的電流源分直接流過關,改變直S 接收器中採用差分方分線對上的電互抵消的,可以大大提高器的主要電 要電特性參,是20世紀是採用極低誤碼率、低串對信號完整技術規範有另一個是 體公司為主推個標準注重於電電壓等則3V ,甚至更率是655Mbp 一個驅動器源(通常為3100?的終直接流過電阻中,100?左方式傳送數據電流方向是因而對信號高數據傳輸電特性參數 參數。 紀90年代低的電壓擺幅串擾和低輻整性、低抖動有兩個標準IEEE 159推出了ANS 於對LVDS 則沒有明確更低;其傳輸ps ,而理論器和一個接3.5mA )來終端電阻,從阻的電流的左右的電阻直據,有著比是相反的,當號的影響很 輸速率和降低才出現的一幅高速差動輻射等特點動及共模特:一個是T 96.3標準。SI/TIA/EIA S 接口的電。LVDS 可輸介質可以論上,在一收器通過一來驅動差分線從而在接收的有無,從而直接集成在比單端傳輸方當共模方式很小。這樣,低功耗。 一種數據傳動傳輸數據,其傳輸介特性要求較高TIA/EIA (電 -644標準電特性、互連可採用CMO 以是PCB 連個無衰耗的一段差分阻線對,由於收器輸入端產而產生「1」在片內輸入端方式更強的式的噪聲耦合就可以採用 傳輸和接口技,可以實現介質可以是銅高的系統中電訊工業聯準。1996連與線路端OS 、GaAs 連線,也可的傳輸線上阻抗為100於接收器的直產生的信號」和「0」的端上了,如的共模噪聲抑合到線對上用很低的電技術。LVDS 現點對點或一銅質的PCB 中得到了越來盟/電子工業年3月,IE 端接等方面的s 或其他技術以是特製的上,LVDS 的?的導體連接直流輸入阻號幅度大約的邏輯狀態如MAXIM 公抑制能力。上時,在接收電壓擺幅(見S 即一點B 連來越業聯EE 的規術實的電的最接而阻抗350態。公司道收器見表

miniLVDS 接口规范

Proposal for mini-LVDS specification in JEITA 28th December, 2007 Leader Keiichi Nakajima (NEC Electronics Corp.) LCD Driver IC Standardization Project Group Technical Committee on Integrated Circuit Semiconductor Product Technology Committee Japan Electronics and Information Technology Industries Association Dear Sir We have set up to discuss about specifications and terminology of LCD driver ICs and timing controllers who are listed in below at November 2006 in JEITA. Now many kinds of LCD driver ICs and timing controllers are applied in LCD displays but there are no standard. And so each LCD manufacturer and semiconductor venders are facing to spend much time to agree the specifications for driver ICs and timing controllers. Therefore we would like to provide the reference document and standard for intra-panel interface based on mini-LVDS. Our technical document for intra-panel interface doesn’t mean a forced standard and it means to provide the guide line to consider the specification between the driver ICs and the timing controller at this moment. Now we disclose out technical document for the intra-panel interface specification to LCD manufacturers and we expect to get some feed back to make tight relation ship between LCD manufacturers and semiconductor venders. If you have an interesting and any questions or request for us, Please fill up the attached form and feed back to us. Best Regards, Project Group Member Kawasaki Microelectronics, Inc., Matsushita Electric Industrial Co., Ltd., NEC Electronics Corp., Oki Electric Industry Co., Renesas Technology Corp., Rohm Co., Ltd. Sanyo Semiconductor Co., Ltd., Seiko Epson Corp., Inc., Thine Electronics, Sharp Corp., Toshiba Corp. Special Member from the Display Board in JEITA Toshiba Matsushita Display Technology Co., Ltd., NEC LCD Technology Co., Ltd.

教你区分LVDS屏线及屏接口定义(精)

教你区分 LVDS 屏线及屏接口定义 现在碰到液晶屏大多是 LVDS 屏线 , 经常碰到什么单 6, 双 6 单 8双 8. 如何区分呢 ? 我以前也不知道 , 后在网上收集学习后才弄明白 方法 1 数带“ +-”的这种信号线一共有几对,有 10对的减 2对就是双 8, 有 8对的减 2对就是双 6。有 5对的减掉 1对是单 8, 有 4对的减掉 1对是单 6,数 +/-线一共有多少对。说通俗点就是 4对————单 6 5对————单 8 8对————双 6 10对————双 8 方法 2 拧开螺丝看看主板里面的电路,一般每对数据线之间都有一个 100欧姆的电阻,看到 4个的话就是单 6位的屏,看到 8个的话就是双六位, 5个的话一般是单 8位, 有10个一般就是双 8位,当然有资料的话就不用这么麻烦, 也有 TMDS 也用这种 20PIN 的连接头的,比如 LG 的 LP141X1,不过基本上很少 lvds 的接口的定义 20PIN 单 6定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空

每组信号线之间电阻为(数字表 120欧左右 ,20PIN 双 6定义 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15: RO2- 16:RO2+ 17:RO3- 18:RO3+; 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表 120欧左右 20PIN 单 8定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 6定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空 - 21:空 22:空 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 8定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右

LVDS标准及介绍 (2)

LVDS 1.0 LVDS简介 LVDS(Low Voltage Differential Signaling)是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。 1.1 LVDS信号传输组成 LVDS信号传输一般由三部分组成,如图1所示:差分信号发送器,差分信号互联器,差分信号接收器。 图1 简单的单工LVDS接口连接图 差分信号发送器:将非平衡传输的TTL信号转换成平衡传输的LVDS信号。通常由一个IC来完成。 差分信号接收器:将平衡传输的LVDS信号转换成非平衡传输的TTL信号。通常由一个IC来完成。 差分信号互联器:包括联接线(电缆或者PCB走线),终端匹配电阻。 1.2 LVDS的工作原理 图2 LVDS接口电路图

如图2所示,LVDS驱动器由一个驱动差分线对的电流源组成(通常电流为3.5mA),LVDS接收器具有很高输入阻抗,因此驱动器输出的电流大部分都流过100Ω的匹配电阻,并在接收器的输入端产生生大约350mV的电压。驱动器的输入为两个相反的电平信号,四个nMOS管的尺寸工艺是完全相同的。当输入为“1”时,标号IN+的一对管子导通,另一对管子截止,电流方向如图2,并产生大约350mV的压降;反之,输入为“0”时,电流反向,产生大约350mV的压降。这样根据流经电阻的电流方向, 就把要传输的数字信号(CMOS信号)转换成了电流信号(LVDS信号)。接受端可以通过判断电流的方向就得到有效的逻辑“1”和逻辑“0”状态。从而实现数字信号的传输过程。由于MOS管的开关速度很高,并且LVDS的电压摆幅低(350mV),因此可以实现高速传输。其电平特性如下图所示 1.3 LVDS的国际标准 LVDS是目前高速数字信号传输的国际通用接口标准,国际上有两个工业标准定义了LVDS:ANSI/TIA/EIA(American National Standards Institute/Telecommunications Industry Association/Electronic Industries Association)和IEEE(Institute for Electrical and Electronics Engineering). ANSI/TIA/EIA -644(1995年11月通过)标准定义了LVDS的电气规范,包括驱动器输出和接收器输入的电气规范,但它并不包括功能性的规范、传输协议或传输介质特性,这些与具体应用有关。

lvds液晶屏幕接口详解(完整资料).doc

【最新整理,下载后即可编辑】 1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB 走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示

器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS 输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。 图1 LVDS接口电路的组成示意图 在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。所谓

常见LVDS屏接口定义讲解

深圳市名海东实业有限公司 常见LVDS 屏接口定义讲解 很多初学者对于如何区分屏的接口类型很是头疼,是LVDS 屏,TTL 屏还是RSDS 屏?总是很难搞清出。如何快速识别出液晶屏的接口类型则需要一些经验的,下面从屏的屏线接口的样式来对接口类型做出分类的介绍,帮助大家快速识别屏的接口类型。以下方法是个人认识,不足之处请大家谅解。 (1)TTL 屏接口样式: D6T (单6位TTL ):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T (双6位TTL ):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸,15寸液晶屏。 D8T (单8位TTL ):很少见 S8T (双8位TTL ):有,很少见 80扣针(14寸,15寸) (2)LVDS 屏接口样式: D6L (单6位LVDS ):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,13寸,14寸,15寸) D8L (单8位LVDS ):20插针(5个100欧姆)(15寸) S6L (双6位LVDS ):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸) S8L (双8位LVDS ):30插针,30片插(10个100欧姆电阻)(17寸,18寸,19寸,20寸,21寸) (3)RSDS 屏接口样式: 50排线,双40排线,30+50排线。主要为台式机(15寸,17寸)液晶屏。 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS 的屏来解析一下,此款屏的型号为:LP141X3(20针插接口)屏接口定义在液晶屏的规格书里面都有这一个页面

相关主题