搜档网
当前位置:搜档网 › 材料力学-切应力计算

材料力学-切应力计算

材料力学-切应力计算
材料力学-切应力计算

1

第四章 弹性杆横截面上的切应力分析

§4-3梁横力弯曲时横截面上的切应力

梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。但一般情况下,切应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。

1.矩形截面梁

对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。又因截面高度h 大于宽度b ,切应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设:

1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。

2)切应力沿截面宽度均匀分布。

基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 所示。梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d )。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微

块左右侧面上正应力的合力分别为1N 和2N ,其中 图4-16

图4-15

2

*1I 1**z z A

z A S I M dA I My dA N ==

=??σ (4-29) *1II 2)()(**z z A

z A S I dM M dA I y dM M dA N +=+=

=??σ (4-30) 式中,*A 为微块的侧面面积,)(

II I σσ为面积*A 中距中性轴为 1y 处的正应力,?=

*

1*A z dA y S 。 由微块沿x 方向的平衡条件∑=0x ,得

021='-+-dx b N N τ (4-31)

将式(4-29)和式(4-30)代入式(4-31),得 0*='-bdx S I dM z z

τ 故 z

z bI S dx dM *='τ 因ττ='=,Q F dx

dM ,故求得横截面上距中性轴为 y 处横线上各点的剪应力τ为 z z

Q bI S F *=τ (4-32)

式(4-32)也适用于其它截面形式的梁。式中,Q F 为截面上的剪力; z I 为整个截面

对中性轴z 的惯性矩;b 为横截面在所求应力点处的宽度;*y S 为面积*A 对中性轴的静矩。

对于矩形截面梁(图4-17),可取1bdy dA =,于是

)4

(2222111*y h b dy by dA y S h y A z -===?? 这样,式(4-32)可写成

)4

(222

y h I F z Q -=τ 上式表明,沿截面高度剪应力 τ按抛物线规律变化(图

4-17)。

在截面上、下边缘处,y=±

2

h ,τ=0;在中性轴上,y=0,切应力值最大,其值为

3 A

F Q 23max =τ (4-33) 式中A =bh ,即矩形截面梁的最大切应力是其平均剪应力的2

3倍。

2.圆形截面梁

在圆形截面上(图4-18),任一平行于中性轴的横线aa 1两

端处,剪应力的方向必切于圆周,并相交于y 轴上的c 点。因

此,横线上各点剪应力方向是变化的。但在中性轴上各点剪应

力的方向皆平行于剪力F Q ,设为均匀分布,其值为最大。由式

(4-32)求得 A Q 34max =

τ (4-34) 式中24

d A π=

,即圆截面的最大切应力为其平均切应力的34倍。 3.工字形截面梁

工字形截面梁由腹板和翼缘组成。式(4-32)的计算结果表明,在翼缘上切应力很小,在腹板上切应力沿腹板高度按抛物线规律变化,如图4-19所示。最大剪应力在中性轴上,其值为

Z z Q dI S F max max )(*=

τ 式中(S *z )m ax 为中性轴一侧截面面积对中性轴

的静矩。对于轧制的工字钢,式中的

max

*)(z z S I 可以从型钢表中查得。 计算结果表明,腹板承担的剪力约为

(0.95~0.97)F Q ,因此也可用下式计算τ

m ax 的

近似值 d h F Q

1max ≈τ

式中h 1为腹板的高度,d 为腹板的宽度。

材料力学的基本计算公式

材料力学的基本计算公式

————————————————————————————————作者:————————————————————————————————日期:

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式? 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材 料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系 式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式(P功 率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标 距l1;拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式 ? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力 ,脆性材料 ,塑 性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所 求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径) 扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 式, 28. 平面应力状态下斜截面应力的一般公式 , 29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, ,33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力 35.广义胡克定律

材料力学-切应力计算

第四章弹性杆横截面上的切应力分析 § 4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力,又有切应力。但一般情况下,切应力 对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面 上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q。现分析距中性轴z为y的横线aa1 上的剪应力分布情况。根据剪应力成对定理,横线aa1两端的剪应力必与截面两侧边相切, 即与剪力F Q的方向一致。由于对称的关系,横线aa i中点处的剪应力也必与F Q的方向相同。 根据这三点剪应力的方向,可以设想aa i线上各点切应力的方向皆平行于剪力F Q。又因截面高度h大于宽度b,切应力的数值沿横线aa i不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj力F Q。 2)切应力沿截面宽度均匀分布。 图4-15 图4-16 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b所示。梁的横截面尺寸如图4-16c所示,现欲求距中性 轴z为y的横线aa1处的切应力。过aa1用平行于中性层的纵截面aa2C1自dx微段中截出 一微块(图4-16d)。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力。微块左右侧面上正应力的合力分别为N1和N2,其中

y 1dA 。 A * 由微块沿x 方向的平衡条件 这样,式(4-32)可写成 N 1 I dA A * My 1 dA Ms ; z A * I z (4-29) N 2 II dA (M dM)y 1dA A * A * I z (M dM)。 * ^n^Sz (4-30) 式中,A 为微块的侧面面积, (ii )为面积 A 中距中性轴为 y i 处的正应力, 将式 N 1 N 2 (4-29)和式(4-30)代入式 dM * nr S z bdx 0 4-31),得 bdx 0 dM S ; dx bI z (4-31) 因 F Q , dx ,故求得横截面上距中性轴为 y 处横线上各点的剪应力 * F Q S Z bn (4-32) 式(4-32)也适用于其它截面形式的梁。式中, F Q 为截面上的剪力; I z 为整个截面 对中性轴z 的惯性矩;b 为横截面在所求应力点处的宽度; S y 为面积A *对中性轴的静矩。 对于矩形截面梁(图4-17),可取dA bdy i ,于是 * S z y i dA A 2(h y 2) 电( h! y 2) 上式表明,沿截面高度剪应力 4-17 )。 按抛物线规律变化(图 在截面上、下边缘处,y= ± h , =0;在中性轴上,y=0, 2 切应力值最大,其值为 ■ 1 1 r 尸蛰 T *17 A" y 图 4-17 * S z 0,得

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1、弯矩、剪力和荷载集度之间的关系式 2、轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正) 3、轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 4、纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5、纵向线应变和横向线应变 6、泊松比 7、胡克定律 8、受多个力作用的杆件纵向变形计算公式? 9、承受轴向分布力或变截面的杆件,纵向变形计算公式 10、轴向拉压杆的强度计算公式1 1、许用应力,脆性材料,塑性材料1 2、延伸率1 3、截面收缩率1 4、剪切胡克定律(切变模量G,切应变g )1 5、拉压弹性模量E、泊松比和切变模量G之间关系式1 6、圆截面对圆心的极惯性矩(a)实心圆(b)空心圆1

7、圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )1 8、圆截面周边各点处最大切应力计算公式1 9、扭转截面系数,(a)实心圆(b)空心圆20、薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式2 1、圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式2 2、同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或2 3、等直圆轴强度条件2 4、塑性材料;脆性材料2 5、扭转圆轴的刚度条件? 或2 6、受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,2 7、平面应力状态下斜截面应力的一般公式 ,2 8、平面应力状态的三个主应力 , ,2 9、主平面方位的计算公式30、面内最大切应力3 1、受扭圆轴表面某点的三个主应力,,3 2、三向应力状态最大与最小正应力 ,3 3、三向应力状态最大切应力3 4、广义胡克定律3 5、四种强度理论的相当应力3

材料力学-切应力计算(完整资料).doc

此文档下载后即可编辑 第四章 弹性杆横截面上的切应力分析 §4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。但一般情况下,切应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。又因截面高度h 大于宽度b ,切应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。 2)切应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 图4-16 图4-15

所示。梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d )。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (4-29) * 1II 2)()(* * z z A z A S I dM M dA I y dM M dA N +=+= =??σ (4-30) 式中,*A 为微块的侧面面积, )(II I σσ为面积*A 中距中性轴为 1y 处 的正应力,?=* 1*A z dA y S 。 由微块沿x 方向的平衡条件∑=0x ,得 21='-+-dx b N N τ (4-31) 将式(4-29)和式(4-30)代入式(4-31),得 0* ='-bdx S I dM z z τ 故 z z bI S dx dM * = 'τ 因 ττ='=,Q F dx dM , 故求得横截面上距中性轴为 y 处横线上各点的剪 应力τ为 z z Q bI S F *= τ (4-32) 式(4-32)也适用于其它截面形式的梁。式中,Q F 为截面上的剪力; z I 为整个截面对中性轴z 的惯性矩;b 为横截面在所求应 力点处的宽度;* y S 为面积*A 对中性轴的静矩。 对于矩形截面梁(图4-17),可取1bdy dA =,于是 )4 (222 2111* y h b dy by dA y S h y A z -===? ? 这样,式(4-32)可写成

材料力学切应力计算

第四章 弹性杆横截面上的切应力分析 §4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。但一般情况下,切应力对梁的强度与变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理与静力关系进行推导,而就是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。又因截面高度h 大于宽度b,切应力的数值沿横线1aa 不可能有太大变化,可以认为就是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。 2)切应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 所示。梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d)。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 与2N ,其中 图4-16 图4-15

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??= →?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限 s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3 n s σσ= , []b b n σσ= ,强度条件: []σσ≤??? ??=max max A N ,等截面杆 [] σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1, 沿轴线方向的应变和横截面上的应力分别为:l l ?=ε, A P A N ==σ。横向应变为:b b b b b -= ?= 1' ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φ ργτρρ==。力 学关系dA dx d G dx d G dA T A A A ? ? ? == = 2 2 ρφφρρτρ 圆轴扭转时的应力:t p W T R I T = = max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??= = l p l p dx GI T dx GI T ?;等直杆:p GI Tl = ? 圆轴扭转时的刚度条件: p GI T dx d = = '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系 )()(x q dx x dQ =; ()()x Q dx x dM =; () ()()x q dx x dQ dx x M d == 2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。

材料力学的基本计算公式

材料力学的基本计算公 式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a 从x轴正方向逆时针转至外法线的方位角为正) 4. 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试 样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算 公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性 材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关 系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆

21.圆轴扭转时横截面上任一点切应力计算公式(扭 矩T,所求点到圆心距离r) 22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 24.(b)空心圆 25.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均 半径)扭转切应力计算公式 26.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的 关系式 27.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 28.等直圆轴强度条件 29.塑性材料;脆性材料

材料力学切应力计算精编

材料力学切应力计算精 编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第四章 弹性杆横截面上的切应力分析 §4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。但一般情况下,切应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。又因截面高度h 大于宽度b ,切应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。 2)切应力沿截面宽度均匀分布。 图4-16

基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 所示。梁的横截面尺寸如图4-16c 所示,现欲求距 中性轴z 为y 的横线1aa 处的切 应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d )。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (4-29) *1II 2)()(* * z z A z A S I dM M dA I y dM M dA N +=+= =??σ (4-30) 式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性轴为 1y 处的正应力,?= * 1 * A z dA y S 。 由微块沿x 方向的平衡条件∑=0x ,得 021='-+-dx b N N τ (4-31) 将式(4-29)和式(4-30)代入式(4-31),得 图4-15

材料力学-切应力计算

精品文档 第四章 弹性杆横截面上的切应力分析 §4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。但一般情况下,切应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。又因截面高度h 大于宽度b ,切应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。 2)切应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 所示。梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d )。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 图4-16 图4-15

相关主题